1
|
Zhou H, Jia S, Gao Y, Li X, Lin Y, Yang F, Ni K. Characterization of phyllosphere endophytic lactic acid bacteria reveals a potential novel route to enhance silage fermentation quality. Commun Biol 2024; 7:117. [PMID: 38253824 PMCID: PMC10803313 DOI: 10.1038/s42003-024-05816-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
The naturally attached phyllosphere microbiota play a crucial role in plant-derived fermentation, but the structure and function of phyllosphere endophytes remain largely unidentified. Here, we reveal the diversity, specificity, and functionality of phyllosphere endophytes in alfalfa (Medicago sativa L.) through combining typical microbial culture, high-throughput sequencing, and genomic comparative analysis. In comparison to phyllosphere bacteria (PB), the fermentation of alfalfa solely with endophytes (EN) enhances the fermentation characteristics, primarily due to the dominance of specific lactic acid bacteria (LAB) such as Lactiplantibacillus, Weissella, and Pediococcus. The inoculant with selected endophytic LAB strains also enhances the fermentation quality compared to epiphytic LAB treatment. Especially, one key endophytic LAB named Pediococcus pentosaceus EN5 shows enrichment of genes related to the mannose phosphotransferase system (Man-PTS) and carbohydrate-metabolizing enzymes and higher utilization of carbohydrates. Representing phyllosphere, endophytic LAB shows great potential of promoting ensiling and provides a novel direction for developing microbial inoculant.
Collapse
Affiliation(s)
- Hongzhang Zhou
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Shangang Jia
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yu Gao
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xiaomei Li
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yanli Lin
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Fuyu Yang
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Kuikui Ni
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
2
|
Ma J, Dai H, Liu H, Du W. Effects of harvest stages and lactic acid bacteria additives on the nutritional quality of silage derived from triticale, rye, and oat on the Qinghai-Tibet Plateau. PeerJ 2023; 11:e15772. [PMID: 37551342 PMCID: PMC10404394 DOI: 10.7717/peerj.15772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/28/2023] [Indexed: 08/09/2023] Open
Abstract
BACKGROUND Triticale (×Triticosecale Wittmack L.), rye (Secale cereale L.), and oat (Avena sativa L.) are the main forage crops on the Qinghai-Tibet Plateau, but there has been relatively little research on the silage produced from these three species. METHODS Plants were harvested at the heading, flowering, grouting, milky, and dough stages and then used to produce silage with and without additives (Sila-Max and Sila-Mix). The nutritional quality of the resulting silages was analyzed. RESULTS Triticale was revealed to be more suitable than oat or rye for producing silage on the Qinghai-Tibet Plateau. On the basis of the dry matter yield (DMY), triticale and rye should be harvested at the milky stage to optimize silage quality, whereas oat should be harvested at the dough stage. The lactic acid bacteria additives Sila-Max and Sila-Mix had no significant effect on the nutritional quality of the three silages regardless of when the samples were harvested. Overall, triticale produced higher quality silage than oat or rye. More specifically, triticale variety 'Gannong No.2' harvested at the milky stage is ideal for silage production.
Collapse
Affiliation(s)
- Jun Ma
- College of Pratacultural Science, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Hanling Dai
- College of Pratacultural Science, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Hancheng Liu
- College of Pratacultural Science, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Wenhua Du
- College of Pratacultural Science, Gansu Agricultural University, Lanzhou, Gansu, China
| |
Collapse
|
3
|
Sun L, Xue Y, Xiao Y, Te R, Wu X, Na N, Wu N, Qili M, Zhao Y, Cai Y. Community Synergy of Lactic Acid Bacteria and Cleaner Fermentation of Oat Silage Prepared with a Multispecies Microbial Inoculant. Microbiol Spectr 2023; 11:e0070523. [PMID: 37166312 PMCID: PMC10269639 DOI: 10.1128/spectrum.00705-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/21/2023] [Indexed: 05/12/2023] Open
Abstract
To investigate community synergy of lactic acid bacteria (LAB) and cleaner fermentation of oat silage, oat silages were prepared with or without (control) commercial LAB inoculants LI1 (containing Lactiplantibacillus plantarum, Lentilactobacillus buchneri, Lacticaseibacillus paracasei, and Pediococcus acidilactici) and LI2 (containing Lactiplantibacillus plantarum and Lentilactobacillus buchneri). The microbial community, LAB synergy, and cleaner fermentation were analyzed at 1, 3, 6, 15, 35, and 90 days of ensiling. The LAB inoculant improved fermentation quality, with significantly (P < 0.05) lower pH, ammonia nitrogen content, and gas production and higher lactic acid and acetic acid contents than those of the control. Enterobacteriaceae was the main bacterial community in early stage of fermentation, which utilizes sugar to produce CO2 gas, causing dry matter (DM) and energy loss. As fermentation progressed, the microbial diversity decreased, and the microbial community shifted from Gram-negative to Gram-positive bacteria. The inoculation of multispecies LAB displayed community synergy; Pediococcus acidilactici formed a dominant community in the early stage of fermentation, which produced an acid and anaerobic environment for the subsequent growth of Lentilactobacillus and Lacticaseibacillus species, thus forming a LAB-dominated microbial community. The predicted functional profile indicated that the silage inoculated with LI1 enhanced the carbohydrate metabolism pathway but inhibited the amino acid metabolism pathway, which played a role in promoting faster lactic acid production, reducing the decomposition of protein to ammonia nitrogen, and improving the fermentation quality of silage. Therefore, oat silage can be processed to high-quality and cleaner fermented feed by using an LAB inoculant, and LI1 showed better efficiency than LI2. IMPORTANCE Oat natural silage is rich in Enterobacteriaceae, increasing gas production and fermentation loss. Lactic acid bacteria interact synergistically to form a dominant community during ensiling. Pediococci grow vigorously in the early stage of fermentation and create an anaerobic environment. Lactobacilli inhibit the harmful microorganisms and result in cleaner fermentation of oat silage.
