1
|
Zhao Y, Liu D, Chen Y, Lei Y, Li M, Wang J, He X, Yang Y, Zhang X, Liu S, Zhang X, Cheng Q, Chen C. Enhancing alfalfa and sorghum silage quality using agricultural wastes: fermentation dynamics, microbial communities, and functional insights. BMC PLANT BIOLOGY 2025; 25:728. [PMID: 40442596 PMCID: PMC12123810 DOI: 10.1186/s12870-025-06722-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Accepted: 05/15/2025] [Indexed: 06/02/2025]
Abstract
At present, there are many researches on the nutritional quality and fermentation quality of forage silage by adding distillers' grain and fruit residue, but few researches on the succession and function prediction of microbiotic community. In this study, the potential of Moutai distillers' grain (MDG), Rosa roxburghii pomace (RP) and Lactobacillus acidophilus (LAB) to improve silage quality during anaerobic storage of alfalfa and sorghum was investigated. Harvested alfalfa and sorghum were ensiled without (CK) or with MDG, RP, LAB, LAB + MDG or LAB + RP for 45 days at 21-25 °C. Compared with the uninoculated control, alfalfa silage inoculated with LAB + MDG presented better nutrient retention, where the lactic acid (LA) content was increased by 84.62% and the ammonia nitrogen (AN) content was reduced by 38.52%. Similarly, in sorghum silage, both inoculation with LAB + MDG and inoculation with LAB + RP effectively increased nutrient retention, increased the LA content and reduced the AN content. The proportion of Lactobacillus increased in sorghum and alfalfa silage after 45 days of fermentation. Inoculation of alfalfa and sorghum with RP or LAB + MDG significantly increased the relative abundance of lactic acid bacteria in silage, especially Lactobacillus plantarum, which was the main dominant strain. The addition of MDG to the feeds not only effectively retained the crude protein (CP) content of the feeds for better retention of their nutritional value but also significantly reduced the contents of neutral detergent fiber (NDF) and acid detergent fiber (ADF), which improved the digestibility and utilization of the feeds. In addition, the addition of MDG further promoted the proliferation of Lactobacillus and increased their abundance in the silage, thus contributing to the improvement of fermentation quality and preservation of silage. In summary, MDG, LAB + MDG, and RP + LAB resulted in higher-quality silage, but the addition of MDG was more cost effective and therefore is recommended for application in production.
Collapse
Affiliation(s)
- Yuanyuan Zhao
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Dianpeng Liu
- Tongliao Academy of Agriculture and Animal Husbandry Sciences, Tongliao, 028000, China
| | - Yulian Chen
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Yao Lei
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Maoya Li
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Jiachuhan Wang
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Xiangjiang He
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Yu Yang
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Xinyi Zhang
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Shengnan Liu
- Inner Mongolia Forestry and Grassland Monitoring and Planning Institute, Hohhot, 010020, China
| | - Xiaoqing Zhang
- Grassland Research of the Chinese Academy of Agricultural Sciences, Hohhot, 010013, China
| | - Qiming Cheng
- College of Animal Science, Guizhou University, Guiyang, 550025, China.
- Grassland Research of the Chinese Academy of Agricultural Sciences, Hohhot, 010013, China.
| | - Chao Chen
- College of Animal Science, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
2
|
Zhao J, Liu HP, Yin XJ, Dong ZH, Wang SR, Li JF, Shao T. Dynamics of Phyllosphere Microbiota and Chemical Parameters at Various Growth Stages and Their Contribution to Anaerobic Fermentation of Pennisetum giganteum. Microbiol Spectr 2023; 11:e0228822. [PMID: 37010418 PMCID: PMC10269755 DOI: 10.1128/spectrum.02288-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 02/28/2023] [Indexed: 04/04/2023] Open
Abstract
This work evaluated the dynamic changes of phyllosphere microbiota and chemical parameters at various growth stages of Pennisetum giganteum and their effects on the bacterial community, cooccurrence networks, and functional properties during anaerobic fermentation. P. giganteum was collected at two growth stages (early vegetative stage [PA] and late vegetative stage [PB]) and was naturally fermented (NPA and NPB) for 1, 3, 7, 15, 30, and 60 days, respectively. At each time point, NPA or NPB was randomly sampled for the analysis of chemical composition, fermentation parameter, and microbial number. In addition, the fresh, 3-day, and 60-day NPA and NPB were subjected to high-throughput sequencing and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional prediction analyses. Growth stage obviously affected the phyllosphere microbiota and chemical parameters of P. giganteum. After 60 days of fermentation, NPB had a higher lactic acid concentration and ratio of lactic acid to acetic acid but a lower pH value and ammonia nitrogen concentration than NPA. Weissella and Enterobacter were