1
|
Nishii N, Baba K, Morooka K, Shirae H, Mizuno T, Masuda T, Ueoka A, Asada S, Miyamoto M, Ejiri K, Kawada S, Nakagawa K, Nakamura K, Morita H, Yuasa S. Artificial intelligence to detect noise events in remote monitoring data. J Arrhythm 2024; 40:560-577. [PMID: 38939795 PMCID: PMC11199815 DOI: 10.1002/joa3.13037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/21/2024] [Accepted: 03/30/2024] [Indexed: 06/29/2024] Open
Abstract
Background Remote monitoring (RM) of cardiac implantable electrical devices (CIEDs) can detect various events early. However, the diagnostic ability of CIEDs has not been sufficient, especially for lead failure. The first notification of lead failure was almost noise events, which were detected as arrhythmia by the CIED. A human must analyze the intracardiac electrogram to accurately detect lead failure. However, the number of arrhythmic events is too large for human analysis. Artificial intelligence (AI) seems to be helpful in the early and accurate detection of lead failure before human analysis. Objective To test whether a neural network can be trained to precisely identify noise events in the intracardiac electrogram of RM data. Methods We analyzed 21 918 RM data consisting of 12 925 and 1884 Medtronic and Boston Scientific data, respectively. Among these, 153 and 52 Medtronic and Boston Scientific data, respectively, were diagnosed as noise events by human analysis. In Medtronic, 306 events, including 153 noise events and randomly selected 153 out of 12 692 nonnoise events, were analyzed in a five-fold cross-validation with a convolutional neural network. The Boston Scientific data were analyzed similarly. Results The precision rate, recall rate, F1 score, accuracy rate, and the area under the curve were 85.8 ± 4.0%, 91.6 ± 6.7%, 88.4 ± 2.0%, 88.0 ± 2.0%, and 0.958 ± 0.021 in Medtronic and 88.4 ± 12.8%, 81.0 ± 9.3%, 84.1 ± 8.3%, 84.2 ± 8.3% and 0.928 ± 0.041 in Boston Scientific. Five-fold cross-validation with a weighted loss function could increase the recall rate. Conclusions AI can accurately detect noise events. AI analysis may be helpful for detecting lead failure events early and accurately.
Collapse
Affiliation(s)
- Nobuhiro Nishii
- Department of Cardiovascular TherapeuticsOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
| | - Kensuke Baba
- Cyber‐Physical Engineering Informatics Research CoreOkayama UniversityOkayamaJapan
| | - Ken'ichi Morooka
- Division of Industrial Innovation Sciences, Graduate School of Natural Science and TechnologyOkayama UniversityOkayamaJapan
| | - Haruto Shirae
- Division of Industrial Innovation Sciences, Graduate School of Natural Science and TechnologyOkayama UniversityOkayamaJapan
| | - Tomofumi Mizuno
- Department of Cardiovascular MedicineOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
| | - Takuro Masuda
- Department of Cardiovascular MedicineOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
| | - Akira Ueoka
- Department of Cardiovascular MedicineOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
| | - Saori Asada
- Department of Cardiovascular MedicineOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
| | - Masakazu Miyamoto
- Department of Cardiovascular MedicineOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
| | - Kentaro Ejiri
- Department of Cardiovascular MedicineOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
| | - Satoshi Kawada
- Department of Cardiovascular MedicineOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
| | - Koji Nakagawa
- Department of Cardiovascular MedicineOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
| | - Kazufumi Nakamura
- Department of Cardiovascular MedicineOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
| | - Hiroshi Morita
- Department of Cardiovascular TherapeuticsOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
| | - Shinsuke Yuasa
- Department of Cardiovascular MedicineOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
| |
Collapse
|
2
|
Ferrick AM, Raj SR, Deneke T, Kojodjojo P, Lopez-Cabanillas N, Abe H, Boveda S, Chew DS, Choi JI, Dagres N, Dalal AS, Dechert BE, Frazier-Mills CG, Gilbert O, Han JK, Hewit S, Kneeland C, DeEllen Mirza S, Mittal S, Ricci RP, Runte M, Sinclair S, Alkmim-Teixeira R, Vandenberk B, Varma N. 2023 HRS/EHRA/APHRS/LAHRS expert consensus statement on practical management of the remote device clinic. Heart Rhythm 2023; 20:e92-e144. [PMID: 37211145 DOI: 10.1016/j.hrthm.2023.03.1525] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 05/23/2023]
Abstract
Remote monitoring is beneficial for the management of patients with cardiovascular implantable electronic devices by impacting morbidity and mortality. With increasing numbers of patients using remote monitoring, keeping up with higher volume of remote monitoring transmissions creates challenges for device clinic staff. This international multidisciplinary document is intended to guide cardiac electrophysiologists, allied professionals, and hospital administrators in managing remote monitoring clinics. This includes guidance for remote monitoring clinic staffing, appropriate clinic workflows, patient education, and alert management. This expert consensus statement also addresses other topics such as communication of transmission results, use of third-party resources, manufacturer responsibilities, and programming concerns. The goal is to provide evidence-based recommendations impacting all aspects of remote monitoring services. Gaps in current knowledge and guidance for future research directions are also identified.
