1
|
Basnet A, Kilonzo-Nthenge A. Antibiogram profiles of pathogenic and commensal bacteria in goat and sheep feces on smallholder farm. FRONTIERS IN ANTIBIOTICS 2024; 3:1351725. [PMID: 39816253 PMCID: PMC11732006 DOI: 10.3389/frabi.2024.1351725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/02/2024] [Indexed: 01/18/2025]
Abstract
Introduction The increase of antimicrobial resistance (AMR) in zoonotic pathogens poses a substantial threat to both animal production and human health. Although large-scale animal farms are acknowledged as major reservoirs for AMR, there is a notable knowledge gap concerning AMR in small-scale farms. This study seeks to address this gap by collecting and analyzing 137 fecal samples from goat and sheep farms in Tennessee and Georgia. Method Bacteria were identified using culture-dependent methods and polymerase chain reaction (PCR), and antimicrobial susceptibility testing (AST) was performed using the Kirby-Bauer Disk Diffusion method. Results and discussion The prevalence of E. coli (94.9%) in goats and sheep significantly exceeded (p < 0.05) that of S. aureus (81.0%), Shigella (35.0%), S. saprophyticus, and Salmonella (3.0%). Salmonella occurrence in goat feces (2.2%) was higher than in sheep (0.8%). Notably, 27% of goats and 8% of sheep tested positive for Shigella spp., while 60% of goats and 21% of sheep tested positive for S. aureus. Antibiotic resistance was observed primarily against ampicillin (79.4%), vancomycin (65.1%), and gentamycin (63.6%), significantly surpassing (p < 0.05) resistance to tetracycline (41.6%) and imipenem (21.8%). The penicillin (79.4%), glycopeptide (65.1%), and aminoglycoside (63.6%) antibiotic classes displayed significantly higher (p < 0.05) resistance compared to tetracyclines (45.7%) and carbapenem (21.8%). Our findings suggest that goats and sheep feces may serve as source for multidrug-resistant bacteria, raising concerns about the potential introduction of their fecal matter into soil, water, and eventually to the food chain. This highlights the need for proactive measures to address and mitigate AMR in goats and sheep within small-scale farms.
Collapse
|
2
|
Mounsey O, Marchetti L, Parada J, Alarcón LV, Aliverti F, Avison MB, Ayala CS, Ballesteros C, Best CM, Bettridge J, Buchamer A, Buldain D, Carranza A, Corti Isgro M, Demeritt D, Escobar MP, Gortari Castillo L, Jaureguiberry M, Lucas MF, Madoz LV, Marconi MJ, Moiso N, Nievas HD, Ramirez Montes De Oca MA, Reding C, Reyher KK, Vass L, Williams S, Giraudo J, De La Sota RL, Mestorino N, Moredo FA, Pellegrino M. Genomic epidemiology of third-generation cephalosporin-resistant Escherichia coli from Argentinian pig and dairy farms reveals animal-specific patterns of co-resistance and resistance mechanisms. Appl Environ Microbiol 2024; 90:e0179123. [PMID: 38334306 PMCID: PMC10952494 DOI: 10.1128/aem.01791-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 12/14/2023] [Indexed: 02/10/2024] Open
Abstract
Control measures are being introduced globally to reduce the prevalence of antibiotic resistance (ABR) in bacteria on farms. However, little is known about the current prevalence and molecular ecology of ABR in bacterial species with the potential to be key opportunistic human pathogens, such as Escherichia coli, on South American farms. Working with 30 dairy cattle farms and 40 pig farms across two provinces in central-eastern Argentina, we report a comprehensive genomic analysis of third-generation cephalosporin-resistant (3GC-R) E. coli, which were recovered from 34.8% (cattle) and 47.8% (pigs) of samples from fecally contaminated sites. Phylogenetic analysis revealed substantial diversity suggestive of long-term horizontal and vertical transmission of 3GC-R mechanisms. CTX-M-15 and CTX-M-2 were more often produced by isolates from dairy farms, while CTX-M-8 and CMY-2 and co-carriage of amoxicillin/clavulanate resistance and florfenicol resistance were more common in isolates from pig farms. This suggests different selective pressures for antibiotic use in these two animal types. We identified the β-lactamase gene blaROB, which has previously only been reported in the family Pasteurellaceae, in 3GC-R E. coli. blaROB was found alongside a novel florfenicol resistance gene, ydhC, also mobilized from a pig pathogen as part of a new composite transposon. As the first comprehensive genomic survey of 3GC-R E. coli in Argentina, these data set a baseline from which to measure the effects of interventions aimed at reducing on-farm ABR and provide an opportunity to investigate the zoonotic transmission of resistant bacteria in this region. IMPORTANCE Little is known about the ecology of critically important antibiotic resistance among bacteria with the potential to be opportunistic human pathogens (e.g., Escherichia coli) on South American farms. By studying 70 pig and dairy cattle farms in central-eastern Argentina, we identified that third-generation cephalosporin resistance (3GC-R) in E. coli was mediated by mechanisms seen more often in certain species and that 3GC-R pig E. coli were more likely to be co-resistant to florfenicol and amoxicillin/clavulanate. This suggests that on-farm antibiotic usage is key to selecting the types of E. coli present on these farms. 3GC-R E. coli and 3GC-R plasmids were diverse, suggestive of long-term circulation in this region. We identified the de novo mobilization of the resistance gene blaROB from pig pathogens into E. coli on a novel mobile genetic element, which shows the importance of surveying poorly studied regions for antibiotic resistance that might impact human health.
