1
|
Bhardwaj P, Jain R, Rawat N, Joshi R, Kumar A, Pandey SS, Kumar S. Naganishia liquefaciens ARY7, a Psychrophilic Yeast Endophyte Improves Plant Low Temperature Acclimation Through Auxin and Salicylic Acid Signaling. PHYSIOLOGIA PLANTARUM 2025; 177:e70267. [PMID: 40394855 DOI: 10.1111/ppl.70267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/12/2025] [Indexed: 05/22/2025]
Abstract
Understanding how plant-associated yeasts mediate plant fitness under environmental stress remains mostly elusive. Here, the role of auxin and salicylic acid (SA)-producing psychrophilic yeast endophyte Naganishia liquefaciens strain ARY7, isolated from the roots of cold-desert plant Arnebia euchroma, was investigated for low temperature (LT; 10°C) tolerance in Arabidopsis thaliana. ARY7-inoculated plants had higher biomass, exhibited higher photosynthetic efficiency, starch accumulation, and reduced stress-responsive parameters at 10°C than their non-inoculated controls. ARY7-inoculation in the Arabidopsis enhanced auxin signaling in the roots, leading to more lateral roots and root hair development at 10°C. Increased exopolysaccharide (EPS) accumulation around roots and root colonization by ARY7 at 10°C also suggested its role in cold tolerance. The SA-production ability of ARY7 was supported by the elevated SA levels and upregulation of key SA biosynthesis genes (SID2 and PBS3) in ARY7-inoculated plants at 10°C. In addition, an improved seedling phenotype in ARY7-inoculated sid2 (SA-deficient) mutants of Arabidopsis further confirmed the role of ARY7-produced SA-mediated plant fitness. The downregulated expression of key cold-responsive genes (CBF, COR, RD29A, and P5CS1) in the leaves of ARY7-inoculated plants indicated reduced sensitivity to LT. This study established that the ARY7-mediated plant cold tolerance is due to the increased ARY7-root colonization through EPS production and involves auxin and SA signaling. This study provides valuable insights to explore plant-associated psychrophilic yeasts for protecting plants from various abiotic stresses, including cold temperature.
Collapse
Affiliation(s)
- Priyanka Bhardwaj
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Rahul Jain
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Nikhil Rawat
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Robin Joshi
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Arun Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Shiv Shanker Pandey
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sanjay Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| |
Collapse
|
2
|
Ren F, Liu N, Gao B, Shen H, Li S, Li L, Zheng D, Shen W, Gao N. Identification of Stutzerimonas stutzeri volatile organic compounds that enhance the colonization and promote tomato seedling growth. J Appl Microbiol 2024; 135:lxae248. [PMID: 39317668 DOI: 10.1093/jambio/lxae248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/10/2024] [Accepted: 09/23/2024] [Indexed: 09/26/2024]
Abstract
AIMS Volatile organic compounds (VOCs) have an important function in plant growth-promoting rhizobacteria (PGPR) development and plant growth. This study aimed to identify VOCs of the PGPR strain, Stutzerimonas stutzeri NRCB010, and investigate their effects on NRCB010 biofilm formation, swarming motility, colonization, and tomato seedling growth. METHODS AND RESULTS Solid-phase microextraction and gas chromatography-mass spectrometry were performed to identify the VOCs produced during NRCB010 fermentation. A total of 28 VOCs were identified. Among them, seven (e.g. γ-valerolactone, 3-octanone, mandelic acid, 2-heptanone, methyl palmitate, S-methyl thioacetate, and 2,3-heptanedione), which smell well, are beneficial for plant, or as food additives, and without serious toxicities were selected to evaluate their effects on NRCB010 and tomato seedling growth. It was found that most of these VOCs positively influenced NRCB010 swarming motility, biofilm formation, and colonization, and the tomato seedling growth. Notably, γ-valerolactone and S-methyl thioacetate exhibited the most positive performances. CONCLUSION The seven NRCB010 VOCs, essential for PGPR and crop growth, are potential bioactive ingredients within microbial fertilizer formulations. Nevertheless, the long-term sustainability and replicability of the positive effects of these compounds across different soil and crop types, particularly under field conditions, require further investigation.
Collapse
Affiliation(s)
- Fangfang Ren
- School of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Jiangbei New District, Nanjing 211816, China
| | - Ning Liu
- School of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Jiangbei New District, Nanjing 211816, China
| | - Bei Gao
- School of Marine Sciences, Nanjing University of Information Science and Technology, No. 219 Ningliu Road, Jiangbei New District, Nanjing 210044, China
| | - Hui Shen
- School of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Jiangbei New District, Nanjing 211816, China
| | - Shanshan Li
- School of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Jiangbei New District, Nanjing 211816, China
| | - Linmei Li
- School of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Jiangbei New District, Nanjing 211816, China
| | - Donghui Zheng
- School of 2011, Nanjing Tech University, No. 30 Puzhu South Road, Jiangbei New District, Nanjing 211816, China
| | - Weishou Shen
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, and School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, No. 219 Ningliu Road, Jiangbei New District, Nanjing 210044, China
| | - Nan Gao
- School of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Jiangbei New District, Nanjing 211816, China
| |
Collapse
|
3
|
Gao Q, Yang M, Ji Y, Hu L, Dong X, Liang T, Zhai Z, Cheng Y, Dai H, Zhao L, Zhang G, Zhou Q. Complete genome of Priestia filamentosa H146 isolated from tobacco leaves. Microbiol Resour Announc 2024; 13:e0019524. [PMID: 39051775 PMCID: PMC11320964 DOI: 10.1128/mra.00195-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/12/2024] [Indexed: 07/27/2024] Open
Abstract
We report the complete genome of Priestia filamentosa H146 isolated from tobacco leaves. H146 contained a circular chromosome and five circular plasmids. A total of 4,669 genes were predicted, of which 4,372 genes were in the chromosome and other genes were located on plasmids. The genome sequence data provide an important basis for studying Priestia filamentosa.