Collapse
Affiliation(s)
| | | | | | | | | | - Haruhiko Abe
- University of Occupational and Environmental Health Hospital, Kitakyushu, Japan
| | | | | | | | - Nikolaos Dagres
- Heart Center Leipzig at the University of Leipzig, Leipzig, Germany
| | - Aarti S Dalal
- Vanderbilt University Medical Center, Nashville, Tennessee
| | | | | | - Olivia Gilbert
- Wake Forest Baptist Medical Center, Winston-Salem, North Carolina
| | - Janet K Han
- VA Greater Los Angeles Healthcare System, Los Angeles, California
| | | | | | | | | | | | - Mary Runte
- University of Lethbridge, Lethbridge, Alberta, Canada
| | | | | | - Bert Vandenberk
- University of Calgary, Calgary, Alberta, Canada; Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | | |
Collapse
|
3
|
Ferrick AM, Raj SR, Deneke T, Kojodjojo P, Lopez‐Cabanillas N, Abe H, Boveda S, Chew DS, Choi J, Dagres N, Dalal AS, Dechert BE, Frazier‐Mills CG, Gilbert O, Han JK, Hewit S, Kneeland C, Mirza SD, Mittal S, Ricci RP, Runte M, Sinclair S, Alkmim‐Teixeira R, Vandenberk B, Varma N, Davenport E, Freedenberg V, Glotzer TV, Huang J, Ikeda T, Kramer DB, Lin D, Rojel‐Martínez U, Stühlinger M, Varosy PD. 2023 HRS/EHRA/APHRS/LAHRS Expert Consensus Statement on Practical Management of the Remote Device Clinic. J Arrhythm 2023; 39:250-302. [PMID: 37324757 PMCID: PMC10264760 DOI: 10.1002/joa3.12851] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023] Open
Abstract
Remote monitoring is beneficial for the management of patients with cardiovascular implantable electronic devices by impacting morbidity and mortality. With increasing numbers of patients using remote monitoring, keeping up with higher volume of remote monitoring transmissions creates challenges for device clinic staff. This international multidisciplinary document is intended to guide cardiac electrophysiologists, allied professionals, and hospital administrators in managing remote monitoring clinics. This includes guidance for remote monitoring clinic staffing, appropriate clinic workflows, patient education, and alert management. This expert consensus statement also addresses other topics such as communication of transmission results, use of third-party resources, manufacturer responsibilities, and programming concerns. The goal is to provide evidence-based recommendations impacting all aspects of remote monitoring services. Gaps in current knowledge and guidance for future research directions are also identified.
