1
|
The Nuclear Proteins TP73 and CUL4A Confer Resistance to Cytarabine by Induction of Translesion DNA Synthesis via Mono-ubiquitination of PCNA. Hemasphere 2022; 6:e0708. [PMID: 35519003 PMCID: PMC9067361 DOI: 10.1097/hs9.0000000000000708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 03/10/2022] [Indexed: 12/03/2022] Open
Abstract
Resistance to cytarabine is a key problem in the treatment of acute myeloid leukemia (AML). To understand the molecular biology of resistance to cytarabine, a viability-based chemosensitizer screen was utilized. We screened synthetic lethal targets using 437 different small interfering RNAs (siRNAs) directed against factors involved in DNA repair mechanisms and cytarabine as the chemical compound. Three hits were identified: CUL4A, TP73, and RFC2. We show here that the ubiquitin ligase CULLIN 4A (CUL4A) and the tumor-suppressive transcription factor p73 contribute to drug resistance by modulating DNA damage response. P73 confers resistance to cytarabine therapy by transactivation of REV3L, encoding the catalytic subunit of translesion DNA polymerase ζ, and CUL4A probably by influencing proliferating cell nuclear antigen (PCNA) and the polymerase switch towards error-prone translesion DNA polymerases. Abrogation of the polymerase ζ by siRNA causes identical effects as siRNAs against CUL4A or TP73 and resensitizes cells towards cytarabine therapy in vitro. As CUL4A needs to be activated by neddylation to facilitate the degradation of several proteins including PCNA, we propose a novel explanation for the synergism between cytarabine and the neddylation inhibitor pevonedistat by inhibition of translesion synthesis. In keeping with this, in AML patients treated with cytarabine, we found high expression of CUL4A and TP73 to be associated with poor prognosis.
Collapse
|
2
|
Unravelling the molecular mechanisms underlying chronic respiratory diseases for the development of novel therapeutics via in vitro experimental models. Eur J Pharmacol 2022; 919:174821. [DOI: 10.1016/j.ejphar.2022.174821] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/01/2022] [Accepted: 02/09/2022] [Indexed: 12/11/2022]
|
3
|
Wang Y, Yan F, Nasar A, Chen ZS, Altorki NK, Stiles B, Narula N, Zhou P. CUL4 high Lung Adenocarcinomas Are Dependent on the CUL4-p21 Ubiquitin Signaling for Proliferation and Survival. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:1638-1650. [PMID: 34119472 PMCID: PMC8420861 DOI: 10.1016/j.ajpath.2021.05.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/16/2021] [Accepted: 05/21/2021] [Indexed: 11/20/2022]
Abstract
Cullin (CUL) 4A and 4B ubiquitin ligases are often highly accumulated in human malignant neoplasms and are believed to possess oncogenic properties. However, the underlying mechanisms by which CUL4A and CUL4B promote pulmonary tumorigenesis remain largely elusive. This study reports that CUL4A and CUL4B are highly expressed in patients with non-small cell lung cancer (NSCLC), and their high expression is associated with disease progression, chemotherapy resistance, and poor survival in adenocarcinomas. Depletion of CUL4A (CUL4Ak/d) or CUL4B (CUL4Bk/d) leads to cell cycle arrest at G1 and loss of proliferation and viability of NSCLC cells in culture and in a lung cancer xenograft model, suggesting that CUL4A and 4B are oncoproteins required for tumor maintenance of certain NSCLCs. Mechanistically, increased accumulation of the cell cycle-dependent kinase inhibitor p21/Cip1/WAF1 was observed in lung cancer cells on CUL4 silencing. Knockdown of p21 rescued the G1 arrest of CUL4Ak/d or CUL4Bk/d NSCLC cells, and allowed proliferation to resume. These findings reveal that p21 is the primary downstream effector of lung adenocarcinoma dependence on CUL4, highlight the notion that not all substrates respond equally to abrogation of the CUL4 ubiquitin ligase in NSCLCs, and imply that CUL4Ahigh/CUL4Bhigh may serve as a prognostic marker and therapeutic target for patients with NSCLC.