Collapse
Affiliation(s)
- Qin Gao
- Anhui Wannan Tobacco Co., Ltd., Xuancheng, Anhui, China
| | - Mengmeng Yang
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, Henan, China
| | - Yuan Ji
- Shandong Institute for Food and Drug Control, Jinan, Shandong, China
| | - Liwei Hu
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, Henan, China
| | | | - Taibo Liang
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, Henan, China
| | - Zhen Zhai
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, Henan, China
| | - Yanming Cheng
- Anhui Wannan Tobacco Co., Ltd., Xuancheng, Anhui, China
| | - Huaxin Dai
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, Henan, China
| | - Limei Zhao
- Anhui Wannan Tobacco Co., Ltd., Xuancheng, Anhui, China
| | - Guo Zhang
- Anhui Wannan Tobacco Co., Ltd., Xuancheng, Anhui, China
| | - Qifa Zhou
- Anhui Wannan Tobacco Co., Ltd., Xuancheng, Anhui, China
| |
Collapse
|
4
|
Zahra ST, Tariq M, Abdullah M, Ullah MK, Rafiq AR, Siddique A, Shahid MS, Ahmed T, Jamil I. Salt-Tolerant Plant Growth-Promoting Bacteria (ST-PGPB): An Effective Strategy for Sustainable Food Production. Curr Microbiol 2024; 81:304. [PMID: 39133243 DOI: 10.1007/s00284-024-03830-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 08/02/2024] [Indexed: 08/13/2024]
Abstract
Soil is the backbone of the agricultural economy of any country. Soil salinity refers to the higher concentration of soluble salts in the soil. Soil salinity is a ruinous abiotic stress that has emerged as a threatening issue for food security. High salt concentration causes an ionic imbalance that hampers water uptake, affecting photosynthesis and other metabolic processes, ultimately resulting in inferior seed germination and stunted plant growth. A wide range of strategies have been adopted to mitigate the harmful effects of salinity such as efficient irrigation techniques, soil reclamation, habitat restoration, flushing, leaching or using salt-tolerant crops, but all the methods have one or more limitations. An alternative and effective strategy is the exploitation of salt-tolerant plant growth-promoting bacteria (ST-PGPB) to mitigate salt stress and improve crop productivity. ST-PGPB can survive in salinity-tainted environments and perform their inherent plant growth-promoting and biocontrol functions effectively. Additionally, ST-PGPB can rescue plants via stress-responsive mechanisms including production of growth regulators, maintenance of osmotic balance, aminocyclopropane-1-carboxylate (ACC) deaminase activity, exopolysaccharides (EPS) activity, improvement in photosynthesis activity, synthesis of compatible solutes, antioxidant activity and regulation of salt overly sensitive (SOS) signaling pathway. Several well-known ST-PGPB, specifically Azospirillum, Bacillus, Burkholderia, Enterobacter, Pseudomonas and Pantoea, are used as bioinoculants to improve the growth of different crops. The application of ST-PGPB allows plants to cope with salt stress by boosting their defense mechanisms. This review highlights the impact of salinity stress on plant growth and the potential of ST-PGPB as a biofertilizer to improve crop productivity under salt stress.
Collapse
Affiliation(s)
- Syeda Tahseen Zahra
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Mohsin Tariq
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan.
| | - Muhammad Abdullah
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Kaleem Ullah
- Institute of Agricultural Extension, Education and Rural Development, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Abdul Rafay Rafiq
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Aisha Siddique
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Shafiq Shahid
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khod 123, Muscat, Oman
| | - Temoor Ahmed
- Institute of Biotechnology, Zhejiang University, Hangzhou, China
- Department of Life Sciences, Western Caspian University, Baku, Azerbaijan
- MEU Research Unit, Middle East University, Amman, Jordan
| | - Imrana Jamil
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
5
|
Kumar D, Ali M, Sharma N, Sharma R, Manhas RK, Ohri P. Unboxing PGPR-mediated management of abiotic stress and environmental cleanup: what lies inside? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:47423-47460. [PMID: 38992305 DOI: 10.1007/s11356-024-34157-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/24/2024] [Indexed: 07/13/2024]
Abstract
Abiotic stresses including heavy metal toxicity, drought, salt and temperature extremes disrupt the plant growth and development and lowers crop output. Presence of environmental pollutants further causes plants suffering and restrict their ability to thrive. Overuse of chemical fertilizers to reduce the negative impact of these stresses is deteriorating the environment and induces various secondary stresses to plants. Therefore, an environmentally friendly strategy like utilizing plant growth-promoting rhizobacteria (PGPR) is a promising way to lessen the negative effects of stressors and to boost plant growth in stressful conditions. These are naturally occurring inhabitants of various environments, an essential component of the natural ecosystem and have remarkable abilities to promote plant growth. Furthermore, multifarious role of PGPR has recently been widely exploited to restore natural soil against a range of contaminants and to mitigate abiotic stress. For instance, PGPR may mitigate metal phytotoxicity by boosting metal translocation inside the plant and changing the metal bioavailability in the soil. PGPR have been also reported to mitigate other abiotic stress and to degrade environmental contaminants remarkably. Nevertheless, despite the substantial quantity of information that has been produced in the meantime, there has not been much advancement in either the knowledge of the processes behind the alleged positive benefits or in effective yield improvements by PGPR inoculation. This review focuses on addressing the progress accomplished in understanding various mechanisms behind the protective benefits of PGPR against a variety of abiotic stressors and in environmental cleanups and identifying the cause of the restricted applicability in real-world.