Collapse
Affiliation(s)
| | | | | | | | | | - Haruhiko Abe
- University of Occupational and Environmental Health HospitalJapan
| | | | | | | | - Nikolaos Dagres
- Heart Center Leipzig at the University of LeipzigLeipzigGermany
| | | | | | | | | | - Janet K. Han
- VA Greater Los Angeles Healthcare SystemLos AngelesCalifornia
| | | | | | | | | | | | - Mary Runte
- University of LethbridgeLethbridgeAlbertaCanada
| | | | | | - Bert Vandenberk
- University of CalgaryCalgaryAlbertaCanada
- Department of Cardiovascular SciencesLeuvenBelgium
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Ferrick AM, Raj SR, Deneke T, Kojodjojo P, Lopez-Cabanillas N, Abe H, Boveda S, Chew DS, Choi JI, Dagres N, Dalal AS, Dechert BE, Frazier-Mills CG, Gilbert O, Han JK, Hewit S, Kneeland C, Mirza SD, Mittal S, Ricci RP, Runte M, Sinclair S, Alkmim-Teixeira R, Vandenberk B, Varma N, Davenport E, Freedenberg V, Glotzer TV, Huang JL, Ikeda T, Kramer DB, Lin D, Rojel-Martínez U, Stühlinger M, Varosy PD. 2023 HRS/EHRA/APHRS/LAHRS Expert Consensus Statement on Practical Management of the Remote Device Clinic. Europace 2023; 25:euad123. [PMID: 37208301 PMCID: PMC10199172 DOI: 10.1093/europace/euad123] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023] Open
Abstract
Remote monitoring is beneficial for the management of patients with cardiovascular implantable electronic devices by impacting morbidity and mortality. With increasing numbers of patients using remote monitoring, keeping up with higher volume of remote monitoring transmissions creates challenges for device clinic staff. This international multidisciplinary document is intended to guide cardiac electrophysiologists, allied professionals, and hospital administrators in managing remote monitoring clinics. This includes guidance for remote monitoring clinic staffing, appropriate clinic workflows, patient education, and alert management. This expert consensus statement also addresses other topics such as communication of transmission results, use of third-party resources, manufacturer responsibilities, and programming concerns. The goal is to provide evidence-based recommendations impacting all aspects of remote monitoring services. Gaps in current knowledge and guidance for future research directions are also identified.
Collapse
Affiliation(s)
| | | | | | | | | | - Haruhiko Abe
- University of Occupational and Environmental Health Hospital, Kitakyushu, Japan
| | | | | | | | - Nikolaos Dagres
- Heart Center Leipzig at the University of Leipzig, Leipzig, Germany
| | - Aarti S Dalal
- Vanderbilt University Medical Center, Nashville, Tennessee
| | | | | | - Olivia Gilbert
- Wake Forest Baptist Medical Center, Winston-Salem, North Carolina
| | - Janet K Han
- VA Greater Los Angeles Healthcare System, Los Angeles, California
| | | | | | | | | | | | - Mary Runte
- University of Lethbridge, Lethbridge, Alberta, Canada
| | | | | | - Bert Vandenberk
- University of Calgary, Calgary, Alberta, Canada
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Lappegård KT, Moe F. Remote Monitoring of CIEDs-For Both Safety, Economy and Convenience? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 19:ijerph19010312. [PMID: 35010572 PMCID: PMC8751026 DOI: 10.3390/ijerph19010312] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/17/2021] [Accepted: 12/25/2021] [Indexed: 05/17/2023]
Abstract
Cardiac implantable electronic devices such as pacemakers and defibrillators are increasingly monitored by systems transmitting information directly from the patient to the hospital. This may increase safety and patient satisfaction and also under certain circumstances represent an economic advantage. The review summarizes some of the recent research in the field of remote monitoring of cardiac devices.
