1
|
Nwoba ST, Carere CR, Wigley K, Baronian K, Weaver L, Gostomski PA. Using RNA-Stable isotope probing to investigate methane oxidation metabolites and active microbial communities in methane oxidation coupled to denitrification. CHEMOSPHERE 2024; 357:142067. [PMID: 38643845 DOI: 10.1016/j.chemosphere.2024.142067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/26/2024] [Accepted: 04/15/2024] [Indexed: 04/23/2024]
Abstract
The active denitrifying communities performing methane oxidation coupled to denitrification (MOD) were investigated using samples from an aerobic reactor (∼20% O2 and 2% CH4) and a microaerobic reactor (2% O2, 2% CH4) undertaking denitrification. The methane oxidation metabolites excreted in the reactors were acetate, methanol, formate and acetaldehyde. Using anaerobic batch experiments supplemented with exogenously supplied 13C-labelled metabolites, the active denitrifying bacteria were identified using 16S rRNA amplicon sequencing and RNA-stable isotope probing (RNA-SIP). With the aerobic reactor (AR) samples, the maximum NO3- removal rates were 0.43 mmol g-1 d-1, 0.40 mmol g-1 d-1, 0.33 mmol g-1 d-1 and 0.10 mmol g-1 d-1 for exogenously supplied acetate, formate, acetaldehyde and methanol batch treatments respectively, while with the microaerobic reactor (MR) samples, the maximum NO3- removal rates were 0.41 mmol g-1 d-1, 0.33 mmol g-1 d-1, 0.38 mmol g-1 d-1 and 0.14 mmol g-1 d-1 for exogenously supplied acetate, formate, acetaldehyde and methanol batch treatments respectively. The RNA-SIP experiments with 13C-labelled acetate, formate, and methanol identified Methyloversatilis, and Hyphomicrobium as the active methane-driven denitrifying bacteria in the AR samples, while Pseudoxanthomonas, Hydrogenophaga and Hyphomicrobium were the active MOD bacteria in the MR samples. Collectively, all the data indicate that formate is a key cross-feeding metabolite excreted by methanotrophs and consumed by denitrifiers performing MOD.
Collapse
Affiliation(s)
- Sunday T Nwoba
- Dept. of Chemical & Process Engineering, University of Canterbury, Christchurch, New Zealand.
| | - Carlo R Carere
- Dept. of Chemical & Process Engineering, University of Canterbury, Christchurch, New Zealand
| | - Kathryn Wigley
- Dept. of Chemical & Process Engineering, University of Canterbury, Christchurch, New Zealand
| | - Kim Baronian
- Dept. of Chemical & Process Engineering, University of Canterbury, Christchurch, New Zealand
| | - Louise Weaver
- Institute of Environmental Science and Research Ltd., Christchurch, New Zealand
| | - Peter A Gostomski
- Dept. of Chemical & Process Engineering, University of Canterbury, Christchurch, New Zealand.
| |
Collapse
|
2
|
Chen KH, Feng J, Bodelier PLE, Yang Z, Huang Q, Delgado-Baquerizo M, Cai P, Tan W, Liu YR. Metabolic coupling between soil aerobic methanotrophs and denitrifiers in rice paddy fields. Nat Commun 2024; 15:3471. [PMID: 38658559 PMCID: PMC11043409 DOI: 10.1038/s41467-024-47827-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 04/15/2024] [Indexed: 04/26/2024] Open
Abstract
Paddy fields are hotspots of microbial denitrification, which is typically linked to the oxidation of electron donors such as methane (CH4) under anoxic and hypoxic conditions. While several anaerobic methanotrophs can facilitate denitrification intracellularly, whether and how aerobic CH4 oxidation couples with denitrification in hypoxic paddy fields remains virtually unknown. Here we combine a ~3300 km field study across main rice-producing areas of China and 13CH4-DNA-stable isotope probing (SIP) experiments to investigate the role of soil aerobic CH4 oxidation in supporting denitrification. Our results reveal positive relationships between CH4 oxidation and denitrification activities and genes across various climatic regions. Microcosm experiments confirm that CH4 and methanotroph addition promote gene expression involved in denitrification and increase nitrous oxide emissions. Moreover, 13CH4-DNA-SIP analyses identify over 70 phylotypes harboring genes associated with denitrification and assimilating 13C, which are mostly belonged to Rubrivivax, Magnetospirillum, and Bradyrhizobium. Combined analyses of 13C-metagenome-assembled genomes and 13C-metabolomics highlight the importance of intermediates such as acetate, propionate and lactate, released during aerobic CH4 oxidation, for the coupling of CH4 oxidation with denitrification. Our work identifies key microbial taxa and pathways driving coupled aerobic CH4 oxidation and denitrification, with important implications for nitrogen management and greenhouse gas regulation in agroecosystems.