Collapse
Affiliation(s)
- Deepak Kumar
- Department of Zoology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Mohd Ali
- Department of Zoology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Nandni Sharma
- Department of Zoology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Roohi Sharma
- Department of Zoology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Rajesh Kumari Manhas
- Department of Microbiology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Puja Ohri
- Department of Zoology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India.
| |
Collapse
|
6
|
Pandey N, Vaishnav R, Rajavat AS, Singh AN, Kumar S, Tripathi RM, Kumar M, Shrivastava N. Exploring the potential of Bacillus for crop productivity and sustainable solution for combating rice false smut disease. Front Microbiol 2024; 15:1405090. [PMID: 38863756 PMCID: PMC11165134 DOI: 10.3389/fmicb.2024.1405090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/06/2024] [Indexed: 06/13/2024] Open
Abstract
Rice false smut, which is caused by the soil-borne fungal pathogen Ustilaginoidea virens (U. virens), is one of the most threatening diseases in most of the rice-growing countries including India that causes 0.5-75% yield loss, low seed germination, and a reduction in seed quality. The assessment of yield loss helps to understand the relevance of disease severity and facilitates the implementation of appropriate management strategies. This study aimed to mitigate biotic stress in rice by employing a rhizobacterial-based bioformulation, which possesses diverse capabilities as both a plant growth promoter and a biocontrol agent against U. virens. Rhizobacteria were isolated from the soil of the rice rhizospheres from the healthy plant of the false smut affected zone. Furthermore, they were identified as Bacillus strains: B. subtilis (BR_4), B. licheniformis (BU_7), B. licheniformis (BU_8), and B. vallismortis (KU_7) via sequencing. Isolates were screened for their biocontrol potential against U. virens under in vitro conditions. The antagonistic study revealed that B. vallismortis (KU_7) inhibited U. virens the most (44.6%), followed by B. subtilis BR_4 (41.4%), B. licheniformis BU_7 (39.8%), and B. licheniformis BU_8 (43.5%). Various biochemical and plant growth promoting attributes, such as phosphate and Zn solubilization, IAA, ammonium, siderophore, and chitinase production, were also investigated for all the selected isolates. Furthermore, the potential of the isolates was tested in both in vitro and field conditions by employing talc-based bioformulation through bio-priming and root treatment. The application of bioformulation revealed a 20% decrease in disease incidence in plants treated with B. vallismortis (KU_7), a 60.5% increase in the biological yield, and a 45% increase in the grain yield. This eco-friendly approach not only controlled the disease but also improved the grain quality and reduced the chaffiness.
Collapse
Affiliation(s)
- Neha Pandey
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
- ICAR- Indian Institute of Seed Science, Maunath Bhanjan, Uttar Pradesh, India
| | - Richa Vaishnav
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Asha Singh Rajavat
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Arvind Nath Singh
- ICAR- Indian Institute of Vegetable Research, Varanasi, Uttar Pradesh, India
| | - Sanjay Kumar
- ICAR- Indian Institute of Seed Science, Maunath Bhanjan, Uttar Pradesh, India
| | - Ravi Mani Tripathi
- Amity Institute of Nanotechnology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Madan Kumar
- ICAR- Indian Institute of Agricultural Biotechnology, Garhkhatanga, Ranchi, Jharkhand, India
| | - Neeraj Shrivastava
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| |
Collapse
|
7
|
Eswaran SUD, Sundaram L, Perveen K, Bukhari NA, Sayyed RZ. Osmolyte-producing microbial biostimulants regulate the growth of Arachis hypogaea L. under drought stress. BMC Microbiol 2024; 24:165. [PMID: 38745279 PMCID: PMC11094965 DOI: 10.1186/s12866-024-03320-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024] Open
Abstract
Globally, drought stress poses a significant threat to crop productivity. Improving the drought tolerance of crops with microbial biostimulants is a sustainable strategy to meet a growing population's demands. This research aimed to elucidate microbial biostimulants' (Plant Growth Promoting Rhizobacteria) role in alleviating drought stress in oil-seed crops. In total, 15 bacterial isolates were selected for drought tolerance and screened for plant growth-promoting (PGP) attributes like phosphate solubilization and production of indole-3-acetic acid, siderophore, hydrogen cyanide, ammonia, and exopolysaccharide. This research describes two PGPR strains: Acinetobacter calcoaceticus AC06 and Bacillus amyloliquefaciens BA01. The present study demonstrated that these strains (AC06 and BA01) produced abundant osmolytes under osmotic stress, including proline (2.21 and 1.75 µg ml- 1), salicylic acid (18.59 and 14.21 µg ml- 1), trehalose (28.35 and 22.74 µg mg- 1 FW) and glycine betaine (11.35 and 7.74 mg g- 1) respectively. AC06 and BA01 strains were further evaluated for their multifunctional performance by inoculating in Arachis hypogaea L. (Groundnut) under mild and severe drought regimes (60 and 40% Field Capacity). Inoculation with microbial biostimulants displayed distinct osmotic-adjustment abilities of the groundnut, such as growth parameters, plant biomass, photosynthetic pigments, relative water content, proline, and soluble sugar in respective to control during drought. On the other hand, plant sensitivity indexes such as electrolyte leakage and malondialdehyde (MDA) contents were decreased as well as cooperatively conferred plant drought tolerance by induced alterations in stress indicators such as catalase (CAT), ascorbate peroxidase (APX), and superoxide dismutase (SOD). Thus, Acinetobacter sp. AC06 and Bacillus sp. BA01 can be considered as osmolyte producing microbial biostimulants to simultaneously induce osmotic tolerance and metabolic changes in groundnuts under drought stress.