Collapse
Affiliation(s)
- Yannan Wang
- Department of Pathology and Laboratory Medicine, The Joan and Stanford I. Weill Medical College of Cornell University, New York, New York
| | - Fan Yan
- Department of Pathology and Laboratory Medicine, The Joan and Stanford I. Weill Medical College of Cornell University, New York, New York
| | - Abu Nasar
- Division of Thoracic Surgery, Department of Cardiothoracic Surgery, Weill Cornell Medicine - New York Presbyterian Hospital, New York, New York
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St John's University, Queens, New York
| | - Nasser Khaled Altorki
- Division of Thoracic Surgery, Department of Cardiothoracic Surgery, Weill Cornell Medicine - New York Presbyterian Hospital, New York, New York
| | - Brendon Stiles
- Division of Thoracic Surgery, Department of Cardiothoracic Surgery, Weill Cornell Medicine - New York Presbyterian Hospital, New York, New York
| | - Navneet Narula
- Department of Pathology and Laboratory Medicine, The Joan and Stanford I. Weill Medical College of Cornell University, New York, New York
| | - Pengbo Zhou
- Department of Pathology and Laboratory Medicine, The Joan and Stanford I. Weill Medical College of Cornell University, New York, New York.
| |
Collapse
|
4
|
Weng SW, Liu TT, Eng HL, You HL, Huang WT. Autophagy Plays a Role in the CUL4A-Related Poor Prognosis of Intrahepatic Cholangiocarcinoma. Pathol Oncol Res 2021; 27:602714. [PMID: 34257560 PMCID: PMC8262180 DOI: 10.3389/pore.2021.602714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 01/22/2021] [Indexed: 11/13/2022]
Abstract
CUL4A regulate the termination of autophagy in a physical process. However, the relationship between CUL4A and autophagy in cancer is unclear. We retrospectively investigated 99 intrahepatic cholangiocarcinoma (iCCA) cases. Whole sections were used for immunohistochemical analysis for p62, and LC3B expression. Q-score was defined as the sum of the labeling intensity and proportion. The cut-off point for immunoreactivity was set. CUL4A was overexpressed in cell lines and autophagy reflux was compared after manipulation. The iCCA cases with CUL4A overexpression had significantly higher prevalence of intact activated autophagy (42.4 vs. 15.2%; p = 0.003), which was significantly associated with advance tumor stage (34.1% vs. 15.4%; p = 0.032), less extensive necrosis (8.3 vs. 49.3%; p < 0.001), and shortened disease-free survival (mean, 19.6 vs. 65.5 months, p = 0.015). In vitro, iCCA cells with CUL4A overexpression significantly increased LC3II level as compared to the cells under basal condition. Although both cell types showed intact autophagy with increased LC3II expression after bafilomycin A1 treatment, the accumulation of LC3II was higher in CUL4A-overexpressing cells. CUL4A overexpression increased the proliferation of cells as compared with control cells. After treatment with bafilomycin A1, proliferation was inhibited in both cell types, but the effects were more prominent in the cells overexpressing CUL4A. CUL4A promotes autophagy, and exhibits significantly higher autophagic flux which affects the proliferation of iCCA cells; these effects correlated with advance tumor stage and poor prognosis. Thus, targeting autophagy may be potentially therapeutic in iCCA.
Collapse
Affiliation(s)
- Shao-Wen Weng
- Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ting-Ting Liu
- Department of Pathology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Medical Laboratory Science, I-Shou University, Kaohsiung, Taiwan
| | - Hock-Liew Eng
- Department of Pathology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Huey-Ling You
- Department of Laboratory Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Medical Laboratory Sciences and Biotechnology, Fooyin University, Kaohsiung, Taiwan
| | - Wan-Ting Huang
- Department of Pathology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Laboratory Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Medical Laboratory Sciences and Biotechnology, Fooyin University, Kaohsiung, Taiwan
| |
Collapse
|
5
|
Abstract
Cullin 4A (CUL4A) is a protein of E3 ubiquitin ligase with many cellular processes. CUL4A could regulate cell cycle, development, apoptosis, and genome instability. This study aimed to analyze the expression of CUL4A in nasopharyngeal carcinoma (NPC) tissues and the associations of CUL4A expression with prognostic significance. A total of 115 NPC patients were collected to assess the protein expression of CUL4A by immunohistochemistry, so as to analyze the relationships between CUL4A expression and clinicopathological and prognostic parameters. All patients were followed-up until death or 5 years. The results showed that high expression of CUL4A was significantly associated with larger primary tumor size (P = .026), higher nodal status (P = .013), more distant metastasis (P = .020), and higher TNM stage (P = .005). Kaplan-Meier curves showed that patients with higher CUL4A expression had significantly shorter overall survival (OS) and progression-free survival (PFS) (both P < .001). In multivariate Cox analysis, CUL4A is an independent prognostic factor for OS (P = .016; hazard ratio [HR] = 2.770, 95% CI: 1.208-6.351) and PFS (P = .022; HR = 2.311, 95% CI: 1.126-4.743). In conclusion, high expression of CUL4A was associated with advanced disease status of NPC, and might serve as an independent prognostic factor.