Collapse
Affiliation(s)
- Knut Tore Lappegård
- Department of Medicine, Nordland Hospital, N-8092 Bodo, Norway;
- Department of Clinical Medicine, UiT The Arctic University of Norway, N-9037 Tromso, Norway
- Correspondence:
| | - Frode Moe
- Department of Medicine, Nordland Hospital, N-8092 Bodo, Norway;
| |
Collapse
|
6
|
Shah MJ, Silka MJ, Avari Silva JN, Balaji S, Beach CM, Benjamin MN, Berul CI, Cannon B, Cecchin F, Cohen MI, Dalal AS, Dechert BE, Foster A, Gebauer R, Gonzalez Corcia MC, Kannankeril PJ, Karpawich PP, Kim JJ, Krishna MR, Kubuš P, LaPage MJ, Mah DY, Malloy-Walton L, Miyazaki A, Motonaga KS, Niu MC, Olen M, Paul T, Rosenthal E, Saarel EV, Silvetti MS, Stephenson EA, Tan RB, Triedman J, Von Bergen NH, Wackel PL. 2021 PACES expert consensus statement on the indications and management of cardiovascular implantable electronic devices in pediatric patients. Indian Pacing Electrophysiol J 2021; 21:367-393. [PMID: 34333141 PMCID: PMC8577100 DOI: 10.1016/j.ipej.2021.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
In view of the increasing complexity of both cardiovascular implantable electronic devices (CIEDs) and patients in the current era, practice guidelines, by necessity, have become increasingly specific. This document is an expert consensus statement that has been developed to update and further delineate indications and management of CIEDs in pediatric patients, defined as ≤21 years of age, and is intended to focus primarily on the indications for CIEDs in the setting of specific disease categories. The document also highlights variations between previously published adult and pediatric CIED recommendations and provides rationale for underlying important differences. The document addresses some of the deterrents to CIED access in low- and middle-income countries and strategies to circumvent them. The document sections were divided up and drafted by the writing committee members according to their expertise. The recommendations represent the consensus opinion of the entire writing committee, graded by class of recommendation and level of evidence. Several questions addressed in this document either do not lend themselves to clinical trials or are rare disease entities, and in these instances recommendations are based on consensus expert opinion. Furthermore, specific recommendations, even when supported by substantial data, do not replace the need for clinical judgment and patient-specific decision-making. The recommendations were opened for public comment to Pediatric and Congenital Electrophysiology Society (PACES) members and underwent external review by the scientific and clinical document committee of the Heart Rhythm Society (HRS), the science advisory and coordinating committee of the American Heart Association (AHA), the American College of Cardiology (ACC), and the Association for European Paediatric and Congenital Cardiology (AEPC). The document received endorsement by all the collaborators and the Asia Pacific Heart Rhythm Society (APHRS), the Indian Heart Rhythm Society (IHRS), and the Latin American Heart Rhythm Society (LAHRS). This document is expected to provide support for clinicians and patients to allow for appropriate CIED use, appropriate CIED management, and appropriate CIED follow-up in pediatric patients.
Collapse
Affiliation(s)
- Maully J Shah
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | - Michael J Silka
- University of Southern California Keck School of Medicine, Los Angeles, CA, USA.
| | | | | | | | - Monica N Benjamin
- Hospital de Pediatría Juan P. Garrahan, Hospital El Cruce, Hospital Británico de Buenos Aires, Instituto Cardiovascular ICBA, Buenos Aires, Argentina
| | | | | | - Frank Cecchin
- New York University Grossman School of Medicine, New York, NY, USA
| | | | - Aarti S Dalal
- Washington University in St. Louis, St. Louis, Missouri, USA
| | | | - Anne Foster
- Advocate Children's Heart Institute, Chicago, IL, USA
| | - Roman Gebauer
- Heart Centre Leipzig, University of Leipzig, Leipzig, Germany
| | | | | | - Peter P Karpawich
- University Pediatricians, Children's Hospital of Michigan, Detroit, MI, USA
| | | | | | - Peter Kubuš