Collapse
Affiliation(s)
- Lin Sun
- Inner Mongolia Engineering Research Center of Development and Utilization of Microbial Resources in Silage, Inner Mongolia Academy of Agriculture and Animal Husbandry Sciences, Hohhot, Inner Mongolia, People’s Republic of China
| | - Yanlin Xue
- Inner Mongolia Engineering Research Center of Development and Utilization of Microbial Resources in Silage, Inner Mongolia Academy of Agriculture and Animal Husbandry Sciences, Hohhot, Inner Mongolia, People’s Republic of China
| | - Yanzi Xiao
- College of Agriculture and Forestry, Hulunbuir University, Hulunber, Inner Mongolia, People’s Republic of China
| | - Rigele Te
- Inner Mongolia Engineering Research Center of Development and Utilization of Microbial Resources in Silage, Inner Mongolia Academy of Agriculture and Animal Husbandry Sciences, Hohhot, Inner Mongolia, People’s Republic of China
| | - Xiaoguang Wu
- Inner Mongolia Autonomous Region Land Surveying and Planning Institute, Hohhot, Inner Mongolia, People’s Republic of China
| | - Na Na
- Inner Mongolia Engineering Research Center of Development and Utilization of Microbial Resources in Silage, Inner Mongolia Academy of Agriculture and Animal Husbandry Sciences, Hohhot, Inner Mongolia, People’s Republic of China
| | - Nier Wu
- Inner Mongolia Engineering Research Center of Development and Utilization of Microbial Resources in Silage, Inner Mongolia Academy of Agriculture and Animal Husbandry Sciences, Hohhot, Inner Mongolia, People’s Republic of China
| | - Moge Qili
- Inner Mongolia Engineering Research Center of Development and Utilization of Microbial Resources in Silage, Inner Mongolia Academy of Agriculture and Animal Husbandry Sciences, Hohhot, Inner Mongolia, People’s Republic of China
| | - Yi Zhao
- Inner Mongolia Engineering Research Center of Development and Utilization of Microbial Resources in Silage, Inner Mongolia Academy of Agriculture and Animal Husbandry Sciences, Hohhot, Inner Mongolia, People’s Republic of China
| | - Yimin Cai
- Japan International Research Center for Agricultural Sciences, Tsukuba, Ibaraki, Japan
| |
Collapse
|
4
|
Fu Z, Sun L, Wang Z, Liu Y, Hao J, Gao C, Ge G. Effect of different regions on fermentation profiles, microbial communities, and their metabolomic pathways and properties in Italian ryegrass silage. Front Microbiol 2023; 13:1076499. [PMID: 36726558 PMCID: PMC9885166 DOI: 10.3389/fmicb.2022.1076499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 12/19/2022] [Indexed: 01/19/2023] Open
Abstract
Introduction Italian ryegrass is less studied in northern China due to high-quality forage grass has not been fully utilized. Full utilization of high-quality forage grass helps to alleviate the shortage of forage grass in winter and spring season and guarantee stable development of livestock production. Consequently, this study was aimed to evaluate the effects of different regions in northern China on the fermentative products, bacterial community compositions, and metabolic pathways and metabolites of Italian ryegrass silage. Methods The Italian ryegrass was harvested from three regions (Ordos-WK; Hohhot-AK; Ulanqab-SYK) and ensiled for 60 days. Single molecule real-time (SMRT) sequencing and ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS/MS) were used to analyze bacterial communities and metabolites, respectively. Results After 60 d of fermentation, the SYK group had the lowest pH (4.67), the highest lactic acid contents (95.02 g/kg DM) and largest lactic acid bacteria populations (6.66 log10 cfu/g FM) among the treatment groups. In addition, the SYK group had the highest abundance of Lactiplantibacillus plantarum (63.98%). In SYK group, isoquinoline alkaloid biosynthesis was the significantly enriched (p < 0.05) and high-impact value (0.0225) metabolic pathway. In AK group, tryptophan metabolism the was the significantly enriched (p < 0.001) and high-impact value (0.1387) metabolic pathway. In WK group, citrate cycle (TCA cycle) was the significantly enriched (p < 0.001) and high-impact value (0.1174) metabolic pathway. Further, Lactiplantibacillus plantarum was positively correlated with cinnamic acid, tetranor 12-HETE, D-Mannitol, (2S)-2-amino-4-methylpentanoic acid L-Leucine, guanine, isoleucyl-aspartate and 3,4-Dihydroxyphenyl propanoate, but negatively correlated with isocitrate and D-mannose. Discussion In conclusion, this study can improve our understanding of the ensiling microbiology and metabolomics in different regions to further regulate the fermentation products and promote livestock production.
