1
|
Petit C, Caudal F, Taupin L, Dufour A, Le Ker C, Giudicelli F, Rodrigues S, Bazire A. Antibiofilm Activity of the Marine Probiotic Bacillus subtilis C3 Against the Aquaculture-Relevant Pathogen Vibrio harveyi. Probiotics Antimicrob Proteins 2025; 17:1551-1562. [PMID: 38329698 DOI: 10.1007/s12602-024-10229-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
V. harveyi is a well-known pathogen-inducing vibriosis, especially for shrimp, fish, and invertebrates. Its virulence is related to biofilm formation and this negatively impacts the aquaculture industry. Therapeutic strategies such as the utilization of probiotic bacteria may slow down Vibrio infections. In this study, we investigated the potential antibiofilm activity of the probiotic Bacillus subtilis C3 for aquaculture. First, B. subtilis C3 biofilm was characterized by confocal laser scanning microscopy (CLSM) before testing its bioactivities. We demonstrated antibiofilm activity of B. subtilis C3 culture supernatant, which is mainly composed-among other molecules-of lipopeptidic surfactants belonging to the surfactin family as identified by ultra-high-performance liquid chromatography (UHPLC)-MS/MS. Their antibiofilm activity was confirmed on V. harveyi ORM4 (pFD086) biofilm by CLSM. These findings suggest that the marine probiotic B. subtilis C3 might inhibit or reduce Vibrio colonization and thus decrease the associated animal mortalities.
Collapse
Affiliation(s)
- Coraline Petit
- Laboratoire de Biotechnologie et Chimie Marines, Université Bretagne Sud, IUEM, EMR 6076, 56100, Lorient, France
- Marine Akwa, 1 rue René Cassin, 22100, Dinan, France
| | - Flore Caudal
- Laboratoire de Biotechnologie et Chimie Marines, Université Bretagne Sud, IUEM, EMR 6076, 56100, Lorient, France
| | - Laure Taupin
- Laboratoire de Biotechnologie et Chimie Marines, Université Bretagne Sud, IUEM, EMR 6076, 56100, Lorient, France
| | - Alain Dufour
- Laboratoire de Biotechnologie et Chimie Marines, Université Bretagne Sud, IUEM, EMR 6076, 56100, Lorient, France
| | - Carine Le Ker
- Marine Akwa, 1 rue René Cassin, 22100, Dinan, France
| | | | - Sophie Rodrigues
- Laboratoire de Biotechnologie et Chimie Marines, Université Bretagne Sud, IUEM, EMR 6076, 56100, Lorient, France
| | - Alexis Bazire
- Laboratoire de Biotechnologie et Chimie Marines, Université Bretagne Sud, IUEM, EMR 6076, 56100, Lorient, France.
| |
Collapse
|
2
|
Fan Q, Huangfu H, Chen L, Jiao M, Li B, Cao Z, Sun H, Luo X, Xu J. Antiviral Activity of Marine Bacterium Paraliobacillus zengyii Against Enterovirus 71 In Vitro and In Vivo. Int J Mol Sci 2025; 26:3500. [PMID: 40331950 PMCID: PMC12026459 DOI: 10.3390/ijms26083500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/26/2025] [Accepted: 04/01/2025] [Indexed: 05/08/2025] Open
Abstract
Enterovirus 71 (EV71) is the major causative agent of hand, foot, and mouth disease (HFMD), leading to a serious health threat to young children. Probiotics are effective at treating or preventing gastrointestinal infections, especially viral infections. Probiotics against EV71 are mainly traditional lactic acid-producing bacteria, and most of them have been proven to be effective only in vitro. Here, we report that the marine bacterium Paraliobacillus zengyii X-1125 (P. zengyii) has promising anti-EV71 activity. The antiviral effect of P. zengyii against EV71 was assessed in different cell lines, and the viral RNA levels and titers were obviously reduced after treatment with P. zengyii. Furthermore, we established an EV71-infected mouse model to evaluate its antiviral efficacy in vivo. The oral administration of P. zengyii significantly decreased the viral loads in the hindlimb muscles, spleens, and ileums. Further research revealed that P. zengyii enhances the expression of type I interferon (IFN-I) in EV71-infected cells. Similarly, transcriptome analysis indicated that the expression of interferon-stimulated genes (ISGs) in EV71-infected mice significantly increased after P. zengyii treatment. Taken together, the results of this study indicated that P. zengyii markedly reduces EV71 infection by regulating the IFN response both in vivo and in vitro, providing a potential means to work against EV71 infection.