Collapse
|
6
|
Hung MS, Chen YC, Lin P, Li YC, Hsu CC, Lung JH, You L, Xu Z, Mao JH, Jablons DM, Yang CT. Cul4A Modulates Invasion and Metastasis of Lung Cancer Through Regulation of ANXA10. Cancers (Basel) 2019; 11:618. [PMID: 31052599 PMCID: PMC6562482 DOI: 10.3390/cancers11050618] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/15/2019] [Accepted: 04/24/2019] [Indexed: 02/06/2023] Open
Abstract
: Cullin 4A (Cul4A) is overexpressed in a number of cancers and has been established as an oncogene. This study aimed to elucidate the role of Cul4A in lung cancer invasion and metastasis. We observed that Cul4A was overexpressed in non-small cell lung cancer (NSCLC) tissues and the overexpression of Cul4A was associated with poor prognosis after surgical resection and it also decreased the expression of the tumor suppressor protein annexin A10 (ANXA10). The knockdown of Cul4A was associated with the upregulation of ANXA10, and the forced expression of Cul4A was associated with the downregulation of ANXA10 in lung cancer cells. Further studies showed that the knockdown of Cul4A inhibited the invasion and metastasis of lung cancer cells, which was reversed by the further knockdown of ANXA10. In addition, the knockdown of Cul4A inhibited lung tumor metastasis in mouse tail vein injection xenograft models. Notably, Cul4A regulated the degradation of ANXA10 through its interaction with ANXA10 and ubiquitination in lung cancer cells. Our findings suggest that Cul4A is a prognostic marker in NSCLC patients, and Cul4A plays important roles in lung cancer invasion and metastasis through the regulation of the ANXA10 tumor suppressor.
Collapse
Affiliation(s)
- Ming-Szu Hung
- Division of Thoracic Oncology, Department of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital, Chiayi branch 61363, Taiwan.
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
- Department of Respiratory Care, Chang Gung University of Science and Technology, Chiayi Campus, Chiayi 61363, Taiwan.
| | - Yi-Chuan Chen
- Department of Emergency Medicine, Chang Gung Memorial Hospital, Chiayi branch 61363, Taiwan.
| | - PaulYann Lin
- Department of Anatomic Pathology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi 62247, Taiwan.
| | - Ya-Chin Li
- Division of Thoracic Oncology, Department of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital, Chiayi branch 61363, Taiwan.
| | - Chia-Chen Hsu
- Department of Hematology and Oncology, Chang Gung Memorial Hospital, Chiayi branch 61363, Taiwan.
- Department of Medical Research and Development, Chang Gung Memorial Hospital, Chiayi branch 61363, Taiwan.
| | - Jr-Hau Lung
- Department of Medical Research and Development, Chang Gung Memorial Hospital, Chiayi branch 61363, Taiwan.
| | - Liang You
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA 94143, USA.
| | - Zhidong Xu
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA 94143, USA.
| | - Jian-Hua Mao
- Life Sciences Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA.
| | - David M Jablons
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA 94143, USA.
| | - Cheng-Ta Yang
- Department of Respiratory Care, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
- Department of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital, Taoyuan branch 33378, Taiwan.