Collapse
Affiliation(s)
- Zhihui Fu
- College of Grassland, Resources and Environment, Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of Ministry of Agriculture, and Key Laboratory of Grassland Resources, Inner Mongolia Agricultural University, Ministry of Education, Hohhot, China
| | - Lin Sun
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - ZhiJun Wang
- College of Grassland, Resources and Environment, Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of Ministry of Agriculture, and Key Laboratory of Grassland Resources, Inner Mongolia Agricultural University, Ministry of Education, Hohhot, China
| | - Yichao Liu
- College of Grassland, Resources and Environment, Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of Ministry of Agriculture, and Key Laboratory of Grassland Resources, Inner Mongolia Agricultural University, Ministry of Education, Hohhot, China
| | - Junfeng Hao
- College of Grassland, Resources and Environment, Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of Ministry of Agriculture, and Key Laboratory of Grassland Resources, Inner Mongolia Agricultural University, Ministry of Education, Hohhot, China
| | - Cuiping Gao
- College of Grassland, Resources and Environment, Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of Ministry of Agriculture, and Key Laboratory of Grassland Resources, Inner Mongolia Agricultural University, Ministry of Education, Hohhot, China
| | - Gentu Ge
- College of Grassland, Resources and Environment, Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of Ministry of Agriculture, and Key Laboratory of Grassland Resources, Inner Mongolia Agricultural University, Ministry of Education, Hohhot, China,*Correspondence: Gentu Ge,
| |
Collapse
|
5
|
Fu Z, Sun L, Wang Z, Liu J, Hou M, Lu Q, Hao J, Jia Y, Ge G. Effects of growth stage on the fermentation quality, microbial community, and metabolomic properties of Italian ryegrass ( Lolium multiflorum Lam.) silage. Front Microbiol 2023; 13:1054612. [PMID: 36713224 PMCID: PMC9880220 DOI: 10.3389/fmicb.2022.1054612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/23/2022] [Indexed: 01/15/2023] Open
Abstract
Introduction This study aimed to investigate the effects of different growth stages (booting period-SYK; initial flowering-SCK; full flowering-SSK) on the fermentation quality, microbial community, metabolic pathways and metabolomic characteristics of Italian ryegrass silage. Methods Single molecule real-time (SMRT) sequencing and ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS/MS) were used to analyze bacterial communities and metabolites, respectively. Results After 60 d of fermentation, SYK had the lowest pH and the highest lactic acid content, which were significantly different from the other groups. The bacteria with the highest abundance in SYK, SCK and SSK groups were Lactiplantibacillus plantarum (63.98%), Weissella minor (28.82%) and Levilactobacillus brevis (64.81%), respectively. In addition, among the main differential metabolites in different growth stages, the number of amino acids was the most, and the corresponding metabolic pathways were mainly amino acid metabolic pathways. The biosynthesis of phenylalanine, tyrosine and tryptophan was significantly enriched (p<0.01) at booting stage and full flowering stage. Purine metabolism and ABC transporter pathway were significantly enriched at the initial flowering (p<0.001). Lactiplantibacillus plantarum had a negative correlation with xanthine and ganoderic acid F. Weissella minor had a positive correlation with D-Mannose and ganoderic acid F. Levilactobacillus brevis had a positive correlation with xanthine, and Latilactobacillus sakei had a positive correlation with cinnamic acid, D-Mannose, 2-Hydroxycinnamic acid and uridine. Discussion In conclusion, this study reveals the interaction mechanisms between ryegrass raw materials at different growth stages and epiphytic microorganisms during ensiling fermentation, providing new ideas for screening functional lactic acid bacteria, and laying a theoretical foundation for the production of safe and high-quality silage.