Collapse
Affiliation(s)
- Qianjin Fan
- Institute of Public Health, School of Medicine, Nankai University, Tianjin 300071, China; (Q.F.)
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Haoyue Huangfu
- Institute of Public Health, School of Medicine, Nankai University, Tianjin 300071, China; (Q.F.)
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Lan Chen
- Center of Reverse Microbial Etiology, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Mengqi Jiao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Beijie Li
- Center of Reverse Microbial Etiology, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Zhijie Cao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Hui Sun
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Xuelian Luo
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
- Center of Reverse Microbial Etiology, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Jianguo Xu
- Institute of Public Health, School of Medicine, Nankai University, Tianjin 300071, China; (Q.F.)
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
- Center of Reverse Microbial Etiology, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
- Research Unite for Unknown Microbe, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
3
|
Liang Z, Deng X, Guo K, Yin X, Zhang C, Yang Y, Xv P, Liu L, Rao Y. Characterization of quorum quenching enzyme AiiA and its potential role in strawberry preservation. Food Res Int 2025; 207:116059. [PMID: 40086970 DOI: 10.1016/j.foodres.2025.116059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 01/17/2025] [Accepted: 02/22/2025] [Indexed: 03/16/2025]
Abstract
Microbial spoilage in nutrient-rich strawberries has led to significant food waste and economic loss in the food industry. The quorum-quenching enzyme AiiA is believed to disrupt communication between cells by inactivating AHLs-based quorum sensing signals. Chitosan, a biopolymer derived from chitin, is widely used as a coating film to inhibit bacterial growth and prolong food shelf life. The present study aims to investigate the individual and combined effects of AiiA and chitosan on the preservation of strawberries. AiiA was synthesized in vitro and the reaction conditions for the degradation of AHLs signals were optimized at temperatures ranging from 20 to 60 °C and a pH of 8.0. The present study provides evidence that AiiA effectively inhibited the processes of biofilm development, production of exopolysaccharides, and extracellular protease activity in Enterobacter sp. and Pseudomonas aeruginosa (P. aeruginosa). Utilizing the bioprotective characteristics of AiiA, we implemented it in the preservation of strawberries. Our experiments show that AiiA, when used alone, improved the brightness, redness, and hardness of strawberries infected by Enterobacter sp. When combined with chitosan, AiiA had a notably beneficial effect on the sensory quality, color, hardness, and soluble solids content of strawberries that were infected with Enterobacter sp. and P. aeruginosa. Both AiiA alone and AiiA combined with chitosan treatment effectively reduced bacterial and fungal counts in strawberries infected by P. aeruginosa and inhibited bacterial growth in those strawberries infected by Enterobacter sp. Our study provides evidence that AiiA, either alone or in combination with chitosan shows potential application in preserving agricultural products.
Collapse
Affiliation(s)
- Ziwei Liang
- Food Microbiology Key Laboratory of Sichuan Province, School of Food Science and Bioengineering, Xihua University, Chengdu 610039, China
| | - Xi Deng
- Food Microbiology Key Laboratory of Sichuan Province, School of Food Science and Bioengineering, Xihua University, Chengdu 610039, China
| | - Kaiyu Guo
- Food Microbiology Key Laboratory of Sichuan Province, School of Food Science and Bioengineering, Xihua University, Chengdu 610039, China
| | - Xiaoyu Yin
- Food Microbiology Key Laboratory of Sichuan Province, School of Food Science and Bioengineering, Xihua University, Chengdu 610039, China
| | - Chengyi Zhang
- Food Microbiology Key Laboratory of Sichuan Province, School of Food Science and Bioengineering, Xihua University, Chengdu 610039, China
| | - Yao Yang
- Food Microbiology Key Laboratory of Sichuan Province, School of Food Science and Bioengineering, Xihua University, Chengdu 610039, China
| | - Pingkang Xv
- Food Microbiology Key Laboratory of Sichuan Province, School of Food Science and Bioengineering, Xihua University, Chengdu 610039, China
| | - Lei Liu
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China.