Collapse
Affiliation(s)
- Oliver Mounsey
- University of Bristol, School of Cellular and Molecular Medicine, Bristol, United Kingdom
| | - Laura Marchetti
- Universidad Nacional de La Plata, Facultad de Ciencias Veterinarias, La Plata, Argentina
| | - Julián Parada
- Universidad Nacional de Río Cuarto, Facultad de Agronomía y Veterinaria, Río Cuarto, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Laura V. Alarcón
- Universidad Nacional de La Plata, Facultad de Ciencias Veterinarias, La Plata, Argentina
| | - Florencia Aliverti
- Universidad Nacional de La Plata, Facultad de Ciencias Veterinarias, La Plata, Argentina
| | - Matthew B. Avison
- University of Bristol, School of Cellular and Molecular Medicine, Bristol, United Kingdom
| | - Carlos S. Ayala
- University of Bristol Veterinary School, Langford, United Kingdom
| | | | - Caroline M. Best
- University of Bristol Veterinary School, Langford, United Kingdom
| | - Judy Bettridge
- University of Bristol Veterinary School, Langford, United Kingdom
- Natural Resources Institute, University of Greenwich, Chatham, United Kingdom
| | - Andrea Buchamer
- Universidad Nacional de La Plata, Facultad de Ciencias Veterinarias, La Plata, Argentina
| | - Daniel Buldain
- Universidad Nacional de La Plata, Facultad de Ciencias Veterinarias, La Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Alicia Carranza
- Universidad Nacional de Río Cuarto, Facultad de Agronomía y Veterinaria, Río Cuarto, Argentina
| | - Maite Corti Isgro
- Universidad Nacional de Río Cuarto, Facultad de Agronomía y Veterinaria, Río Cuarto, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - David Demeritt
- Department of Geography, King’s College London, London, United Kingdom
| | | | - Lihuel Gortari Castillo
- Universidad Nacional de La Plata, Facultad de Ciencias Veterinarias, La Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María Jaureguiberry
- Universidad Nacional de La Plata, Facultad de Ciencias Veterinarias, La Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Mariana F. Lucas
- Universidad Nacional de La Plata, Facultad de Ciencias Veterinarias, La Plata, Argentina
- Universidad del Salvador, Facultad de Ciencias Agrarias y Veterinarias, Pilar, Argentina
| | - L. Vanina Madoz
- Universidad Nacional de La Plata, Facultad de Ciencias Veterinarias, La Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María José Marconi
- Universidad Nacional de La Plata, Facultad de Ciencias Veterinarias, La Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Nicolás Moiso
- Universidad Nacional de Río Cuarto, Facultad de Agronomía y Veterinaria, Río Cuarto, Argentina
| | - Hernán D. Nievas
- Universidad Nacional de La Plata, Facultad de Ciencias Veterinarias, La Plata, Argentina
| | | | - Carlos Reding
- University of Bristol, School of Cellular and Molecular Medicine, Bristol, United Kingdom
| | | | - Lucy Vass
- University of Bristol Veterinary School, Langford, United Kingdom
| | - Sara Williams
- Universidad Nacional de La Plata, Facultad de Ciencias Veterinarias, La Plata, Argentina
| | - José Giraudo
- Universidad Nacional de Río Cuarto, Facultad de Agronomía y Veterinaria, Río Cuarto, Argentina
| | - R. Luzbel De La Sota
- Universidad Nacional de La Plata, Facultad de Ciencias Veterinarias, La Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Nora Mestorino
- Universidad Nacional de La Plata, Facultad de Ciencias Veterinarias, La Plata, Argentina
| | - Fabiana A. Moredo
- Universidad Nacional de La Plata, Facultad de Ciencias Veterinarias, La Plata, Argentina
| | - Matías Pellegrino
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Universidad Nacional de Río Cuarto, Facultad de Ciencias Exactas, Físico Químicas y Naturales, Río Cuarto, Argentina
| |
Collapse
|
3
|