| |
Collapse
|
7
|
Zapata-Benavides P, Thompson-Armendariz FG, Arellano-Rodríguez M, Franco-Molina MA, Mendoza-Gamboa E, Saavedra-Alonso S, Zacarias-Hernández JL, Trejo-Avila LM, Rodríguez-Padilla C. shRNA-WT1 Potentiates Anticancer Effects of Gemcitabine and Cisplatin Against B16F10 Lung Metastases In Vitro and In Vivo. In Vivo 2019; 33:777-785. [PMID: 31028197 PMCID: PMC6559916 DOI: 10.21873/invivo.11539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/02/2019] [Accepted: 02/07/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND/AIM High expression level of Wilm's tumor gene (WT1) in several types of tumors appears to confer disruption of apoptosis and resistance to chemotherapeutic drugs, and correlate with poor outcome. The aim of this work was to determine if down-regulation of WT1 expression results in decreased cell proliferation and the increased action of different types of drugs, both in vitro in B16F10 cells, and in vivo in C57BL/6 mice. MATERIALS AND METHODS Inhibition of cell proliferation by short hairpin RNA against WT1 (shRNA-WT1), cisplatin, and gemcitabine in B16F10 cells in vitro was determined by the MTT assay and analysis of clonogenic survival. The apoptosis rate was determined by flow cytometry for annexin-V- fluorescein isothiocyante and propidium iodide. RESULTS Compared to treatment with shRNA-WT1 alone, treatment with shRNA-WT1 in combination with drugs had a synergistic inhibitory effect on B16F10 cell proliferation, particularly for the combination of cisplatin and gemcitabine at their 25% cytotoxic concentrations in vitro. Furthermore, mice treated with shRNA-WT1 in combination with cisplatin and gemcitabine were protected in the same way as those treated with the drugs alone, but were in better physical condition. CONCLUSION Decreased WT1 expression induces cell death and potentiates the action of anticancer drugs by inducing synergistic effects both in vitro and in vivo, which may be an attractive strategy in lung cancer therapy.
Collapse
Affiliation(s)
- Pablo Zapata-Benavides
- Department of Microbiology and Immunology, Faculty of Biological Sciences, University Autonomous of Nuevo Leon (UANL), San Nicolas de los Garza, Mexico
| | | | - Mariela Arellano-Rodríguez
- Department of Microbiology and Immunology, Faculty of Biological Sciences, University Autonomous of Nuevo Leon (UANL), San Nicolas de los Garza, Mexico
| | - Moisés Armides Franco-Molina
- Department of Microbiology and Immunology, Faculty of Biological Sciences, University Autonomous of Nuevo Leon (UANL), San Nicolas de los Garza, Mexico
| | - Edgar Mendoza-Gamboa
- Department of Microbiology and Immunology, Faculty of Biological Sciences, University Autonomous of Nuevo Leon (UANL), San Nicolas de los Garza, Mexico
| | - Santiago Saavedra-Alonso
- Department of Microbiology and Immunology, Faculty of Biological Sciences, University Autonomous of Nuevo Leon (UANL), San Nicolas de los Garza, Mexico
| | - José Luis Zacarias-Hernández
- Department of Microbiology and Immunology, Faculty of Biological Sciences, University Autonomous of Nuevo Leon (UANL), San Nicolas de los Garza, Mexico
| | - Laura María Trejo-Avila
- Department of Microbiology and Immunology, Faculty of Biological Sciences, University Autonomous of Nuevo Leon (UANL), San Nicolas de los Garza, Mexico
| | - Cristina Rodríguez-Padilla
- Department of Microbiology and Immunology, Faculty of Biological Sciences, University Autonomous of Nuevo Leon (UANL), San Nicolas de los Garza, Mexico
| |
Collapse
|
8
|
Memon A, Lee WK. KLF10 as a Tumor Suppressor Gene and Its TGF-β Signaling. Cancers (Basel) 2018; 10:E161. [PMID: 29799499 PMCID: PMC6025274 DOI: 10.3390/cancers10060161] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/15/2018] [Accepted: 05/23/2018] [Indexed: 12/17/2022] Open
Abstract
Krüppel-like factor 10 (KLF10), originally named TGF-β (Transforming growth factor beta) inducible early gene 1 (TIEG1), is a DNA-binding transcriptional regulator containing a triple C2H2 zinc finger domain. By binding to Sp1 (specificity protein 1) sites on the DNA and interactions with other regulatory transcription factors, KLF10 encourages and suppresses the expression of multiple genes in many cell types. Many studies have investigated its signaling cascade, but other than the TGF-β/Smad signaling pathway, these are still not clear. KLF10 plays a role in proliferation, differentiation as well as apoptosis, just like other members of the SP (specificity proteins)/KLF (Krüppel-like Factors). Recently, several studies reported that KLF10 KO (Knock out) is associated with defects in cell and organs such as osteopenia, abnormal tendon or cardiac hypertrophy. Since KLF10 was first discovered, several studies have defined its role in cancer as a tumor suppressor. KLF10 demonstrate anti-proliferative effects and induce apoptosis in various carcinoma cells including pancreatic cancer, leukemia, and osteoporosis. Collectively, these data indicate that KLF10 plays a significant role in various biological processes and diseases, but its role in cancer is still unclear. Therefore, this review was conducted to describe and discuss the role and function of KLF10 in diseases, including cancer, with a special emphasis on its signaling with TGF-β.