| | - Yu Rao
- Food Microbiology Key Laboratory of Sichuan Province, School of Food Science and Bioengineering, Xihua University, Chengdu 610039, China.
| |
Collapse
|
4
|
Wang D, Xu R, Liu S, Sun X, Zhang T, Shi L, Wang Y. Enhancing the application of probiotics in probiotic food products from the perspective of improving stress resistance by regulating cell physiological function: A review. Food Res Int 2025; 199:115369. [PMID: 39658167 DOI: 10.1016/j.foodres.2024.115369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/28/2024] [Accepted: 11/14/2024] [Indexed: 12/12/2024]
Abstract
Probiotic foods are foods containing probiotics, including dairy and non-dairy products, that exert significant beneficial impacts on human health. Benefiting from the rapid progress in systems biology, diverse types of probiotics with prominent health-promoting functionalities are unraveled, albeit such functions could be substantially influenced by the stress environments. Here, we conducted a comprehensive review to characterize the state-of-the-art research on probiotic foods and specific probiotics employed in their production. We summarized the detrimental effects of various environmental stresses, including those encountered during industrial fermentation and storage (in vitro), as well as in vivo conditions such as digestion and intestinal colonization, on the biological functions of probiotics. Furthermore, this review outlines the recent advancements in elucidating the mechanisms of stress resistance, which are expected to enhance targeted probiotic applications and optimize their functional properties. Additionally, we summarized various strategies aimed at improving stress tolerance by regulating cell physiological function, specifically adaptive laboratory evolution, preadaptation treatment, exogenous supplementation, and molecular biological manipulation. This review underscores the significance of enhancing our understanding of stress tolerance mechanisms at a systems level and developing efficacious anti-stress strategies to enhance the application of probiotics while maximizing their biological functionalities.
Collapse
Affiliation(s)
- Dingkang Wang
- Global Health Institute, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Ruijie Xu
- Global Health Institute, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Sha Liu
- Global Health Institute, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiaomin Sun
- Global Health Institute, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Tianxiao Zhang
- Global Health Institute, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Lin Shi
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China.
| | - Youfa Wang
- Global Health Institute, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
5
|
Dhayalan A, Prajapati A, Yogisharadhya R, Chanda MM, Shivachandra SB. Anti-quorum sensing and anti-biofilm activities of Pasteurella multocida strains. Microb Pathog 2024; 197:107085. [PMID: 39481691 DOI: 10.1016/j.micpath.2024.107085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/10/2024] [Accepted: 10/25/2024] [Indexed: 11/02/2024]
Abstract
A total of 52 Pasteurella multocida strains of capsular serogroups (A, B and D) were screened for anti-quorum sensing activity against Chromobacterium violaceum. Of which, 12 strains of serogroups A were found to possess anti-quorum sensing activity. Inhibition activity was highest for strain NIVEDIPm9 and lowest for strain NIVEDIPm30 based on zone of pigment inhibition. Further, cell free extract of NIVEDIPm9 strain showed highest anti-biofilm activity in reference E. coli strain and concentration dependent degradation activity of C6-AHL molecule. In whole genome sequence annotation of NIVEDIPm9 strain predicted the presence of four metallo-β-lactamases (MBL) fold metallo-hydrolase proteins. In docking studies, MBL1 and MBL3 proteins showed high binding affinity with autoinduce signalling molecules AHL compound of OH-C10, binding energy value were -6.3 and -6.2 kcal/mol. Interaction study of VAF and quorum sensing molecules showed that OmpA and HgbA proteins were stimulated by all the ten molecules (C4-AHLs, C6-AHLs, C10-AHLs, C14-AHLs, 3-oxo-C10-AHLs, 3OH-C10-HSL, C8-HSL, C10-HSL, C12-HSL, C14-HSL), while toxA gene was stimulated by OH-C10-AHL molecule, sodC gene was stimulated by none. In conclusion, we described the anti-quorum sensing activities of diverse P. multocida strains causing Pasteurellosis in livestock.