Collapse
Affiliation(s)
- Zhihui Fu
- College of Grassland, Resources and Environment, Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of Ministry of Agriculture, and Key Laboratory of Grassland Resources, Inner Mongolia Agricultural University, Ministry of Education, Hohhot, China
| | - Lin Sun
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, China
| | - Zhijun Wang
- College of Grassland, Resources and Environment, Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of Ministry of Agriculture, and Key Laboratory of Grassland Resources, Inner Mongolia Agricultural University, Ministry of Education, Hohhot, China
| | - Jingyi Liu
- College of Grassland, Resources and Environment, Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of Ministry of Agriculture, and Key Laboratory of Grassland Resources, Inner Mongolia Agricultural University, Ministry of Education, Hohhot, China
| | - Meiling Hou
- College of Life Science, Baicheng Normal University, Baicheng, China
| | - Qiang Lu
- College of Agriculture, Ningxia University, Yinchuan, China
| | - Junfeng Hao
- College of Grassland, Resources and Environment, Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of Ministry of Agriculture, and Key Laboratory of Grassland Resources, Inner Mongolia Agricultural University, Ministry of Education, Hohhot, China
| | - Yushan Jia
- College of Grassland, Resources and Environment, Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of Ministry of Agriculture, and Key Laboratory of Grassland Resources, Inner Mongolia Agricultural University, Ministry of Education, Hohhot, China
| | - Gentu Ge
- College of Grassland, Resources and Environment, Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of Ministry of Agriculture, and Key Laboratory of Grassland Resources, Inner Mongolia Agricultural University, Ministry of Education, Hohhot, China,*Correspondence: Gentu Ge, ✉
| |
Collapse
|
6
|
Wang W, Nie Y, Tian H, Quan X, Li J, Shan Q, Li H, Cai Y, Ning S, Santos Bermudez R, He W. Microbial Community, Co-Occurrence Network Relationship and Fermentation Lignocellulose Characteristics of Broussonetia papyrifera Ensiled with Wheat Bran. Microorganisms 2022; 10:microorganisms10102015. [PMID: 36296291 PMCID: PMC9611845 DOI: 10.3390/microorganisms10102015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/29/2022] [Accepted: 10/06/2022] [Indexed: 12/02/2022] Open
Abstract
Broussonetia papyrifera has a high lignocellulose content leading to poor palatability and low digestion rate of ruminants. Thus, dynamic profiles of fermentation lignocellulose characteristics, microbial community structure, potential function, and interspecific relationships of B. papyrifera mixing with wheat bran in different ratios: 100:0 (BP100), 90:10 (BP90), 80:20 (BP80), and 65:35 (BP65) were investigated on ensiling days 5, 15, 30, and 50. The results showed that adding bran increased the degradation rate of hemicellulose, neutral detergent fiber, and the activities of filter paper cellulase, endoglucanase, acid protease, and neutral protease, especially in the ratio of 65:35. Lactobacillus, Pediococcus, and Weissella genus bacteria were the dominant genera in silage fermentation, and Pediococcus and Weissella genus bacteria regulated the process of silage fermentation. Compared with monospecific B. papyrifera silage, adding bran significantly increased the abundance of Weissella sp., and improved bacterial fermentation potential in BP65 (p < 0.05). Distance-based redundancy analysis showed that lactic acid bacteria (LAB) were significantly positive correlated with most lignocellulose content and degrading enzymes activities, while Monascus sp. and Syncephalastrum sp. were opposite (p < 0.05). Co-occurrence network analysis indicated that there were significant differences in microbial networks among different mixing ratios of B. papyrifera silage prepared with bran. There was a more complex, highly diverse and less competitive co-occurrence network in BP65, which was helpful to silage fermentation. In conclusion, B. papyrifera ensiled with bran improved the microbial community structure and the interspecific relationship and reduced the content of lignocellulose.
Collapse
Affiliation(s)
- Wenbo Wang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Yanshun Nie
- Fengtang Ecological Agriculture Technology Research and Development (Shandong) Co., Ltd., Taian 271400, China
| | - Hua Tian
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Xiaoyan Quan
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Jialin Li
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Qiuli Shan
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Hongmei Li
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Yichao Cai
- Fengtang Ecological Agriculture Technology Research and Development (Shandong) Co., Ltd., Taian 271400, China
| | - Shangjun Ning
- Fengtang Ecological Agriculture Technology Research and Development (Shandong) Co., Ltd., Taian 271400, China
| | - Ramon Santos Bermudez
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
- Faculty of Agricultural Sciences, Luis Vargas Torres de Esmeraldas University of Technology, Esmeraldas 080103, Ecuador
| | - Wenxing He
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
- Correspondence:
| |
Collapse
|