dominant in 3-day NPA and Weissella was dominant in 3-day NPB, while Lactobacillus was the most abundant genus in both 60-day NPA and NPB. The complexity of bacterial cooccurrence networks in the phyllosphere decreased with P. giganteum growth. The ensiling process further decreased the complexity of bacterial networks, with the simplest bacterial correlation structures in NPB. There were great differences in the KEGG functional profiles of PA and PB. Ensiling promoted the metabolism of lipid, cofactors, vitamins, energy, and amino acids but suppressed the metabolism of carbohydrates and nucleotides. Storage time had a greater influence than growth stage on bacterial community diversity, cooccurrence networks, and functional profiles of P. giganteum silage. Differences in bacterial diversity and functionality of P. giganteum silage caused by growth stage appear to be offset by long-term storage. IMPORTANCE The phyllosphere microbiota consists of various and complex microbes, including bacteria with crucial relevance to the quality and safety of fermented food and feed. It initially derives from soil and becomes specific to its host after interaction with plants and climate. Bacteria associated with the phyllosphere are highly abundant and diverse, but we know little about their succession. Here, the phyllospheric microbiota structure was analyzed within the growth of P. giganteum. We also evaluated the effects of phyllosphere microbiota and chemical parameter changes on the anaerobic fermentation of P. giganteum. We observed remarkable differences in bacterial diversity, cooccurrence, and functionality of P. giganteum at various growth stages and storage times. The obtained results are important for understanding the fermentation mechanism and may contribute to high-efficient production without additional cost.
Collapse
Affiliation(s)
- Jie Zhao
- Institute of Ensiling and Processing of Grass, College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Hao-Peng Liu
- Institute of Ensiling and Processing of Grass, College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Xue-Jing Yin
- Institute of Ensiling and Processing of Grass, College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Zhi-Hao Dong
- Institute of Ensiling and Processing of Grass, College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Si-Ran Wang
- Institute of Ensiling and Processing of Grass, College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Jun-Feng Li
- Institute of Ensiling and Processing of Grass, College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Tao Shao
- Institute of Ensiling and Processing of Grass, College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
3
|
Su R, Ke W, Usman S, Bai J, Akhavan Kharazian Z, Guo X. Dry matter content and inoculant alter the metabolome and bacterial community of alfalfa ensiled at high temperature. Appl Microbiol Biotechnol 2023; 107:3443-3457. [PMID: 37099058 DOI: 10.1007/s00253-023-12535-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 03/13/2023] [Accepted: 04/13/2023] [Indexed: 04/27/2023]
Abstract
Alfalfa silage fermentation quality, metabolome, bacterial interactions, and successions as well as their predicted metabolic pathways were explored under different dry matter contents (DM) and lactic acid bacteria (LAB) inoculations. Silages were prepared from alfalfa with DM contents of 304 (LDM) and 433 (HDM) g/kg fresh weight and inoculated with Lactiplantibacillus plantarum (L. plantarum, LP), Pediococcus pentosaceus (P. pentosaceus, PP), or sterile water (control). The silages were stored at a simulated hot climate condition (35°C) and sampled at 0, 7, 14, 30, and 60 days of fermentation. The results revealed that HDM significantly improved the alfalfa silage quality and altered microbial community composition. The GC-TOF-MS analysis discovered 200 metabolites in both LDM and HDM alfalfa silage, mainly consisting of amino acids, carbohydrates, fatty acids, and alcohols. Compared with LP and control, PP-inoculated silages had increased concentrations of lactic acid (P < 0.05) and essential amino acids (threonine and tryptophan) as well as decreased pH, putrescine content, and amino acid metabolism. However, alfalfa silage inoculated with LP had higher proteolytic activities than control and PP-inoculated silage, as revealed by a higher concentration of ammonia nitrogen (NH3-N), and also upregulated amino acid and energy metabolism. HDM content and P. pentosaceus inoculation significantly altered the composition of alfalfa silage microbiota from 7 to 60 days of ensiling. Conclusively, these results indicated that inoculation with PP exhibited great potential in enhancing the fermentation of silage with LDM and HDM via altering the microbiome and metabolome of the ensiled alfalfa, which could help in understanding and improving the ensiling practices under hot climate conditions. KEY POINTS: • HDM improved fermentation quality and declined putrescine content of alfalfa silage • P. pentosaceus inoculation enhanced the fermentation quality of alfalfa silage • P. pentosaceus is an ideal inoculant for alfalfa silage under high temperature.