Collapse
Affiliation(s)
- Arul Dhayalan
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Post Box No. 6450, Yelahanka, Bengaluru, 560064, Karnataka, India
| | - Awadhesh Prajapati
- Bihar Veterinary College, Bihar Animal Sciences University, Patna, 800014. Bihar, India
| | - Revanaiah Yogisharadhya
- ICAR-Krishi Vigyan Kendra (KVK), ICAR-Research Complex for NEH Region, Hailakandi, 788152, Assam, India
| | - Mohammed Mudassar Chanda
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Post Box No. 6450, Yelahanka, Bengaluru, 560064, Karnataka, India
| | - Sathish Bhadravati Shivachandra
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Post Box No. 6450, Yelahanka, Bengaluru, 560064, Karnataka, India.
| |
Collapse
|
6
|
Monzón-Atienza L, Bravo J, Torrecillas S, Gómez-Mercader A, Montero D, Ramos-Vivas J, Galindo-Villegas J, Acosta F. An In-Depth Study on the Inhibition of Quorum Sensing by Bacillus velezensis D-18: Its Significant Impact on Vibrio Biofilm Formation in Aquaculture. Microorganisms 2024; 12:890. [PMID: 38792721 PMCID: PMC11123725 DOI: 10.3390/microorganisms12050890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
Amid growing concerns about antibiotic resistance, innovative strategies are imperative in addressing bacterial infections in aquaculture. Quorum quenching (QQ), the enzymatic inhibition of quorum sensing (QS), has emerged as a promising solution. This study delves into the QQ capabilities of the probiotic strain Bacillus velezensis D-18 and its products, particularly in Vibrio anguillarum 507 communication and biofilm formation. Chromobacterium violaceum MK was used as a biomarker in this study, and the results confirmed that B. velezensis D-18 effectively inhibits QS. Further exploration into the QQ mechanism revealed the presence of lactonase activity by B. velezensis D-18 that degraded both long- and short-chain acyl homoserine lactones (AHLs). PCR analysis demonstrated the presence of a homologous lactonase-producing gene, ytnP, in the genome of B. velezensis D-18. The study evaluated the impact of B. velezensis D-18 on V. anguillarum 507 growth and biofilm formation. The probiotic not only controls the biofilm formation of V. anguillarum but also significantly restrains pathogen growth. Therefore, B. velezensis D-18 demonstrates substantial potential for preventing V. anguillarum diseases in aquaculture through its QQ capacity. The ability to disrupt bacterial communication and control biofilm formation positions B. velezensis D-18 as a promising eco-friendly alternative to conventional antibiotics in managing bacterial diseases in aquaculture.
Collapse
Affiliation(s)
- Luis Monzón-Atienza
- Grupo de Investigación en Acuicultura (GIA), Instituto Ecoaqua, Universidad de Las Palmas de Gran Canaria, 35001 Las Palmas de Gran Canaria, Spain; (L.M.-A.); (S.T.); (A.G.-M.); (J.R.-V.)
| | - Jimena Bravo
- Grupo de Investigación en Acuicultura (GIA), Instituto Ecoaqua, Universidad de Las Palmas de Gran Canaria, 35001 Las Palmas de Gran Canaria, Spain; (L.M.-A.); (S.T.); (A.G.-M.); (J.R.-V.)
| | - Silvia Torrecillas
- Grupo de Investigación en Acuicultura (GIA), Instituto Ecoaqua, Universidad de Las Palmas de Gran Canaria, 35001 Las Palmas de Gran Canaria, Spain; (L.M.-A.); (S.T.); (A.G.-M.); (J.R.-V.)
- Aquaculture Program, Institut de Recerca i Tecnologia Agroalimentáries (IRTA), Centre de Sant Carles de la Rápita (IRTA-SCR), 43540 Sant Carles de la Rápita, Spain
| | - Antonio Gómez-Mercader
- Grupo de Investigación en Acuicultura (GIA), Instituto Ecoaqua, Universidad de Las Palmas de Gran Canaria, 35001 Las Palmas de Gran Canaria, Spain; (L.M.-A.); (S.T.); (A.G.-M.); (J.R.-V.)
| | - Daniel Montero
- Grupo de Investigación en Acuicultura (GIA), Instituto Ecoaqua, Universidad de Las Palmas de Gran Canaria, 35001 Las Palmas de Gran Canaria, Spain; (L.M.-A.); (S.T.); (A.G.-M.); (J.R.-V.)
| | - José Ramos-Vivas
- Grupo de Investigación en Acuicultura (GIA), Instituto Ecoaqua, Universidad de Las Palmas de Gran Canaria, 35001 Las Palmas de Gran Canaria, Spain; (L.M.-A.); (S.T.); (A.G.-M.); (J.R.-V.)