Collapse
Affiliation(s)
| | - Lalitha Sundaram
- Soil Biology and PGPR Lab, Department of Botany, Periyar University, Salem, 636011, India
| | - Kahkashan Perveen
- Department of Botany & Microbiology, College of Science, King Saud University, P.O. Box-22452, Riyadh, 11495, Saudi Arabia
| | - Najat A Bukhari
- Department of Botany & Microbiology, College of Science, King Saud University, P.O. Box-22452, Riyadh, 11495, Saudi Arabia
| | - R Z Sayyed
- Department of Microbiology, PSGVP Mandal's S I Arts, G B Patel Science and STKV Sangh Commerce College, Shahada, 425409, India.
| |
Collapse
|
8
|
Dindhoria K, Kumar R, Bhargava B, Kumar R. Metagenomic assembled genomes indicated the potential application of hypersaline microbiome for plant growth promotion and stress alleviation in salinized soils. mSystems 2024; 9:e0105023. [PMID: 38377278 PMCID: PMC10949518 DOI: 10.1128/msystems.01050-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/19/2024] [Indexed: 02/22/2024] Open
Abstract
Climate change is causing unpredictable seasonal variations globally. Due to the continuously increasing earth's surface temperature, the rate of water evaporation is enhanced, conceiving a problem of soil salinization, especially in arid and semi-arid regions. The accumulation of salt degrades soil quality, impairs plant growth, and reduces agricultural yields. Salt-tolerant, plant-growth-promoting microorganisms may offer a solution, enhancing crop productivity and soil fertility in salinized areas. In the current study, genome-resolved metagenomic analysis has been performed to investigate the salt-tolerating and plant growth-promoting potential of two hypersaline ecosystems, Sambhar Lake and Drang Mine. The samples were co-assembled independently by Megahit, MetaSpades, and IDBA-UD tools. A total of 67 metagenomic assembled genomes (MAGs) were reconstructed following the binning process, including 15 from Megahit, 26 from MetaSpades, and 26 from IDBA_UD assembly tools. As compared to other assemblers, the MAGs obtained by MetaSpades were of superior quality, with a completeness range of 12.95%-96.56% and a contamination range of 0%-8.65%. The medium and high-quality MAGs from MetaSpades, upon functional annotation, revealed properties such as salt tolerance (91.3%), heavy metal tolerance (95.6%), exopolysaccharide (95.6%), and antioxidant (60.86%) biosynthesis. Several plant growth-promoting attributes, including phosphate solubilization and indole-3-acetic acid (IAA) production, were consistently identified across all obtained MAGs. Conversely, characteristics such as iron acquisition and potassium solubilization were observed in a substantial majority, specifically 91.3%, of the MAGs. The present study indicates that hypersaline microflora can be used as bio-fertilizing agents for agricultural practices in salinized areas by alleviating prevalent stresses. IMPORTANCE The strategic implementation of metagenomic assembled genomes (MAGs) in exploring the properties and harnessing microorganisms from ecosystems like hypersaline niches has transformative potential in agriculture. This approach promises to redefine our comprehension of microbial diversity and its ecosystem roles. Recovery and decoding of MAGs unlock genetic resources, enabling the development of new solutions for agricultural challenges. Enhanced understanding of these microbial communities can lead to more efficient nutrient cycling, pest control, and soil health maintenance. Consequently, traditional agricultural practices can be improved, resulting in increased yields, reduced environmental impacts, and heightened sustainability. MAGs offer a promising avenue for sustainable agriculture, bridging the gap between cutting-edge genomics and practical field applications.
Collapse
Affiliation(s)
- Kiran Dindhoria
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Raghawendra Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Bhavya Bhargava
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Rakshak Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
9
|
Maleki M, Shojaeiyan A, Mokhtassi-Bidgoli A. Differential responses of two fenugreek (Trigonella foenum-graecum L.) landraces pretreated with melatonin to prolonged drought stress and subsequent recovery. BMC PLANT BIOLOGY 2024; 24:161. [PMID: 38429697 PMCID: PMC10908034 DOI: 10.1186/s12870-024-04835-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 02/18/2024] [Indexed: 03/03/2024]
Abstract
BACKGROUND Drought impairs growth, disturbs photosynthesis, and induces senescence in plants, which results in crop productivity reduction and ultimately jeopardizes human food security. The objective of this study was to determine major parameters associated with drought tolerance and recovery ability of fenugreek (Trigonella foenum-graecum L.), by examining differential biochemical and phenological responses and underlying enzyme activities as well as melatonin roles during drought stress and re-watering for two contrasting landraces. Moreover, the relative expression of three key genes involved in the biosynthesis pathway of diosgenin, including SQS, CAS, and BG, was investigated. RESULTS Depending on the conditions, drought stress enhanced the activity of antioxidant enzymes and the osmoregulating compounds, non-enzymatic antioxidants, hydrogen peroxide content, and lipid peroxidation levels in most cases. Severe drought stress accelerated flowering time in Shushtar landrace (SHR) but had no significant effects on Varamin (VR). Pretreatment with melatonin delayed flowering time in SHR and caused high drought resistance in this landrace. Furthermore, melatonin significantly enhanced drought adaptability in VR by improving plant recovery ability. DISCUSSION Based on our results plants' responses to drought stress and melatonin pretreatment were completely landrace-specific. Drought stress caused an increase in the relative expression of CAS gene and ultimately the accumulation of steroidal saponins in SHR. Melatonin compensated for the decrease in biomass production due to drought stress and finally increased steroidal saponins performance in SHR. Our study showed that melatonin can improve drought stress and recovery in fenugreek, but different factors such as genotype, melatonin concentration, and plant age should be considered.
Collapse
Affiliation(s)
- Masoud Maleki
- Department of Horticultural Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Abdolali Shojaeiyan
- Department of Horticultural Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.
| | - Ali Mokhtassi-Bidgoli
- Department of Agronomy, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
10
|
Chauhan PK, Upadhyay SK. Mixed Consortium of Salt-Tolerant Phosphate Solubilizing Bacteria Improves Maize (Zea mays) Plant Growth and Soil Health Under Saline Conditions. Mol Biotechnol 2024; 66:489-499. [PMID: 37243838 DOI: 10.1007/s12033-023-00771-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/10/2023] [Indexed: 05/29/2023]
Abstract
The rhizobacterial isolate SP-167 exhibited considerable phosphate solubilization, IAA production, exo-polysaccharides, proline, APX, and CAT at a concentration of 6% NaCl (w/v). 16S rDNA sequencing and BLAST analysis showed that isolate SP-167 was Klebsiella sp. In this study, T2 and T8 consortium was developed on the basis of the compatibility of isolate SP-167 with Kluyvera sp. and Enterobacter sp. At 6% NaCl (w/v) concentration, T2 and T8 showed increased PGP properties such as phosphate solubilization, IAA, Proline activity, CAT, POD, and EPS than isolate SP-167. The maximum increase in shoot length was recorded in T2-treated maize plants as compared to the control after 60 days in 1% NaCl stress. The N, P, and K content of leaves were significantly increased in maize plants with the inoculation of both the T2 and T8 consortium. The electrical conductivity of soil was decreased significantly in the T2 inoculated 1% NaCl (w/v) treated pot after 30, 60, and 90 days. In this study, soil enzymes DHA and PPO were significantly increased in both T2 and T8 treated combinations. The Na concentration in root and shoot were significantly decreased in T8 inoculated plant than in T2, as confirmed by the translocation factor study.