Collapse
Affiliation(s)
- Rina Su
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
- Probiotics and Biological Feed Research Centre, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Wencan Ke
- Department of Animal Science, Ningxia University, Yinchuan, 750021, People's Republic of China
| | - Samaila Usman
- Probiotics and Biological Feed Research Centre, Lanzhou University, Lanzhou, 730000, People's Republic of China
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, People's Republic of China
| | - Jie Bai
- Probiotics and Biological Feed Research Centre, Lanzhou University, Lanzhou, 730000, People's Republic of China
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, People's Republic of China
| | - Zohreh Akhavan Kharazian
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
- Probiotics and Biological Feed Research Centre, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Xusheng Guo
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China.
- Probiotics and Biological Feed Research Centre, Lanzhou University, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
4
|
Okoye CO, Wei Z, Jiang H, Wu Y, Wang Y, Gao L, Li X, Jiang J. Metagenomics analysis reveals the performance of homo- and heterofermentative lactic acid bacteria in alfalfa silage fermentation, bacterial community, and functional profiles. J Anim Sci 2023; 101:skad163. [PMID: 37280111 PMCID: PMC10243974 DOI: 10.1093/jas/skad163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/17/2023] [Indexed: 06/08/2023] Open
Abstract
Alfalfa (Medicago sativa L.) is a kind of roughage frequently utilized as an animal feed but challenging to be ensiled due to its low water-soluble carbohydrate (WSC), high water content, and elevated buffering capacity, thus requiring the application of lactic acid bacteria (LAB) to improve its fermentation. This study employed high-throughput metagenomic sequence technology to reveal the effects of homofermentative LAB, Lactobacillus plantarum (Lp), or Pediococcus pentosaceus (Pp), and heterofermentative LAB, L. buchneri (Lb), or their combinations (LbLp or LbPp) (applied at 1.0 × 109 colony forming units (cfu) per kilogram of alfalfa biomass fresh material) on the fermentation, microbial community, and functional profiles of alfalfa silage after 7, 14, 30, and 60 ensiling days. The results indicated a reduction (P < 0.05) in glucose and pH and higher (P < 0.05) beneficial organic acid contents, xylose, crude protein, ammonia nitrogen, and aerobic stability in Lb-, LbPp-, and LbLp-inoculated alfalfa silages after 30 and 60 d. Also, higher (P < 0.05) WSC contents were recorded in LbLp-inoculated alfalfa silages after 30 d (10.84 g/kg dry matter [DM]) and 60 d (10.92 g/kg DM). Besides, LbLp-inoculated alfalfa silages recorded higher (P < 0.05) LAB count (9.92 log10 cfu/g) after 60 d. Furthermore, a positive correlation was found between the combined LAB inoculants in LbLp-inoculated alfalfa silages and dominant LAB genera, Lactobacillus and Pediococcus, with fermentation properties after 30 and 60 d. In addition, the 16S rRNA gene-predicted functional analyses further showed that the L. buchneri PC-C1 and L. plantarum YC1-1-4B combination improved carbohydrate metabolism and facilitated further degradation of polysaccharides in alfalfa after 60 d of ensiling. These findings reveal the significant performance of L. buchneri and L. plantarum in combination with dominant LAB species in suppressing the growth of Clostridia, molds, and yeasts and improving the fermentation characteristics and functional carbohydrate metabolism of alfalfa after 60 d ensiling, thus suggesting the need for further studies to uncover the diverse performance of the LAB combination and their consortium with other natural and artificial inoculants in various kinds of silages.
Collapse
Affiliation(s)
- Charles Obinwanne Okoye
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
- Department of Zoology and Environmental Biology, University of Nigeria, Nsukka 410001, Nigeria
| | - Zhenwu Wei
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Huifang Jiang
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yanfang Wu
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yongli Wang
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Lu Gao
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xia Li
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jianxiong Jiang
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
5
|
Zhao M, Zhang H, Pan G, Yin H, Sun J, Yu Z, Bai C, Xue Y. Effect of exogenous microorganisms on the fermentation quality, nitrate degradation and bacterial community of sorghum-sudangrass silage. Front Microbiol 2022; 13:1052837. [PMID: 36386706 PMCID: PMC9664940 DOI: 10.3389/fmicb.2022.1052837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 10/07/2022] [Indexed: 11/05/2022] Open
Abstract
This study aims to investigate the effects of adding Lactobacillus buchneri (LB), Lactobacillus brevis (LBR) and Bacillus subtilis (BS) on the fermentation quality, nitrate degradation and bacterial community of sorghum-sudangrass silage. The results showed that the addition of LB significantly increased the pH and acetic acid content (p < 0.05), but high-quality silage was obtained. The addition of LBR and BS improved the fermentation quality of sorghum-sudangrass silage. The use of additives reduced the nitrate content in sorghum-sudangrass silage. The LB group increased the release of N2O at 3–7 days of ensiling (p < 0.05), and LBR and BS increased the release of N2O at 1–40 days of ensiling (p < 0.05). On the first day of ensiling, all silages were dominated by Weisslla, over 3 days of ensiling all silages were dominated by Lactobacillus. Acinetobacter, Serratia, Aquabacterium, and unclassified_f_enterobacteriaceae showed significant negative correlations with nitrate degradation during sorghum-sudangrass ensiling (p < 0.05). The BS and LBR groups increased the metabolic abundance of denitrification, dissimilatory nitrate reduction, and assimilatory nitrate reduction (p < 0.05). Overall, the additive ensures the fermentation quality of sorghum-sudangrass silage and promotes the degradation of nitrate by altering the bacterial community.