- Children's Heart Center, Charles University in Prague and Motol University Hospital, Prague, Czech Republic
| | | | | | | | - Aya Miyazaki
- Shizuoka General Hospital and Mt. Fuji Shizuoka Children's Hospital, Shizuoka, Japan
| | | | - Mary C Niu
- University of Utah Health Sciences Center, Salt Lake City, UT, USA
| | | | - Thomas Paul
- Georg-August-University Medical Center, Göttingen, Germany
| | - Eric Rosenthal
- Evelina London Children's Hospital and St Thomas' Hospital, Guy's & St Thomas' NHS Foundation Trust, London, United Kingdom
| | | | | | | | - Reina B Tan
- New York University Langone Health, New York, NY, USA
| | | | | | | |
Collapse
|
7
|
Shah MJ, Silka MJ, Silva JNA, Balaji S, Beach CM, Benjamin MN, Berul CI, Cannon B, Cecchin F, Cohen MI, Dalal AS, Dechert BE, Foster A, Gebauer R, Gonzalez Corcia MC, Kannankeril PJ, Karpawich PP, Kim JJ, Krishna MR, Kubuš P, LaPage MJ, Mah DY, Malloy-Walton L, Miyazaki A, Motonaga KS, Niu MC, Olen M, Paul T, Rosenthal E, Saarel EV, Silvetti MS, Stephenson EA, Tan RB, Triedman J, Bergen NHV, Wackel PL. 2021 PACES Expert Consensus Statement on the Indications and Management of Cardiovascular Implantable Electronic Devices in Pediatric Patients: Developed in collaboration with and endorsed by the Heart Rhythm Society (HRS), the American College of Cardiology (ACC), the American Heart Association (AHA), and the Association for European Paediatric and Congenital Cardiology (AEPC) Endorsed by the Asia Pacific Heart Rhythm Society (APHRS), the Indian Heart Rhythm Society (IHRS), and the Latin American Heart Rhythm Society (LAHRS). JACC Clin Electrophysiol 2021; 7:1437-1472. [PMID: 34794667 DOI: 10.1016/j.jacep.2021.07.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In view of the increasing complexity of both cardiovascular implantable electronic devices (CIEDs) and patients in the current era, practice guidelines, by necessity, have become increasingly specific. This document is an expert consensus statement that has been developed to update and further delineate indications and management of CIEDs in pediatric patients, defined as ≤21 years of age, and is intended to focus primarily on the indications for CIEDs in the setting of specific disease categories. The document also highlights variations between previously published adult and pediatric CIED recommendations and provides rationale for underlying important differences. The document addresses some of the deterrents to CIED access in low- and middle-income countries and strategies to circumvent them. The document sections were divided up and drafted by the writing committee members according to their expertise. The recommendations represent the consensus opinion of the entire writing committee, graded by class of recommendation and level of evidence. Several questions addressed in this document either do not lend themselves to clinical trials or are rare disease entities, and in these instances recommendations are based on consensus expert opinion. Furthermore, specific recommendations, even when supported by substantial data, do not replace the need for clinical judgment and patient-specific decision-making. The recommendations were opened for public comment to Pediatric and Congenital Electrophysiology Society (PACES) members and underwent external review by the scientific and clinical document committee of the Heart Rhythm Society (HRS), the science advisory and coordinating committee of the American Heart Association (AHA), the American College of Cardiology (ACC), and the Association for European Paediatric and Congenital Cardiology (AEPC). The document received endorsement by all the collaborators and the Asia Pacific Heart Rhythm Society (APHRS), the Indian Heart Rhythm Society (IHRS), and the Latin American Heart Rhythm Society (LAHRS). This document is expected to provide support for clinicians and patients to allow for appropriate CIED use, appropriate CIED management, and appropriate CIED follow-up in pediatric patients.
Collapse
Affiliation(s)
- Maully J Shah
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA.
| | - Michael J Silka
- University of Southern California Keck School of Medicine, Los Angeles, California, USA.