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, 39010 Santander, Spain
| | - Jorge Galindo-Villegas
- Deparment of Genomics, Faculty of Biosciences and Aquaculture, Nord University, 8026 Bodø, Norway;
| | - Félix Acosta
- Grupo de Investigación en Acuicultura (GIA), Instituto Ecoaqua, Universidad de Las Palmas de Gran Canaria, 35001 Las Palmas de Gran Canaria, Spain; (L.M.-A.); (S.T.); (A.G.-M.); (J.R.-V.)
| |
Collapse
|
7
|
Zhao ZZ, Wang J, Liu X, Wang Z, Zheng X, Li W, Cheng T, Zhang J. N-acyl homoserine lactones lactonase est816 suppresses biofilm formation and periodontitis in rats mediated by Aggregatibacter actinomycetemcomitans. J Oral Microbiol 2024; 16:2301200. [PMID: 38193137 PMCID: PMC10773656 DOI: 10.1080/20002297.2023.2301200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/28/2023] [Indexed: 01/10/2024] Open
Abstract
Aims The current study aimed to explore the adjuvant therapeutic effect of N-acyl homoserine lactones (AHLs)-lactonase est816 on Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans) biological behaviors and periodontitis progression. Methods The inhibitory properties of est816 were detected by live/dead bacterial staining, scanning electron microscope (SEM), crystal-violet staining and reverse-transcription quantitative PCR (RT-qPCR). Biocompatibility of est816 on human gingival fibroblasts (HGFs) and human gingival epithelial cells (HGEs) was evaluated by CCK8 and ELISA. The ligature-induced periodontitis model was established in rats. Micro computed tomography and immunohistochemical and histological staining served to evaluate the effect of est816 on the prevention of periodontitis in vivo. Results est816 significantly attenuated biofilm formation, reduced the mRNA expression of cytolethal distending toxin, leukotoxin and poly-N-acetyl glucosamine (PNAG) and downregulated expressions of interleukin-6 and tumor necrosis factor-α with low cell toxicity. In vivo investigations revealed est816 decreased alveolar bone resorption, suppressed matrix metalloproteinase-9 expression and increased osteoprotegerin expression. Conclusion est816 inhibited A. actinomycetemcomitans biofilm formation and virulence release, resulting in anti-inflammation and soothing of periodontitis in rats, indicating that est816 could be investigated in further research on periodontal diseases.
Collapse
Affiliation(s)
- Zelda Ziyi Zhao
- Stomatological Hospital and College, Key Lab. of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, Anhui, China
| | - Junmin Wang
- Stomatological Hospital and College, Key Lab. of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, Anhui, China
| | - Xinpai Liu
- Stomatological Hospital and College, Key Lab. of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, Anhui, China
| | - Zezhi Wang
- Stomatological Hospital and College, Key Lab. of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, Anhui, China
| | - Xianyu Zheng
- Stomatological Hospital and College, Key Lab. of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, Anhui, China
| | - Wuli Li
- Stomatological Hospital and College, Key Lab. of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, Anhui, China
| | - Tianfan Cheng
- Division of Periodontology & Implant Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Jing Zhang
- Stomatological Hospital and College, Key Lab. of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
8
|
Ghosh D, Seth M, Mondal P, Mukhopadhyay SK. Biocontrol of biofilm forming Burkholderia cepacia using a quorum quenching crude lactonase enzyme extract from a marine Chromohalobacter sp. strain D23. Arch Microbiol 2023; 205:374. [PMID: 37935892 DOI: 10.1007/s00203-023-03712-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/04/2023] [Accepted: 10/16/2023] [Indexed: 11/09/2023]
Abstract
