1
|
Li M, Liu R, Chen G, Wang H, Wang J, Kong B, Yu C. Mesenchymal Stem Cell Exosome-Integrated Antibacterial Hydrogels for Nasal Mucosal Injury Treatment. RESEARCH (WASHINGTON, D.C.) 2024; 7:0469. [PMID: 39253102 PMCID: PMC11382016 DOI: 10.34133/research.0469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/13/2024] [Indexed: 09/11/2024]
Abstract
Hydrogels have emerged as appealing prospects for wound healing due to their superior biocompatible qualities. However, the integration of antibacterial active substances into hydrogels for effective wound repair remains challenging. Here, we present a novel double-network hydrogel for nasal mucosal injury repair with antibacterial and self-healing capabilities. This hydrogel is the result of mixing aldehyde polyethylene glycol (PEG) and a carboxymethyl chitosan (CMCS)-based hydrogel with a photocured methylacrylate gelatin (GelMA) hydrogel to envelop mesenchymal stem cell exosomes (MSC-Exos). CMCS is rich in amino groups and facilitates antibacterial repair. Given the dynamically reversible Schiff base connections between the amino group of chitosan and the aldehyde group of modified PEG, the hydrogel can be easily injected into the lesion site because of its excellent injection and shear thinning properties. GelMA introduces an additional network layer for the hydrogel, which enhances its strength and extends the duration of stem cell exosomes on the wound surface. On the basis of these characteristics, we provide evidence that this compound hydrogel can substantially increase cell proliferation and regeneration, inhibit scar hyperplasia, and stimulate angiogenesis in rabbit nasal septum mucosa trauma models. These results suggest that MSC exosome-loaded hydrogels (ME-Gel) have substantial clinical potential for the repair and regeneration of nasal mucosa after surgery or trauma.
Collapse
Affiliation(s)
- Min Li
- Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
- Department of Otolaryngology Head and Neck Surgery, Affiliated Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, Nanjing 210008, China
| | - Rui Liu
- Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Guopu Chen
- Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Handong Wang
- Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Jinglin Wang
- Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Bin Kong
- Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, Guangdong 518000, China
- Department of Neurosurgery, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong 518035, China
| | - Chenjie Yu
- Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
- Department of Otolaryngology Head and Neck Surgery, Affiliated Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, Nanjing 210008, China
| |
Collapse
|
2
|
Li L, Gao X, Li M, Liu Y, Ma J, Wang X, Yu Z, Cheng W, Zhang W, Sun H, Song X, Wang Z. Relationship between biofilm formation and antibiotic resistance of Klebsiella pneumoniae and updates on antibiofilm therapeutic strategies. Front Cell Infect Microbiol 2024; 14:1324895. [PMID: 38465230 PMCID: PMC10920351 DOI: 10.3389/fcimb.2024.1324895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/02/2024] [Indexed: 03/12/2024] Open
Abstract
Klebsiella pneumoniae is a Gram-negative bacterium within the Enterobacteriaceae family that can cause multiple systemic infections, such as respiratory, blood, liver abscesses and urinary systems. Antibiotic resistance is a global health threat and K. pneumoniae warrants special attention due to its resistance to most modern day antibiotics. Biofilm formation is a critical obstruction that enhances the antibiotic resistance of K. pneumoniae. However, knowledge on the molecular mechanisms of biofilm formation and its relation with antibiotic resistance in K. pneumoniae is limited. Understanding the molecular mechanisms of biofilm formation and its correlation with antibiotic resistance is crucial for providing insight for the design of new drugs to control and treat biofilm-related infections. In this review, we summarize recent advances in genes contributing to the biofilm formation of K. pneumoniae, new progress on the relationship between biofilm formation and antibiotic resistance, and new therapeutic strategies targeting biofilms. Finally, we discuss future research directions that target biofilm formation and antibiotic resistance of this priority pathogen.