Collapse
Affiliation(s)
- Prabhat K Chauhan
- Department of Environmental Science, V.B.S. Purvanchal University, Jaunpur, 222003, India
| | - Sudhir K Upadhyay
- Department of Environmental Science, V.B.S. Purvanchal University, Jaunpur, 222003, India.
| |
Collapse
|
11
|
Khan A, Bibi S, Javed T, Mahmood A, Mehmood S, Javaid MM, Ali B, Yasin M, Abidin ZU, Al-Sadoon MK, Babar BH, Iqbal R, Malik T. Effect of salinity stress and surfactant treatment with zinc and boron on morpho-physiological and biochemical indices of fenugreek (Trigonella foenum-graecum). BMC PLANT BIOLOGY 2024; 24:138. [PMID: 38408911 PMCID: PMC10897981 DOI: 10.1186/s12870-024-04800-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 02/05/2024] [Indexed: 02/28/2024]
Abstract
Micronutrient application has a crucial role in mitigating salinity stress in crop plants. This study was carried out to investigate the effect of zinc (Zn) and boron (B) as foliar applications on fenugreek growth and physiology under salt stress (0 and 120 mM). After 35 days of salt treatments, three levels of zinc (0, 50, and 100 ppm) and two levels of boron (0 and 2 ppm) were applied as a foliar application. Salinity significantly reduced root length (72.7%) and shoot length (33.9%), plant height (36%), leaf area (37%), root fresh weight (48%) and shoot fresh weight (75%), root dry weight (80%) and shoot dry weight (67%), photosynthetic pigments (78%), number of branches (50%), and seeds per pod (56%). Fenugreek's growth and physiology were improved by foliar spray of zinc and boron, which increased the length of the shoot (6%) and root length (2%), fresh root weight (18%), and dry root weight (8%), and chlorophyll a (1%), chlorophyll b (25%), total soluble protein content (3%), shoot calcium (9%) and potassium (5%) contents by significantly decreasing sodium ion (11%) content. Moreover, 100 ppm of Zn and 2 ppm of B enhanced the growth and physiology of fenugreek by reducing the effect of salt stress. Overall, boron and zinc foliar spray is suggested for improvement in fenugreek growth under salinity stress.
Collapse
Affiliation(s)
- Atika Khan
- Department of Botany, Faculty of Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Safura Bibi
- Department of Botany, Faculty of Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Talha Javed
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou-571101, China
| | - Athar Mahmood
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan.
| | - Shahid Mehmood
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Muhammad Mansoor Javaid
- Department of Agronomy, College of Agriculture, University of Sargodha, Sargodha, PK-40100, Pakistan
| | - Baber Ali
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Muhammad Yasin
- Department of Agricultural Sciences, Faculty of Sciences, Allama Iqbal Open University Islamabad, Islamabad, Pakistan
| | - Zain Ul Abidin
- Department of Botany, Faculty of Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Mohammad Khalid Al-Sadoon
- Department of Zoology, College of Science, King Saud University, PO BOX 2455, Riyadh, 11451, Saudi Arabia
| | - Babar Hussain Babar
- Vegetable Section, Ayub Agricultural Research Institute, Faisalabad, Pakistan
| | - Rashid Iqbal
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur Pakistan, Bahawalpur, 63100, Pakistan
| | - Tabarak Malik
- Department of Biomedical Sciences, Institute of Health, Jimma University, Jimma, Ethiopia, 378.
| |
Collapse
|
12
|
Koźmińska A, Kamińska I, Hanus-Fajerska E. Sulfur-Oxidizing Bacteria Alleviate Salt and Cadmium Stress in Halophyte Tripolium pannonicum (Jacq.) Dobrocz. Int J Mol Sci 2024; 25:2455. [PMID: 38473702 DOI: 10.3390/ijms25052455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 03/14/2024] Open
Abstract
The aim of this study was to investigate how introducing halophilic sulfur-oxidizing bacteria (SOB) Halothiobacillus halophilus to the growth substrate affects the physiological and biochemical responses of the halophyte Tripolium pannonicum (also known as sea aster or seashore aster) under salt and cadmium stress conditions. This study assessed the plant's response to these stressors and bacterial inoculation by analyzing various factors including the accumulation of elements such as sodium (Na), chloride (Cl), cadmium (Cd) and sulfur (S); growth parameters; levels of photosynthetic pigments, proline and phenolic compounds; the formation of malondialdehyde (MDA); and the plant's potential to scavenge 2,2-Diphenyl-1-picrylhydrazyl (DPPH). The results revealed that bacterial inoculation was effective in mitigating the deleterious effect of cadmium stress on some growth criteria. For instance, stem length was 2-hold higher, the growth tolerance index was 3-fold higher and there was a 20% increase in the content of photosynthetic pigments compared to non-inoculated plants. Furthermore, the SOB contributed to enhancing cadmium tolerance in Tripolium pannonicum by increasing the availability of sulfur in the plant's leaves, which led to the maintenance of an appropriate, about 2-fold-higher level of phenolic compounds (phenylpropanoids and flavonols), as well as chloride ions. The level of MDA decreased after bacterial application in all experimental variants except when both salt and cadmium stress were present. These findings provide novel insights into how halophytes respond to abiotic stress following inoculation of the growth medium with sulfur-oxidizing bacteria. The data suggest that inoculating the substrate with SOB has a beneficial effect on T. pannonicum's tolerance to cadmium stress.