Biofilm plays advantageous role in Burkholderia cepacia by exerting multi-drug resistance. As quorum sensing (QS) system regulates biofilm formation and pathogenicity in B. cepacia strains, quorum quenching (QQ) may be a novel strategy to control persistent B. cepacia infections. In these regards, 120 halophilic bacteria were isolated from marine sample and tested using Chromobacterium violaceum and C. violaceum CV026-based bioassays initially, showing reduced violacein synthesis by QQ enzyme by 6 isolates. Among them, Chromohalobacter sp. D23 significantly degraded both C6-homoserine lactone (C6-HSL) and C8-HSL due to potent lactonase activity, which was detected by C. violaceum CV026 biosensor. Further high-performance liquid chromatography (HPLC) study confirmed degradation of N-acyl homoserine lactones (N-AHLs) particularly C6-HSL and C8-HSL by crude lactonase enzyme. Chromohalobacter sp. D23 reduced biofilm formation in terms of decreased total biomass and viability in biofilm-embedded cells in B. cepacia significantly which was also evidenced by fluorescence microscopic images. An increase in antibiotic susceptibility of B. cepacia biofilm was achieved when crude lactonase enzyme of Chromohalobacter sp. strain D23 was combined with chloramphenicol (1-5 × MIC). Chromohalobacter sp. D23 also showed prominent decrease in QS-mediated synthesis of virulence factors such as extracellular polymeric substances (EPS), extracellular protease, and hemolysin in B. cepacia. Again crude lactonase enzyme of Chromohalobacter sp. strain D23 inhibited B. cepacia biofilm formation inside nasal oxygen catheters in vitro. Finally, antibiotic susceptibility test and virulence tests revealed sensitivity of Chromohalobacter sp. strain D23 against a wide range of conventional antibiotics as well as absence of gelatinolytic, hemolytic, and serum coagulating activities. Therefore, the current study shows potential quorum quenching as well as anti-biofilm activity of Chromohalobacter sp. D23 against B. cepacia.
Collapse
Affiliation(s)
- Dhritishree Ghosh
- Department of Microbiology, The University of Burdwan, Purba Bardhaman, Burdwan, West Bengal, 713104, India
| | - Madhupa Seth
- Department of Microbiology, The University of Burdwan, Purba Bardhaman, Burdwan, West Bengal, 713104, India
| | - Priyajit Mondal
- Department of Microbiology, The University of Burdwan, Purba Bardhaman, Burdwan, West Bengal, 713104, India
| | - Subhra Kanti Mukhopadhyay
- Department of Microbiology, The University of Burdwan, Purba Bardhaman, Burdwan, West Bengal, 713104, India.
| |
Collapse
|
9
|
Kalia VC, Patel SKS, Lee JK. Bacterial biofilm inhibitors: An overview. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115389. [PMID: 37634478 DOI: 10.1016/j.ecoenv.2023.115389] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/05/2023] [Accepted: 08/17/2023] [Indexed: 08/29/2023]
Abstract
Bacteria that cause infectious diseases adopt biofilms as one of their most prevalent lifestyles. Biofilms enable bacteria to tolerate environmental stress and evade antibacterial agents. This bacterial defense mechanism has rendered the use of antibiotics ineffective for the treatment of infectious diseases. However, many highly drug-resistant microbes have rapidly emerged owing to such treatments. Different signaling mechanisms regulate bacterial biofilm formation, including cyclic dinucleotide (c-di-GMP), small non-coding RNAs, and quorum sensing (QS). A cell density-dependent phenomenon, QS is associated with c-di-GMP (a global messenger), which regulates gene expression related to adhesion, extracellular matrix production, the transition from the planktonic to biofilm stage, stability, pathogenicity, virulence, and acquisition of nutrients. The article aims to provide information on inhibiting biofilm formation and disintegrating mature/preformed biofilms. This treatment enables antimicrobials to target the free-living/exposed bacterial cells at lower concentrations than those needed to treat bacteria within the biofilm. Therefore, a complementary action of antibiofilm and antimicrobial agents can be a robust strategic approach to dealing with infectious diseases. Taken together, these molecules have broad implications for human health.
Collapse
Affiliation(s)
- Vipin Chandra Kalia
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Sanjay K S Patel
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|