Collapse
Affiliation(s)
- Azra Memon
- Laboratory of Developmental Genetics, Department of Biomedical Sciences, School of Medicine, Inha University, Incheon 22212, Korea.
| | - Woon Kyu Lee
- Laboratory of Developmental Genetics, Department of Biomedical Sciences, School of Medicine, Inha University, Incheon 22212, Korea.
| |
Collapse
|
9
|
A first-in-class inhibitor, MLN4924 (pevonedistat), induces cell-cycle arrest, senescence, and apoptosis in human renal cell carcinoma by suppressing UBE2M-dependent neddylation modification. Cancer Chemother Pharmacol 2018; 81:1083-1093. [PMID: 29667067 DOI: 10.1007/s00280-018-3582-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 03/26/2018] [Indexed: 12/28/2022]
Abstract
PURPOSE MLN4924 is a second-generation inhibitor that targets ubiquitin-proteasome system by inhibiting neddylation activation enzyme (NAE), and subsequently blocking the neddylation-dependent activation of Cullin-RING E3 ligases (CRLs), which leads to the accumulation of CRLs substrates and hence, suppressing diverse tumor development. In this study, we investigated the potential application of this first-in-class inhibitor MLN4924 in the treatment of human renal cell carcinoma both in vitro and in vivo. METHODS The impact of MLN4924 on renal cancer cells was determined by measuring viability (MTS), proliferation cell count test and clonogenic assays, cell cycle progression (flow cytometry with propidium iodide staining), apoptosis (flow cytometry with annexin V-FITC labeling) and DNA damage (immunofluorescent staining). The cell cycle regulatory molecules, apoptosis-related molecules, and cell stress-related proteins were examined by Western blotting. The influence of tumor cell migration was analyzed by wound healing assays. A well-established SCID xenograft mouse model was used to evaluate the effects of MLN4924 on tumor growth in vivo. RESULTS The data showed that MLN4924 induced a dose-dependent cytotoxicity, anti-proliferation, anti-migration, and apoptosis in human renal cancer cells; and caused cell cycle arrested at the G2 phase. In addition, the E2 conjugating enzymes of Neddylation UBE2M played a major role in the proliferation control of renal cancer cells. Finally, we confirmed MLN4924 inhibited tumor growth in a RCC xenograft mouse model with minimal general toxicity. CONCLUSION We concluded that MLN4924 induces apoptosis and cell cycle arrest. These findings implied that MLN4924 provides a novel strategy for the treatment of RCC.
Collapse
|
10
|
Gankhuyag N, Yu KN, Davaadamdin O, Lee S, Cho WY, Park C, Jiang HL, Singh B, Chae CH, Cho MH, Cho CS. Suppression of Tobacco Carcinogen-Induced Lung Tumorigenesis by Aerosol-Delivered Glycerol Propoxylate Triacrylate-Spermine Copolymer/Short Hairpin Rab25 RNA Complexes in Female A/J Mice. J Aerosol Med Pulm Drug Deliv 2017; 30:81-90. [PMID: 27792477 DOI: 10.1089/jamp.2016.1301] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Rab25, a member of Rab family of small guanosine triphosphatase, is associated with progression of various types of human cancers, including lung cancer, the leading cause of cancer-associated deaths around the globe. METHODS In this study, we report the gene therapeutic effect of short hairpin Rab25 RNA (shRab25) on 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced lung tumorigenesis in female A/J mice. Initially, mice (6 weeks old) were injected with single dose of NNK (2 mg/0.1 mL saline/mouse) by intraperitoneal injection to induce the tumor. Eight weeks later, shRab25 was complexed with glycerol propoxylate triacrylate-spermine (GPT-SPE) copolymer and delivered into tobacco-induced lung cancer models through a nose-only inhalation system twice a week for 2 months. RESULTS GPT-SPE/shRab25 largely decreased the tobacco-induced tumor numbers and tumor volume in the lungs compared to GPT-SPE- or GPT-SPE/shScr-delivered groups. Remarkably, aerosol-delivered GPT-SPE/shRab25 significantly decreased the expression level of Rab25 and other prominent apoptosis-related proteins in female A/J mice. The apoptosis in these mice was determined by detecting the expression level of Bcl-2, proliferating cell nuclear antigen, Bax, and further confirmed by TUNEL assay. CONCLUSIONS Our results strongly confirm the tumorigenic role of Rab25 in tobacco carcinogen-induced lung cancer and hence demonstrate aerosol delivery of shRab25 as a therapeutic target for lung cancer treatment.