Collapse
Affiliation(s)
- Meirong Zhao
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Hongyu Zhang
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Gang Pan
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Hang Yin
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Juanjuan Sun
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Zhu Yu
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Chunsheng Bai
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- *Correspondence: Chunsheng Bai,
| | - Yanlin Xue
- Inner Mongolia Engineering Research Center of Development and Utilization of Microbial Resources in Silage, Inner Mongolia Academy of Agriculture and Animal Husbandry Science, Hohhot, China
- Inner Mongolia Key Laboratory of Microbial Ecology of Silage, Inner Mongolia Academy of Agriculture and Animal Husbandry Science, Hohhot, China
- Yanlin Xue,
| |
Collapse
|
6
|
Zhang Y, Tao X, Liu Q, Zhang YJ, Xu J, Zhang W, Wang J, Zhang D, Li B, Wang L, Cheng J, Zhang YQ. Succession changes of fermentation parameters, nutrient components and bacterial community of sorghum stalk silage. Front Microbiol 2022; 13:982489. [PMID: 35992672 PMCID: PMC9386229 DOI: 10.3389/fmicb.2022.982489] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/18/2022] [Indexed: 11/25/2022] Open
Abstract
To better understand the ensiling characteristics of sorghum stalk, the dynamic changes of fermentation parameters, nutrient components and bacterial community of sorghum stalk silage were analyzed by intermittently sampling on day 0, 1, 3, 7, 14, 28, and 56 of ensiling duration. The results showed that high-moisture sorghum stalk was well preserved during ensiling fermentation, with the DM loss of 4.10% and the little difference between the nutrients of sorghum stalk before and after ensiling. The pH value of silage declined to its lowest value of 4.32 by Day 7 of ensiling, and other fermentation parameters kept steady since Day 28 of ensiling. The amplicon sequencing analysis revealed that the alpha diversity parameters of silage bacterial community including Shannon index, observed features, Pielou evenness and Faith PD gradually declined (P < 0.01) with ensiling duration. Principal coordinate analysis (PCoA) revealed that bacterial profiles of raw material would experience a succession becoming a quite different community during ensiling fermentation. Taxonomic classification revealed a total of 10 and 173 bacterial taxa at the phylum and genus level, respectively, as being detected with relative abundances higher than 0.01% and in at least half samples. LEfSe analysis revealed that 26 bacterial taxa were affected by sampling timepoint (P < 0.05 and LDA score > 4). When focusing on the dynamic trend of silage bacterial taxa, lactic acid bacteria successfully dominated in the bacterial community on Day 1 of ensiling, and the bacterial community almost came to a plateau by Day 28 of ensiling, with Lactobacillus and Leuconostoc as the dominant genera. In a word, the succession of fermentation parameters, nutrient components and bacterial community indicate a successful dominance establishment of LAB and a fast advent of fermentation plateau, suggesting that high-moisture sorghum stalk can be ensiled directly, but the pH of mature silage is a little high.