Collapse
Affiliation(s)
- Aleksandra Koźmińska
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Cracow, Poland
| | - Iwona Kamińska
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Cracow, Poland
| | - Ewa Hanus-Fajerska
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Cracow, Poland
| |
Collapse
|
13
|
Li P, Liu Q, Wei Y, Xing C, Xu Z, Ding F, Liu Y, Lu Q, Hu N, Wang T, Zhu X, Cheng S, Li Z, Zhao Z, Li Y, Han J, Cai X, Zhou Z, Wang K, Zhang B, Liu F, Jin S, Peng R. Transcriptional Landscape of Cotton Roots in Response to Salt Stress at Single-cell Resolution. PLANT COMMUNICATIONS 2023; 5:100740. [PMID: 39492159 PMCID: PMC10873896 DOI: 10.1016/j.xplc.2023.100740] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 03/02/2023] [Accepted: 10/23/2023] [Indexed: 11/05/2024]
Abstract
Increasing soil salinization has led to severe losses of plant yield and quality. Thus, it is urgent to investigate the molecular mechanism of the salt stress response. In this study, we took systematically analyzed cotton root response to salt stress by single-cell transcriptomics technology; 56,281 high-quality cells were totally obtained from 5-days-old lateral root tips of Gossypium arboreum under natural growth and different salt-treatment conditions. Ten cell types with an array of novel marker genes were synthetically identified and confirmed with in situ RNA hybridization, and some specific-type cells of pesudotime analysis also pointed out their potential differentiation trajectory. The prominent changes of cell numbers responding to salt stress were observed on outer epidermal and inner endodermic cells, which were significantly enriched in response to stress, amide biosynthetic process, glutathione metabolism, and glycolysis/gluconeogenesis. Other functional aggregations were concentrated on plant-type primary cell wall biogenesis, defense response, phenylpropanoid biosynthesis and metabolic pathways by analyzing the abundant differentially expressed genes (DEGs) identified from multiple comparisons. Some candidate DEGs related with transcription factors and plant hormones responding to salt stress were also identified, of which the function of Ga03G2153, an annotated auxin-responsive GH3.6, was confirmed by using virus-induced gene silencing (VIGS). The GaGH3.6-silenced plants presented severe stress-susceptive phenotype, and suffered more serious oxidative damages by detecting some physiological and biochemical indexes, indicating that GaGH3.6 might participate in salt tolerance in cotton through regulating oxidation-reduction process. For the first time, a transcriptional atlas of cotton roots under salt stress were characterized at a single-cell resolution, which explored the cellular heterogeneityand differentiation trajectory, providing valuable insights into the molecular mechanism underlying stress tolerance in plants.
Collapse
Affiliation(s)
- Pengtao Li
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, Henan, 455000, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China; Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Anyang 455000, Henan, China
| | - Qiankun Liu
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, Henan, 455000, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China; School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Yangyang Wei
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, Henan, 455000, China
| | - Chaozhu Xing
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China; Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Anyang 455000, Henan, China
| | - Zhongping Xu
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Fang Ding
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Yuling Liu
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, Henan, 455000, China
| | - Quanwei Lu
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, Henan, 455000, China
| | - Nan Hu
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, Henan, 455000, China
| | - Tao Wang
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, Henan, 455000, China
| | - Xiangqian Zhu
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shuang Cheng
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, Henan, 455000, China; School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Zhaoguo Li
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, Henan, 455000, China; School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Zilin Zhao
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, Henan, 455000, China
| | - Yanfang Li
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, Henan, 455000, China
| | - Jiangping Han
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Xiaoyan Cai
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Zhongli Zhou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Kunbo Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Fang Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China; Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Anyang 455000, Henan, China.
| | - Shuangxia Jin
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China.
| | - Renhai Peng
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, Henan, 455000, China; Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Anyang 455000, Henan, China; School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| |
Collapse
|
14
|
Raj Y, Kumar A, Kumari S, Kumar R, Kumar R. Comparative Genomics and Physiological Investigations Supported Multifaceted Plant Growth-Promoting Activities in Two Hypericum perforatum L.-Associated Plant Growth-Promoting Rhizobacteria for Microbe-Assisted Cultivation. Microbiol Spectr 2023; 11:e0060723. [PMID: 37199656 PMCID: PMC10269543 DOI: 10.1128/spectrum.00607-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/01/2023] [Indexed: 05/19/2023] Open
Abstract
Plants are no longer considered standalone entities; instead, they harbor a diverse community of plant growth-promoting rhizobacteria (PGPR) that aid them in nutrient acquisition and can also deliver resilience. Host plants recognize PGPR in a strain-specific manner; therefore, introducing untargeted PGPR might produce unsatisfactory crop yields. Consequently, to develop a microbe-assisted Hypericum perforatum L. cultivation technique, 31 rhizobacteria were isolated from the plant's high-altitude Indian western Himalayan natural habitat and in vitro characterized for multiple plant growth-promoting attributes. Among 31 rhizobacterial isolates, 26 produced 0.59 to 85.29 μg mL-1 indole-3-acetic acid and solubilized 15.77 to 71.43 μg mL-1 inorganic phosphate; 21 produced 63.12 to 99.92% siderophore units, and 15 exhibited 103.60 to 1,296.42 nmol α-ketobutyrate mg-1 protein h-1 1-aminocyclopropane-1-carboxylate deaminase (ACCD) activity. Based on superior plant growth-promoting attributes, eight statistically significant multifarious PGPR were further evaluated for an in planta plant growth-promotion assay under poly greenhouse conditions. Plants treated with Kosakonia cowanii HypNH10 and Rahnella variigena HypNH18 showed, by significant amounts, the highest photosynthetic pigments and performance, eventually leading to the highest biomass accumulation. Comparative genome analysis and comprehensive genome mining unraveled their unique genetic features, such as adaptation to the host plant's immune system and specialized metabolites. Moreover, the strains harbor several functional genes regulating direct and indirect plant growth-promotion mechanisms through nutrient acquisition, phytohormone production, and stress alleviation. In essence, the current study endorsed strains HypNH10 and HypNH18 as cogent candidates for microbe-assisted H. perforatum cultivation by highlighting their exclusive genomic signatures, which suggest their unison, compatibility, and multifaceted beneficial interactions with their host and support the excellent plant growth-promotion performance observed in the greenhouse trial. IMPORTANCE Hypericum perforatum L. (St. John's wort) herbal preparations are among the top-selling products to treat depression worldwide. A significant portion of the overall Hypericum supply is sourced through wild collection, prompting a rapid decline in their natural stands. Crop cultivation seems lucrative, although cultivable land and its existing rhizomicrobiome are well suited for traditional crops, and its sudden introduction can create soil microbiome dysbiosis. Also, the conventional plant domestication procedures with increased reliance on agrochemicals can reduce the diversity of the associated rhizomicrobiome and plants' ability to interact with plant growth-promoting microorganisms, leading to unsatisfactory crop production alongside harmful environmental effects. Cultivating H. perforatum with crop-associated beneficial rhizobacteria can reconcile such concerns. Based on a combinatorial in vitro, in vivo plant growth-promotion assay and in silico prediction of plant growth-promoting traits, here we recommend two H. perforatum-associated PGPR, Kosakonia cowanii HypNH10 and Rahnella variigena HypNH18, to extrapolate as functional bioinoculants for H. perforatum sustainable cultivation.