| | | | | | | | - Monica N Benjamin
- Hospital de Pediatría Juan P. Garrahan, Hospital El Cruce, Hospital Británico de Buenos Aires, Instituto Cardiovascular ICBA, Buenos Aires, Argentina
| | | | | | - Frank Cecchin
- New York University Grossman School of Medicine, New York, New York, USA
| | | | - Aarti S Dalal
- Washington University in St. Louis, St. Louis, Missouri, USA
| | | | - Anne Foster
- Advocate Children's Heart Institute, Chicago, Illinois, USA
| | - Roman Gebauer
- Heart Centre Leipzig, University of Leipzig, Leipzig, Germany
| | | | | | - Peter P Karpawich
- University Pediatricians, Children's Hospital of Michigan, Detroit, Michigan, USA
| | | | | | - Peter Kubuš
- Children's Heart Center, Charles University in Prague and Motol University Hospital, Prague, Czech Republic
| | | | | | | | - Aya Miyazaki
- Shizuoka General Hospital and Mt. Fuji Shizuoka Children's Hospital, Shizuoka, Japan
| | | | - Mary C Niu
- University of Utah Health Sciences Center, Salt Lake City, Utah, USA
| | - Melissa Olen
- Nicklaus Children's Hospital, Miami, Florida, USA
| | - Thomas Paul
- Georg-August-University Medical Center, Göttingen, Germany
| | - Eric Rosenthal
- Evelina London Children's Hospital and St Thomas' Hospital, Guy's & St Thomas' NHS Foundation Trust, London, United Kingdom
| | | | | | | | - Reina B Tan
- New York University Langone Health, New York, New York, USA
| | | | - Nicholas H Von Bergen
- University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | | |
Collapse
|
8
|
2021 PACES expert consensus statement on the indications and management of cardiovascular implantable electronic devices in pediatric patients. Cardiol Young 2021; 31:1738-1769. [PMID: 34338183 DOI: 10.1017/s1047951121003413] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In view of the increasing complexity of both cardiovascular implantable electronic devices (CIEDs) and patients in the current era, practice guidelines, by necessity, have become increasingly specific. This document is an expert consensus statement that has been developed to update and further delineate indications and management of CIEDs in pediatric patients, defined as ≤21 years of age, and is intended to focus primarily on the indications for CIEDs in the setting of specific disease categories. The document also highlights variations between previously published adult and pediatric CIED recommendations and provides rationale for underlying important differences. The document addresses some of the deterrents to CIED access in low- and middle-income countries and strategies to circumvent them. The document sections were divided up and drafted by the writing committee members according to their expertise. The recommendations represent the consensus opinion of the entire writing committee, graded by class of recommendation and level of evidence. Several questions addressed in this document either do not lend themselves to clinical trials or are rare disease entities, and in these instances recommendations are based on consensus expert opinion. Furthermore, specific recommendations, even when supported by substantial data, do not replace the need for clinical judgment and patient-specific decision-making. The recommendations were opened for public comment to Pediatric and Congenital Electrophysiology Society (PACES) members and underwent external review by the scientific and clinical document committee of the Heart Rhythm Society (HRS), the science advisory and coordinating committee of the American Heart Association (AHA), the American College of Cardiology (ACC), and the Association for European Paediatric and Congenital Cardiology (AEPC). The document received endorsement by all the collaborators and the Asia Pacific Heart Rhythm Society (APHRS), the Indian Heart Rhythm Society (IHRS), and the Latin American Heart Rhythm Society (LAHRS). This document is expected to provide support for clinicians and patients to allow for appropriate CIED use, appropriate CIED management, and appropriate CIED follow-up in pediatric patients.