Collapse
Affiliation(s)
- Yawei Zhang
- College of Animal Science, Shanxi Agricultural University, Taiyuan, China
| | - Xinyan Tao
- College of Animal Science, Shanxi Agricultural University, Taiyuan, China
| | - Qingshan Liu
- Sorghum Research Institute, Shanxi Agricultural University, Jinzhong, China
| | - Yue Jiao Zhang
- College of Animal Science, Shanxi Agricultural University, Taiyuan, China
| | - Jiabao Xu
- College of Animal Science, Shanxi Agricultural University, Taiyuan, China
| | - Weiyu Zhang
- College of Animal Science, Shanxi Agricultural University, Taiyuan, China
| | - Jing Wang
- College of Animal Science, Shanxi Agricultural University, Taiyuan, China
| | - Dandan Zhang
- College of Animal Science, Shanxi Agricultural University, Taiyuan, China
| | - Bo Li
- College of Animal Science, Shanxi Agricultural University, Taiyuan, China
| | - Lulu Wang
- College of Animal Science, Shanxi Agricultural University, Taiyuan, China
| | - Jing Cheng
- College of Animal Science, Shanxi Agricultural University, Taiyuan, China
| | - Yuan Qing Zhang
- College of Animal Science, Shanxi Agricultural University, Taiyuan, China
- *Correspondence: Yuan Qing Zhang,
| |
Collapse
|
7
|
Zhao J, Yin XJ, Wang SR, Li JF, Dong ZH, Shao T. Changes in the fermentation products, taxonomic and functional profiles of microbiota during high-moisture sweet sorghum silage fermentation. Front Microbiol 2022; 13:967624. [PMID: 35979487 PMCID: PMC9376283 DOI: 10.3389/fmicb.2022.967624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
The purpose of this study was to evaluate the fermentation quality, microbial community, and functional shifts of sweet sorghum during ensiling. The high-moisture sweet sorghum (SS) was naturally ensiled for 1, 3, 7, 15, 30, and 60 days. After 60 days of ensiling, sweet sorghum silage (SSS) showed homolactic fermentation with absent butyric acid, low pH value, acceptable concentrations of propionic acid, ethanol, and ammonia nitrogen and high lactic acid concentration. Acinetobacter, Sphingomonas, and Pseudomonas were the advantage genera in SS. While, Lactococcus, Weissella, and Pediococcus were dominant in 3-day SSS and subsequently replaced by Lactobacillus in 60-day SSS. Spearman’s correlation heatmap showed that Pediococcus and Leuconostoc were negatively related to the pH value of SSS. There were great differences in the Kyoto Encyclopedia of Genes and Genomes (KEGG) functional profiles of SS and SSS. Ensiling process downregulated the metabolism of amino acid, energy, cofactors, and vitamins, but upregulated the metabolism of nucleotides and carbohydrates. Overall, next-generation sequencing in conjunction with KEGG functional prediction revealed the distinct differences in the initial and late phases of ensiling in terms of both community succession and functional shifts. The knowledge regarding bacterial community dynamics and functional shifts of SS during ensiling is important for understanding the fermentation mechanism and may contribute to the production of high-quality sweet sorghum silage.
Collapse
|
8
|
Tang W, Liao L, Xiao Y, Zhai J, Su H, Chen Y, Guo Y. Epicuticular wax of sweet sorghum influenced the microbial community and fermentation quality of silage. Front Microbiol 2022; 13:960857. [PMID: 35966662 PMCID: PMC9372506 DOI: 10.3389/fmicb.2022.960857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/04/2022] [Indexed: 11/17/2022] Open
Abstract
Epicuticular wax, as secondary metabolites (hydrophobic compounds) covering plant surface, plays important roles in protecting plants from abiotic and biotic stresses. However, whether these compounds will influence fermentation process of silage is still not clear. In this study, two sweet sorghum cultivars with varying epicuticular wax on sheath (bloom), Yajin 2 (YJ, less bloom), and Jintian (JT, dense bloom), were harvested at flowering and maturing stages, and ensiled with or without bloom, aiming to evaluate the effects of bloom on fermentation quality, feed nutrition and microbial community. The bloom was collected manually with de-waxed cotton and extracted with chloroform. The results showed that the bloom reduced the concentrations of water-soluble carbohydrate and crude protein of the two cultivars at both stages, reduced lactic acid (LA) for YJ at both stages and for JT at flowering stage, and increased LA for JT at mature stage. The α-diversity of bacterial communities of the silage fermentation with bloom was significantly lower than that without bloom. Bloom increased the abundance of Lactobacillus, reduced that of Bacillus and Weissella, and significant correlations were observed between fermentative qualities and bacterial abundances. However, decreased diversity of bacterial community and the contents of LA implied that shifts in bacterial community might exert negative effects on silage fermentation. Our results suggest that bloom wax could alter the microbial community composition of ensiled sweet sorghums, which thus influence the fermentation qualities.
Collapse
Affiliation(s)
- Wei Tang
- College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Longxing Liao
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Yu Xiao
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Jianrong Zhai
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Hang Su
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Yingjie Chen
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Yanjun Guo
- College of Grassland Science, Qingdao Agricultural University, Qingdao, China
- *Correspondence: Yanjun Guo,
| |
Collapse
|