Collapse
Affiliation(s)
- Yog Raj
- Agrotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Anil Kumar
- High Altitude Microbiology Laboratory, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sareeka Kumari
- High Altitude Microbiology Laboratory, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Rakshak Kumar
- High Altitude Microbiology Laboratory, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Rakesh Kumar
- Agrotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
15
|
Giannelli G, Potestio S, Visioli G. The Contribution of PGPR in Salt Stress Tolerance in Crops: Unravelling the Molecular Mechanisms of Cross-Talk between Plant and Bacteria. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112197. [PMID: 37299176 DOI: 10.3390/plants12112197] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023]
Abstract
Soil salinity is a major abiotic stress in global agricultural productivity with an estimated 50% of arable land predicted to become salinized by 2050. Since most domesticated crops are glycophytes, they cannot be cultivated on salt soils. The use of beneficial microorganisms inhabiting the rhizosphere (PGPR) is a promising tool to alleviate salt stress in various crops and represents a strategy to increase agricultural productivity in salt soils. Increasing evidence underlines that PGPR affect plant physiological, biochemical, and molecular responses to salt stress. The mechanisms behind these phenomena include osmotic adjustment, modulation of the plant antioxidant system, ion homeostasis, modulation of the phytohormonal balance, increase in nutrient uptake, and the formation of biofilms. This review focuses on the recent literature regarding the molecular mechanisms that PGPR use to improve plant growth under salinity. In addition, very recent -OMICs approaches were reported, dissecting the role of PGPR in modulating plant genomes and epigenomes, opening up the possibility of combining the high genetic variations of plants with the action of PGPR for the selection of useful plant traits to cope with salt stress conditions.
Collapse
Affiliation(s)
- Gianluigi Giannelli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Silvia Potestio
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Giovanna Visioli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| |
Collapse
|
16
|
Khalifa A, Alsowayeh N. Whole-Genome Sequence Insight into the Plant-Growth-Promoting Bacterium Priestia filamentosa Strain AZC66 Obtained from Zygophyllum coccineum Rhizosphere. PLANTS (BASEL, SWITZERLAND) 2023; 12:1944. [PMID: 37653860 PMCID: PMC10222010 DOI: 10.3390/plants12101944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/29/2023] [Accepted: 05/03/2023] [Indexed: 09/02/2023]
Abstract
This study aimed to isolate, screen the plant-growth-enhancing features, and explore the whole-genome sequence of AZC66 isolated from the rhizosphere of Zygophyllum coccineum and determine its biostimulating effects on the growth of cowpea under greenhouse conditions. Salkowski reagent was used to measure AZC66's indole acetic acid production. AZC66's inorganic phosphate solubility on Pikovskaya agar was evaluated using tricalcium phosphate. The results indicated the ability of AZC66 to fix nitrogen, produce IAA (66.33 ± 0.44 μg mL-1), solubilize inorganic phosphate, and exhibit the activity of ACC deaminase (278.40 ± 21 mol -ketobutyrate mg-1 h-1). Cowpea's root and shoot dry weights were also significantly increased after in vitro inoculation with AZC66. The identity of AZC66 was confirmed as Priestia filamentosa, and 4840 genes were predicted in its genome. The gene sequences were compared against the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, and the results showed that the top three pathways wherein the maximum number of genes are involved are signaling and cellular processes, genetic information processing, and carbohydrate metabolism. The genome sequencing of the strain AZC66 revealed a number of genes implicated in plant biostimulation activities such as nitrogen fixation (nifU), phytohormone synthesis (trpAB genes), phosphate solubilization (PhbCEF, pstABCS, and phoU), and siderophore formation (FbpA, feoAB, and fetB). The AZC66 genome contained numerous genes involved in nitrogen metabolism, nitrogen regulation, and the nitrate reduction pathway. The phenazine biosynthetic gene in AZC66 demonstrated biocontrol and soil survival properties. The trehalose synthesis genes in AZC66 may help plants resist osmotic and salt stress. The discovery of glycine betaine, cold shock, and heat shock protein genes demonstrated that AZC66 could withstand harsh conditions. AZC66 might be used to create robust, sustainable biological fertilizers for future agricultural use in Saudi Arabia. Furthermore, the predicted adaptable metabolic pathways might serve as the basis for potential biotechnological applications in agriculture and industry.