Collapse
|
9
|
Shah MJ, Silka MJ, Silva JA, Balaji S, Beach C, Benjamin M, Berul C, Cannon B, Cecchin F, Cohen M, Dalal A, Dechert B, Foster A, Gebauer R, Gonzalez Corcia MC, Kannankeril P, Karpawich P, Kim J, Krishna MR, Kubuš P, Malloy-Walton L, LaPage M, Mah D, Miyazaki A, Motonaga K, Niu M, Olen M, Paul T, Rosenthal E, Saarel E, Silvetti MS, Stephenson E, Tan R, Triedman J, Von Bergen N, Wackel P. 2021 PACES Expert Consensus Statement on the Indications and Management of Cardiovascular Implantable Electronic Devices in Pediatric Patients. Heart Rhythm 2021; 18:1888-1924. [PMID: 34363988 DOI: 10.1016/j.hrthm.2021.07.038] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 07/15/2021] [Indexed: 01/10/2023]
Abstract
In view of the increasing complexity of both cardiovascular implantable electronic devices (CIEDs) and patients in the current era, practice guidelines, by necessity, have become increasingly specific. This document is an expert consensus statement that has been developed to update and further delineate indications and management of CIEDs in pediatric patients, defined as ≤21 years of age, and is intended to focus primarily on the indications for CIEDs in the setting of specific disease categories. The document also highlights variations between previously published adult and pediatric CIED recommendations and provides rationale for underlying important differences. The document addresses some of the deterrents to CIED access in low- and middle-income countries and strategies to circumvent them. The document sections were divided up and drafted by the writing committee members according to their expertise. The recommendations represent the consensus opinion of the entire writing committee, graded by class of recommendation and level of evidence. Several questions addressed in this document either do not lend themselves to clinical trials or are rare disease entities, and in these instances recommendations are based on consenus expert opinion. Furthermore, specific recommendations, even when supported by substantial data, do not replace the need for clinical judgment and patient-specific decision-making. The recommendations were opened for public comment to Pediatric and Congenital Electrophysiology Society (PACES) members and underwent external review by the scientific and clinical document committee of the Heart Rhythm Society (HRS), the science advisory and coordinating committee of the American Heart Association (AHA), the American College of Cardiology, (ACC) and the Association for European Paediatric and Congenital Cardiology (AEPC). The document received endorsement by all the collaborators and the Asia Pacific Heart Rhythm Society (APHRS), the Indian Heart Rhythm Society (IHRS), and the Latin American Heart Rhythm Society (LAHRS). This document is expected to provide support for clinicians and patients to allow for appropriate CIED use, appropriate CIED management, and appropriate follow-up in pediatric patients.
Collapse
Affiliation(s)
- Maully J Shah
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania.
| | - Michael J Silka
- University of Southern California Keck School of Medicine, Los Angeles, California.
| | | | | | - Cheyenne Beach
- Yale University School of Medicine, New Haven, Connecticut
| | - Monica Benjamin
- Hospital de Pediatría Juan P. Garrahan, Hospital El Cruce, Hospital Británico de Buenos Aires, Instituto Cardiovascular ICBA, Buenos Aires, Argentina
| | | | | | - Frank Cecchin
- New York Univeristy Grossman School of Medicine, New York, New York
| | | | - Aarti Dalal
- Washington University in St. Louis, St. Louis, Missouri
| | | | - Anne Foster
- Advocate Children's Heart Institute, Chicago, Illinois
| | - Roman Gebauer
- Heart Centre Leipzig, University of Leipzig, Leipzig, Germany
| | | | | | - Peter Karpawich
- University Pediatricians, Children's Hospital of Michigan, Detroit, Michigan
| | | | | | - Peter Kubuš
- Children's Heart Center, Charles University in Prague and Motol University Hospital, Prague, Czech Republic
| | | | | | - Doug Mah
- Harvard Medical School, Boston, Massachussetts
| | - Aya Miyazaki
- Shizuoka General Hospital and Mt. Fuji Shizuoka Children's Hospital, Shizuoka, Japan
| | | | - Mary Niu
- University of Utah Health Sciences Center, Salt Lake City, Utah
| | | | - Thomas Paul
- Georg-August-University Medical Center, Göttingen, Germany
| | - Eric Rosenthal
- Evelina London Children's Hospital and St Thomas' Hospital, Guy's & St Thomas' NHS Foundation Trust, London, UK
| | | | | | | | - Reina Tan
- New York University Langone Health, New York, New York
| | - John Triedman
- University of Missouri-Kansas City School of Medicine, Kansas City, Missouri
| | - Nicholas Von Bergen
- University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | | | | |
Collapse
|
10
|
Nishii N, Noda T, Nitta T, Aizawa Y, Ohe T, Kurita T. Risk factors for the first and second inappropriate implantable cardioverter-defibrillator therapy. IJC HEART & VASCULATURE 2021; 34:100779. [PMID: 33997254 PMCID: PMC8100615 DOI: 10.1016/j.ijcha.2021.100779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 11/24/2022]
Abstract
Introduction Various risk factors for the first inappropriate implantable cardioverter-defibrillator (ICD) therapy event have been reported, including a history of atrial fibrillation/atrial flutter (AF/AFL), younger age, and multiple zones. Nonetheless, which factors are concordant with real-world data has not been clarified, and risk factors for the second inappropriate ICD therapy event have not been well examined. This study aimed to clarify the risk factors for the first and second inappropriate ICD therapy events. Methods We conducted a post-hoc secondary analysis of data from a multicenter, prospective observational study (the Nippon Storm Study) designed to clarify the risk factors for electrical storm. Results The analysis included data from 1549 patients who received ICD or cardiac resynchronization therapy with defibrillator (CRT-D). Over a median follow-up of 28 months, 293 inappropriate ICD therapy events occurred in 153 (10.0%) patients. On multivariate Cox regression analysis, the risk factors for the first inappropriate ICD therapy event were younger age (hazard ratio [HR], 0.986; p = 0.028), AF/AFL (HR, 2.324; p = 0.002), ICD without CRT implantation (HR, 2.377; p = 0.004), and multiple zones (HR, 1.852; p = 0.010). “No-intervention” after the first inappropriate ICD therapy event was the sole risk factor for the second inappropriate ICD therapy event. Conclusions Risk factors for the first inappropriate ICD therapy event were similar to those previously reported. Immediate intervention after the first inappropriate ICD therapy event could reduce the risk of the second inappropriate event.
Collapse
Affiliation(s)
- Nobuhiro Nishii
- Department of Cardiovascular Therapeutics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Takashi Noda
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Takashi Nitta
- Department of Cardiovascular Surgery, Nippon Medical School, Tokyo, Japan
| | - Yoshifusa Aizawa
- Department of Research and Development, Tachikawa Medical Center, Niigata, Japan
| | - Tohru Ohe
- Okayama City Hospital, Okayama, Japan
| | - Takashi Kurita
- Department of Internal Medicine, Faculty of Medicine, Kindai University, Osaka-Sayama, Japan
| |
Collapse
|
11
|
Cardiac pacemakers: a basic review of the history and current technology. J Vet Cardiol 2019; 22:40-50. [PMID: 30792165 DOI: 10.1016/j.jvc.2019.01.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 01/02/2019] [Accepted: 01/02/2019] [Indexed: 10/27/2022]
Abstract
In the 60 years since the first human implant of a cardiac pacemaker, tremendous improvements have been made to devices themselves as well as the lead systems. Improvement in battery materials has allowed for production of smaller devices with greater longevity and a vast array of technologies allowing for communication between the device and the operator. Lead wires, typically to as the weakest part of the pacing system, have also seen a metamorphosis as improvements in conductor materials and hybrid insulation have been shown to improve reliability. With the recent development of leadless pacing systems, the downfalls of implantable leads can be avoided. These improvements have allowed a more widespread use of cardiac pacing in veterinary applications since the first reported canine implant in 1967.
Collapse
|
12
|
Mittal S. Increasing Role of Remote Monitoring of Cardiac Resynchronization Therapy Devices in Improving Outcomes. Card Electrophysiol Clin 2018; 11:123-130. [PMID: 30717844 DOI: 10.1016/j.ccep.2018.11.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Remote monitoring has become an essential component of the care of patients with a cardiac implantable electronic device, including those undergoing cardiac resynchronization therapy-defibrillator implantations. It allows for earlier detection of battery- and lead-related issue, atrial and ventricular arrhythmias, and may facilitate early identification of patients at risk for developing an exacerbation of heart failure. The data for the clinical utility of remote monitoring have been mixed. Additional studies are ongoing to determine how best to detect heart failure in these patients and how best to manage these patients based on the information.
Collapse
Affiliation(s)
- Suneet Mittal
- Electrophysiology Laboratory, The Valley Hospital, Valley Health System, Snyder Center for Comprehensive Atrial Fibrillation, 223 North Van Dien Avenue, Ridgewood, NJ 07450, USA.
| |
Collapse
|