Collapse
Affiliation(s)
- Nomundelger Gankhuyag
- 1 Laboratory of Toxicology, BK21 PLUS Program for Creative Veterinary Science Research and The Research Institute of Veterinary Science, College of Veterinary Medicine, Seoul National University , Seoul 151-742, Republic of Korea
| | - Kyeong Nam Yu
- 1 Laboratory of Toxicology, BK21 PLUS Program for Creative Veterinary Science Research and The Research Institute of Veterinary Science, College of Veterinary Medicine, Seoul National University , Seoul 151-742, Republic of Korea
| | - Orkhonselenge Davaadamdin
- 1 Laboratory of Toxicology, BK21 PLUS Program for Creative Veterinary Science Research and The Research Institute of Veterinary Science, College of Veterinary Medicine, Seoul National University , Seoul 151-742, Republic of Korea
| | - Somin Lee
- 1 Laboratory of Toxicology, BK21 PLUS Program for Creative Veterinary Science Research and The Research Institute of Veterinary Science, College of Veterinary Medicine, Seoul National University , Seoul 151-742, Republic of Korea
| | - Won Young Cho
- 1 Laboratory of Toxicology, BK21 PLUS Program for Creative Veterinary Science Research and The Research Institute of Veterinary Science, College of Veterinary Medicine, Seoul National University , Seoul 151-742, Republic of Korea
| | - Changhoon Park
- 2 Laboratory of Pathology, College of Veterinary Medicine, Seoul National University , Seoul, Korea
| | - Hu-Lin Jiang
- 3 State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University , Nanjing, China
| | - Bijay Singh
- 4 Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Sciences, Seoul National University , Seoul, Korea
| | - Chan-Hee Chae
- 2 Laboratory of Pathology, College of Veterinary Medicine, Seoul National University , Seoul, Korea
| | - Myung-Haing Cho
- 1 Laboratory of Toxicology, BK21 PLUS Program for Creative Veterinary Science Research and The Research Institute of Veterinary Science, College of Veterinary Medicine, Seoul National University , Seoul 151-742, Republic of Korea
| | - Chong-Su Cho
- 4 Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Sciences, Seoul National University , Seoul, Korea
| |
Collapse
|
11
|
Yokobori T, Nishiyama M. TGF-β Signaling in Gastrointestinal Cancers: Progress in Basic and Clinical Research. J Clin Med 2017; 6:jcm6010011. [PMID: 28106769 PMCID: PMC5294964 DOI: 10.3390/jcm6010011] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/31/2016] [Accepted: 01/16/2017] [Indexed: 12/18/2022] Open
Abstract
Transforming growth factor (TGF)-β superfamily proteins have many important biological functions, including regulation of tissue differentiation, cell proliferation, and migration in both normal and cancer cells. Many studies have reported that TGF-β signaling is associated with disease progression and therapeutic resistance in several cancers. Similarly, TGF-β-induced protein (TGFBI)—a downstream component of the TGF-β signaling pathway—has been shown to promote and/or inhibit cancer. Here, we review the state of basic and clinical research on the roles of TGF-β and TGFBI in gastrointestinal cancers.
Collapse
Affiliation(s)
- Takehiko Yokobori
- Research Program for Omics-based Medical Science, Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan.
| | - Masahiko Nishiyama
- Research Program for Omics-based Medical Science, Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan.
- Department of Molecular Pharmacology and Oncology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan.
| |
Collapse
|