Collapse
Affiliation(s)
- Lifeng Li
- Henan International Joint Laboratory of Children’s Infectious Diseases, Department of Neonatology, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xueyan Gao
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Mingchao Li
- Henan International Joint Laboratory of Children’s Infectious Diseases, Department of Neonatology, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Yuchun Liu
- Henan International Joint Laboratory of Children’s Infectious Diseases, Department of Neonatology, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Jiayue Ma
- Henan International Joint Laboratory of Children’s Infectious Diseases, Department of Neonatology, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Xiaolei Wang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Zhidan Yu
- Henan International Joint Laboratory of Children’s Infectious Diseases, Department of Neonatology, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Weyland Cheng
- Henan International Joint Laboratory of Children’s Infectious Diseases, Department of Neonatology, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Wancun Zhang
- Henan International Joint Laboratory of Children’s Infectious Diseases, Department of Neonatology, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Huiqing Sun
- Henan International Joint Laboratory of Children’s Infectious Diseases, Department of Neonatology, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Xiaorui Song
- Henan International Joint Laboratory of Children’s Infectious Diseases, Department of Neonatology, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Zhaobao Wang
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
3
|
Biofilm in sino-nasal infectious diseases: the role nasal cytology in the diagnostic work up and therapeutic implications. Eur Arch Otorhinolaryngol 2023; 280:1523-1528. [PMID: 36376525 DOI: 10.1007/s00405-022-07748-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUD Biofilm formation has been recently recognised as one of the most important etiopathological mechanisms underlying chronic rhinosinusitis (CRS) and its recalcitrance. In this context, nasal cytology (NC) has become an integral part of diagnostic work up of patients suffering from sino-nasal diseases, since it is an easy-to-apply, reproducible and non-invasive diagnostic tool that allows to assess both the nasal inflammatory infiltrate and the presence of biofilms on nasal mucosal surface, further orienting the therapeutic choices in case of infectious diseases for eradicating infections and biofilms. Nevertheless, biofilms are typically resistant to common antibiotic treatments and may trigger or maintain chronic inflammation. Hence, the importance of correctly detecting the presence of biofilm and identifying new effective treatments. PURPOSE The aim of this brief review is to better clarify the role of biofilm in the pathogenesis and recurrence of sino-nasal disorders and to highlight the role of nasal cytology (NC) in the rhino-allergologic diagnostic path and in the evaluation of the effectiveness of new treatments.
Collapse
|
4
|
Yao Y, Zhu HY, Zeng M, Liu Z. Immunological mechanisms and treatable traits of chronic rhinosinusitis in Asia: A narrative review. Clin Otolaryngol 2023; 48:363-370. [PMID: 36317525 DOI: 10.1111/coa.14001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/23/2022] [Accepted: 10/16/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVES To review the current literature on immunological mechanisms and treatable traits of chronic rhinosinusitis (CRS) in Asia. DESIGN This is a narrative review of published data on the immunological mechanisms and treatable traits of CRS in Asia. Published English literature on CRS in Asian and Western countries was reviewed. Where available, the data extracted included epidemiology, immunology, bacterium, phenotype, endotype and treatment. RESULTS AND CONCLUSION CRS is a heterogeneous disease characterised by persistent locoregional mucosal inflammation of the paranasal sinuses. The inflammatory signatures of CRS vary across patients with distinct racial and ethnic backgrounds and geographic areas. Compared to CRS patients in Western countries, Asian CRS patients display less eosinophilic and Type 2 inflammation, which is associated with lower asthma and allergic rhinitis comorbidities. In contrast, Asian patients with CRS have more prominent non-eosinophilic inflammation than those in Western countries. In addition, Asian CRS patients may have different bacterial colonisation than patients in Western countries. Our review suggests that the distinct immunological mechanisms between Asian and Western CRS patients may influence the clinical phenotype, responses to treatment and outcomes. The treatable trait is a new strategy and therapeutic target identified by phenotype or endotype and has been proposed as a new paradigm for the management of diseases. Improved understanding of CRS phenotypic and endotypic heterogeneity and incorporation of treatable traits into clinical care pathways may facilitate more effective selections of therapeutic interventions, including surgery and biologics.
Collapse
Affiliation(s)
- Yin Yao
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.,Hubei Clinical Research Center for Nasal Inflammatory Diseases, Wuhan, Hubei, People's Republic of China
| | - Hong-Yu Zhu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Ming Zeng
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.,Hubei Clinical Research Center for Nasal Inflammatory Diseases, Wuhan, Hubei, People's Republic of China
| | - Zheng Liu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.,Hubei Clinical Research Center for Nasal Inflammatory Diseases, Wuhan, Hubei, People's Republic of China
| |
Collapse
|