Collapse
Affiliation(s)
- Ashraf Khalifa
- Biological Sciences Department, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Noorah Alsowayeh
- Department of Biology, College of Education (Majmaah), Majmaah University, Al-Majmaah 11952, Saudi Arabia;
| |
Collapse
|
17
|
Vaghela N, Gohel S. Medicinal plant-associated rhizobacteria enhance the production of pharmaceutically important bioactive compounds under abiotic stress conditions. J Basic Microbiol 2023; 63:308-325. [PMID: 36336634 DOI: 10.1002/jobm.202200361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/15/2022] [Accepted: 10/22/2022] [Indexed: 11/09/2022]
Abstract
Interest in cultivating valuable medicinal plants to collect bioactive components has risen extensively over the world to meet the demands of health care systems, pharmaceuticals, and food businesses. Farmers commonly use chemical fertilizers to attain maximal biomass and yield, which have negative effects on the growth, development, and bioactive constituents of such medicinally important plants. Because of its low cost, environmentally friendly behavior, and nondestructive impact on soil fertility, plant health, and human health, the use of beneficial rhizobial microbiota is an alternative strategy for increasing the production of useful medicinal plants under both standard and stressed conditions. Plant growth-promoting rhizobacteria (PGPR) associated with medicinal plants belong to the genera Azotobacter, Acinetobacter, Bacillus, Brevibacterium, Burkholderia, Exiguobacterium, Pseudomonas, Pantoea, Mycobacterium, Methylobacterium, and Serratia. These microbes enhance plant growth parameters by producing secondary metabolites, including enzymes and antibiotics, which help in nutrient uptake, enhance soil fertility, improve plant growth, and protect against plant pathogens. The role of PGPR in the production of biomass and their effect on the quality of bioactive compounds (phytochemicals) is described in this review. Additionally, the mitigation of environmental stresses including drought stress, saline stress, alkaline stress, and flooding stress to herbal plants is illustrated.
Collapse
Affiliation(s)
- Nishtha Vaghela
- Department of Biosciences, Saurashtra University, Rajkot, Gujarat, India
| | - Sangeeta Gohel
- Department of Biosciences, Saurashtra University, Rajkot, Gujarat, India
| |
Collapse
|
18
|
Shukla A, Gupta A, Srivastava S. Bacterial consortium (Priestia endophytica NDAS01F, Bacillus licheniformis NDSA24R, and Priestia flexa NDAS28R) and thiourea mediated amelioration of arsenic stress and growth improvement of Oryza sativa L. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 195:14-24. [PMID: 36584629 DOI: 10.1016/j.plaphy.2022.12.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
The present study analyzed the effects of individual microbes and their consortium (Priestia endophytica NDAS01F, Bacillus licheniformis NDSA24R, and P. flexa NDAS28R) either alone or in interaction with thiourea (TU) on growth and responses of rice plants subjected to As stress (50 mg kg-1 in soil) in a pot experiment. The bacteria used in the experiment were isolated from As contaminated fields of Nadia, West Bengal and showed significant As removal potential in in vitro experiment. The results revealed significant growth improvement, biomass accumulation, and decline in malondialdehyde levels in rice plants in bacterial and TU treatments as compared to control As treatment. The best results were observed in a bacterial consortium (B1-2-3), which induced a profound increase of 65%, 43%, 127% and 83% in root length, shoot length, leaf width and fresh weight, respectively. Sulfur metabolism and cell wall synthesis were stimulated upon bacterial and TU amendment in plants. The maximum reduction in As concentration was observed in B2 in roots (-55%) and in B1-2-3 in shoot (-83%). The combined treatment of B1-2-3 + TU proved to be less effective as compared to that of B1-2-3 in terms of As reduction and growth improvement. Hence, the usage of bacterial consortium obtained in the present work is a sustainable approach, which might find relevance in field conditions to achieve As reduction in rice grains and to attain higher growth of plants without the need for additional TU supplementation.
Collapse
Affiliation(s)
- Anurakti Shukla
- Plant Stress Biology Laboratory, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005, U.P, India
| | - Ankita Gupta
- Plant Stress Biology Laboratory, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005, U.P, India
| | - Sudhakar Srivastava
- Plant Stress Biology Laboratory, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005, U.P, India.
| |
Collapse
|
19
|
Bhat MA, Mishra AK, Jan S, Bhat MA, Kamal MA, Rahman S, Shah AA, Jan AT. Plant Growth Promoting Rhizobacteria in Plant Health: A Perspective Study of the Underground Interaction. PLANTS (BASEL, SWITZERLAND) 2023; 12:629. [PMID: 36771713 PMCID: PMC9919780 DOI: 10.3390/plants12030629] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 01/22/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Plants are affected by various environmental stresses such as high or low temperatures, drought, and high salt levels, which can disrupt their normal cellular functioning and impact their growth and productivity. These stressors offer a major constraint to the morphological, physiological, and biochemical parameters; thereby attributing serious complications in the growth of crops such as rice, wheat, and corn. Considering the strategic and intricate association of soil microbiota, known as plant growth-promoting rhizobacteria (PGPR), with the plant roots, PGPR helps plants to adapt and survive under changing environmental conditions and become more resilient to stress. They aid in nutrient acquisition and regulation of water content in the soil and also play a role in regulating osmotic balance and ion homeostasis. Boosting key physiological processes, they contribute significantly to the alleviation of stress and promoting the growth and development of plants. This review examines the use of PGPR in increasing plant tolerance to different stresses, focusing on their impact on water uptake, nutrient acquisition, ion homeostasis, and osmotic balance, as well as their effects on crop yield and food security.
Collapse
Affiliation(s)
- Mudasir Ahmad Bhat
- Department of Biotechnology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, India
| | - Awdhesh Kumar Mishra
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Saima Jan
- Gene Expression Lab., School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, India
| | - Mujtaba Aamir Bhat
- Gene Expression Lab., School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, India
| | - Mohammad Azhar Kamal
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Safikur Rahman
- Department of Botany, Munshi Singh College, BR Ambedkar Bihar University, Muzaffarpur 845401, India
| | - Ali Asghar Shah
- Department of Biotechnology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, India
| | - Arif Tasleem Jan
- Gene Expression Lab., School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, India
| |
Collapse
|