Werner T, Käsbohrer A, Wasner B, Köberl-Jelovcan S, Vetter SG, Egger-Danner C, Fuchs K, Obritzhauser W, Firth CL. Antimicrobial resistance and its relationship with antimicrobial use on Austrian dairy farms. Front Vet Sci 2023; 10:1225826. [PMID: 37546336 PMCID: PMC10403287 DOI: 10.3389/fvets.2023.1225826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/06/2023] [Indexed: 08/08/2023] Open
Abstract
The aim of this study was to investigate the prevalence of ESBL/AmpC-producing E. coli and the resistance pattern of commensal E. coli, as well as the link between the use of antibiotics (AMU) and the occurrence of resistance in E. coli on Austrian dairy farms. AMU data from 51 farms were collected over a one-year period in 2020. Fecal samples were collected from cows, pre-weaned and weaned calves in 2020 and 2022. Samples were then analyzed using non-selective and selective agar plates, E. coli isolates were confirmed by MALDI-TOF analysis. Broth microdilution was used for antimicrobial susceptibility testing. The AMU of each farm was quantified as the number of Defined Daily Doses (nDDDvet) and Defined Course Doses (nDCDvet) per cow and year. Cephalosporins (mean 1.049; median 0.732 DDDvet/cow/year) and penicillins (mean 0.667; median 0.383 DDDvet/cow/year) were the most frequently used antibiotics on these farms, followed by tetracyclines (mean 0.275; median 0.084 DDDvet/cow/year). In 2020, 26.8% of the E. coli isolated were resistant to at least one antibiotic class and 17.7% of the isolates were classified as multidrug resistant (≥3 antibiotic classes). Out of 198 E. coli isolates, 7.6% were identified as extended-spectrum/AmpC beta-lactamase (ESBL/AmpC) producing E. coli. In 2022, 33.7% of E. coli isolates showed resistance to at least one antibiotic and 20.0% of isolates displayed multidrug resistance. Furthermore, 29.5% of the samples carried ESBL/AmpC-producing E. coli. In 2020 and 2022, the most frequently determined antibiotic resistances among commensal E. coli isolates were to tetracyclines, sulfonamides and penicillins. In addition, pre-weaned calves had the highest resistance rates in both years. Statistical analyses showed a significant association between low and high use AMU classifications for penicillins (in nDDDvet/cow/year) and their respective resistance among commensal E. coli isolates in 2020 (p = 0.044), as well as for sulfonamide/trimethoprim (p = 0.010) and tetracyclines (p = 0.042). A trend was also noted between the total amount of antibiotics used on farm in 2020 (by nDDDvet/cow/year) and multidrug resistances in commensal E. coli isolated on farm that year (p = 0.067). In conclusion, the relationship between AMU and antimicrobial resistance (AMR) on dairy farms continues to be complex and difficult to quantify.
Collapse
Affiliation(s)
- Thomas Werner
- Unit of Veterinary Public Health and Epidemiology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Annemarie Käsbohrer
- Unit of Veterinary Public Health and Epidemiology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
- Department for Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Barbara Wasner
- Upper Austrian Animal Health Organization Laboratory, Clinical Microbiology, Upper Austrian Animal Health Organization, Ried im Innkreis, Austria
| | - Sandra Köberl-Jelovcan
- Institute for Medical Microbiology and Hygiene, Centre for Foodborne Infectious Diseases, Division of Public Health, Austrian Agency for Health and Food Safety (AGES), Graz, Austria
| | - Sebastian G. Vetter
- Unit of Veterinary Public Health and Epidemiology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | | | - Klemens Fuchs
- Data, Statistics and Risk Assessment, Austrian Agency for Health and Food Safety (AGES), Graz, Austria
| | - Walter Obritzhauser
- Unit of Veterinary Public Health and Epidemiology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
- Veterinary Practice, Parschlug, Austria
| | - Clair L. Firth
- Unit of Veterinary Public Health and Epidemiology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|