Collapse
Affiliation(s)
- Kang-Hua Chen
- National Key Laboratory of Agricultural Microbiology and College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation and Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jiao Feng
- National Key Laboratory of Agricultural Microbiology and College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation and Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Paul L E Bodelier
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), PO Box 50, 6700 AB, Wageningen, The Netherlands
| | - Ziming Yang
- Department of Chemistry, Oakland University, Rochester, MI, 48309, USA
| | - Qiaoyun Huang
- National Key Laboratory of Agricultural Microbiology and College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation and Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan, 430070, China
| | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Sevilla, 41012, Spain
| | - Peng Cai
- National Key Laboratory of Agricultural Microbiology and College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation and Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenfeng Tan
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation and Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yu-Rong Liu
- National Key Laboratory of Agricultural Microbiology and College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation and Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
3
|
Egbadon EO, Wigley K, Nwoba ST, Carere CR, Weaver L, Baronian K, Burbery L, Gostomski PA. Microaerobic methane-driven denitrification in a biotrickle bed - Investigating the active microbial biofilm community composition using RNA-stable isotope probing. CHEMOSPHERE 2024; 346:140528. [PMID: 37907168 DOI: 10.1016/j.chemosphere.2023.140528] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 10/01/2023] [Accepted: 10/22/2023] [Indexed: 11/02/2023]
Abstract
A microaerobic (2% O2 v/v) biotrickle bed reactor supplied continuously with 2% methane to drive nitrate removal (MAME-D) was investigated using 16S rDNA and rRNA amplicon sequencing in combination with RNA-stable isotope probing (RNA-SIP) to identify the active microorganisms. Methane removal rates varied from 500 to 1000 mmol m-3h-1 and nitrate removal rates from 25 to 58 mmol m-3h-1 over 55 days of operation. Biofilm samples from the column were incubated in serum bottles supplemented with 13CH4. 16S rDNA analysis indicated a simple community structure in which four taxa accounted for 45% of the total relative abundance (RA). Dominant genera included the methanotroph Methylosinus and known denitrifiers Nubsella and Pseudoxanthomonas; along with a probable denitrifier assigned to the order Obscuribacterales. The 16S rRNA results revealed the methanotrophs Methylocystis (15% RA) and Methylosinus (10% RA) and the denitrifiers Arenimonas (10% RA) and Pseudoxanthomonas (7% RA) were the most active genera. Obscuribacterales was the most active taxa in the community at 22% RA. Activity was confirmed by the Δ buoyant density changes with time for the taxa, indicating most of the community activity was associated with methane oxidation and subsequent consumption of methanotrophic metabolic intermediates by the denitrifiers. This is the first report of RNA stable isotope probing within a microaerobic methane driven denitrification system and the active community was markedly different from the full community identified via 16S-rDNA analysis.
Collapse
Affiliation(s)
- Emmanuel O Egbadon
- Department of Chemical & Process Engineering, University of Canterbury, Christchurch, New Zealand
| | - Kathryn Wigley
- Department of Chemical & Process Engineering, University of Canterbury, Christchurch, New Zealand
| | - Sunday T Nwoba
- Department of Chemical & Process Engineering, University of Canterbury, Christchurch, New Zealand
| | - Carlo R Carere
- Department of Chemical & Process Engineering, University of Canterbury, Christchurch, New Zealand
| | - Louise Weaver
- Institute of Environmental Science and Research Ltd., Christchurch, New Zealand
| | - Kim Baronian
- Department of Chemical & Process Engineering, University of Canterbury, Christchurch, New Zealand
| | - Lee Burbery
- Institute of Environmental Science and Research Ltd., Christchurch, New Zealand
| | - Peter A Gostomski
- Department of Chemical & Process Engineering, University of Canterbury, Christchurch, New Zealand.
| |
Collapse
|
4
|
Houghton KM, Carere CR, Stott MB, McDonald IR. Thermophilic methane oxidation is widespread in Aotearoa-New Zealand geothermal fields. Front Microbiol 2023; 14:1253773. [PMID: 37720161 PMCID: PMC10502179 DOI: 10.3389/fmicb.2023.1253773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/16/2023] [Indexed: 09/19/2023] Open
Abstract
Geothermal areas represent substantial point sources for greenhouse gas emissions such as methane. While it is known that methanotrophic microorganisms act as a biofilter, decreasing the efflux of methane in most soils to the atmosphere, the diversity and the extent to which methane is consumed by thermophilic microorganisms in geothermal ecosystems has not been widely explored. To determine the extent of biologically mediated methane oxidation at elevated temperatures, we set up 57 microcosms using soils from 14 Aotearoa-New Zealand geothermal fields and show that moderately thermophilic (>40°C) and thermophilic (>60°C) methane oxidation is common across the region. Methane oxidation was detected in 54% (n = 31) of the geothermal soil microcosms tested at temperatures up to 75°C (pH 1.5-8.1), with oxidation rates ranging from 0.5 to 17.4 μmol g-1 d-1 wet weight. The abundance of known aerobic methanotrophs (up to 60.7% Methylacidiphilum and 11.2% Methylothermus) and putative anaerobic methanotrophs (up to 76.7% Bathyarchaeota) provides some explanation for the rapid rates of methane oxidation observed in microcosms. However, not all methane oxidation was attributable to known taxa; in some methane-consuming microcosms we detected methanotroph taxa in conditions outside of their known temperature range for growth, and in other examples, we observed methane oxidation in the absence of known methanotrophs through 16S rRNA gene sequencing. Both of these observations suggest unidentified methane oxidizing microorganisms or undescribed methanotrophic syntrophic associations may also be present. Subsequent enrichment cultures from microcosms yielded communities not predicted by the original diversity studies and showed rates inconsistent with microcosms (≤24.5 μmol d-1), highlighting difficulties in culturing representative thermophilic methanotrophs. Finally, to determine the active methane oxidation processes, we attempted to elucidate metabolic pathways from two enrichment cultures actively oxidizing methane using metatranscriptomics. The most highly expressed genes in both enrichments (methane monooxygenases, methanol dehydrogenases and PqqA precursor peptides) were related to methanotrophs from Methylococcaceae, Methylocystaceae and Methylothermaceae. This is the first example of using metatranscriptomics to investigate methanotrophs from geothermal environments and gives insight into the metabolic pathways involved in thermophilic methanotrophy.
Collapse
Affiliation(s)
- Karen M. Houghton
- Te Pū Ao | GNS Science, Wairakei Research Centre, Taupō, New Zealand
- Te Aka Mātuatua | School of Science, Te Whare Wānanga o Waikato | University of Waikato, Hamilton, New Zealand
| | - Carlo R. Carere
- Te Pū Ao | GNS Science, Wairakei Research Centre, Taupō, New Zealand
- Te Tari Pūhanga Tukanga Matū | Department of Chemical and Process Engineering, Te Whare Wānanga o Waitaha | University of Canterbury, Christchurch, New Zealand
| | - Matthew B. Stott
- Te Pū Ao | GNS Science, Wairakei Research Centre, Taupō, New Zealand
- Te Kura Pūtaiao Koiora | School of Biological Sciences, Te Whare Wānanga o Waitaha | University of Canterbury, Christchurch, New Zealand
| | - Ian R. McDonald
- Te Aka Mātuatua | School of Science, Te Whare Wānanga o Waikato | University of Waikato, Hamilton, New Zealand
| |
Collapse
|