1
|
Abdulrahman FA, Benford KA, Lin GT, Maroun AJ, Sammons C, Shirzad DN, Tsai H, Van Brunt VL, Jones Z, Marquez JE, Ratkus EC, Shehadeh AK, Abasto Valle H, Fejzo D, Gilbert AE, McWee CA, Underwood LF, Indico E, Rork BB, Nanjundan M. zDHHC-Mediated S-Palmitoylation in Skin Health and Its Targeting as a Treatment Perspective. Int J Mol Sci 2025; 26:1673. [PMID: 40004137 PMCID: PMC11854935 DOI: 10.3390/ijms26041673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
S-acylation, which includes S-palmitoylation, is the only known reversible lipid-based post-translational protein modification. S-palmitoylation is mediated by palmitoyl acyltransferases (PATs), a family of 23 enzymes commonly referred to as zDHHCs, which catalyze the addition of palmitate to cysteine residues on specific target proteins. Aberrant S-palmitoylation events have been linked to the pathogenesis of multiple human diseases. While there have been advances in elucidating the molecular mechanisms underlying the pathogenesis of various skin conditions, there remain gaps in the knowledge, specifically with respect to the contribution of S-palmitoylation to the maintenance of skin barrier function. Towards this goal, we performed PubMed literature searches relevant to S-palmitoylation in skin to define current knowledge and areas that may benefit from further research studies. Furthermore, to identify alterations in gene products that are S-palmitoylated, we utilized bioinformatic tools such as SwissPalm and analyzed relevant data from publicly available databases such as cBioportal. Since the targeting of S-palmitoylated targets may offer an innovative treatment perspective, we surveyed small molecules inhibiting zDHHCs, including 2-bromopalmitate (2-BP) which is associated with off-target effects, and other targeting strategies. Collectively, our work aims to advance both basic and clinical research on skin barrier function with a focus on zDHHCs and relevant protein targets that may contribute to the pathogenesis of skin conditions such as atopic dermatitis, psoriasis, and skin cancers including melanoma.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Meera Nanjundan
- Department of Molecular Biosciences, University of South Florida, 4202 East Fowler Avenue, ISA2015, Tampa, FL 33620, USA; (F.A.A.); (K.A.B.); (G.T.L.); (A.J.M.); (C.S.); (D.N.S.); (H.T.); (V.L.V.B.); (Z.J.); (J.E.M.); (E.C.R.); (A.K.S.); (H.A.V.); (D.F.); (A.E.G.); (C.A.M.); (L.F.U.); (E.I.); (B.B.R.)
| |
Collapse
|
2
|
Aghakhani A, Hezave MB, Rasouli A, Saberi Rounkian M, Soleimanlou F, Alhani A, Sabet Eqlidi N, Pirani M, Mehrtabar S, Zerangian N, Pormehr-Yabandeh A, Keylani K, Tizro N, Deravi N. Endoplasmic Reticulum as a Therapeutic Target in Cancer: Is there a Role for Flavonoids? Curr Mol Med 2024; 24:298-315. [PMID: 36959143 DOI: 10.2174/1566524023666230320103429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 03/25/2023]
Abstract
Flavonoids are classified into subclasses of polyphenols, a multipurpose category of natural compounds which comprises secondary metabolites extracted from vascular plants and are plentiful in the human diet. Although the details of flavonoid mechanisms are still not realized correctly, they are generally regarded as antimicrobial, anti-fungal, anti-inflammatory, anti-oxidative; anti-mutagenic; anti-neoplastic; anti-aging; anti-diabetic, cardio-protective, etc. The anti-cancer properties of flavonoids are evident in functions such as prevention of proliferation, metastasis, invasion, inflammation and activation of cell death. Tumors growth and enlargement expose cells to acidosis, hypoxia, and lack of nutrients which result in endoplasmic reticulum (ER) stress; it triggers the unfolded protein response (UPR), which reclaims homeostasis or activates autophagy. Steady stimulation of ER stress can switch autophagy to apoptosis. The connection between ER stress and cancer, in association with UPR, has been explained. The signals provided by UPR can activate or inhibit anti-apoptotic or apoptotic pathways depending on the period and grade of ER stress. In this review, we will peruse the link between flavonoids and their impact on the endoplasmic reticulum in association with cancer therapy.
Collapse
Affiliation(s)
- Ava Aghakhani
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Asma Rasouli
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Masoumeh Saberi Rounkian
- Student Research Committee, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Fatemeh Soleimanlou
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arian Alhani
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nasim Sabet Eqlidi
- Student Research Committee, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Maryam Pirani
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saba Mehrtabar
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasibeh Zerangian
- Department of Health Education and Health Promotion, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Asiyeh Pormehr-Yabandeh
- Health Promotion Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Kimia Keylani
- School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Tizro
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Niloofar Deravi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Zhou B, Hao Q, Liang Y, Kong E. Protein palmitoylation in cancer: molecular functions and therapeutic potential. Mol Oncol 2022; 17:3-26. [PMID: 36018061 PMCID: PMC9812842 DOI: 10.1002/1878-0261.13308] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/30/2022] [Accepted: 08/16/2022] [Indexed: 02/03/2023] Open
Abstract
Protein S-palmitoylation (hereinafter referred to as protein palmitoylation) is a reversible lipid posttranslational modification catalyzed by the zinc finger DHHC-type containing (ZDHHC) protein family. The reverse reaction, depalmitoylation, is catalyzed by palmitoyl-protein thioesterases (PPTs), including acyl-protein thioesterases (APT1/2), palmitoyl protein thioesterases (PPT1/2), or alpha/beta hydrolase domain-containing protein 17A/B/C (ABHD17A/B/C). Proteins encoded by several oncogenes and tumor suppressors are modified by palmitoylation, which enhances the hydrophobicity of specific protein subdomains, and can confer changes in protein stability, membrane localization, protein-protein interaction, and signal transduction. The importance for protein palmitoylation in tumorigenesis has just started to be elucidated in the past decade; palmitoylation appears to affect key aspects of cancer, including cancer cell proliferation and survival, cell invasion and metastasis, and antitumor immunity. Here we review the current literature on protein palmitoylation in the various cancer types, and discuss the potential of targeting of palmitoylation enzymes or palmitoylated proteins for tumor treatment.
Collapse
Affiliation(s)
- Binhui Zhou
- Institute of Psychiatry and NeuroscienceXinxiang Medical UniversityChina,Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory MedicineXinxiang Medical UniversityChina
| | - Qianyun Hao
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Oncology IIPeking University Cancer Hospital & InstituteBeijingChina
| | - Yinming Liang
- Institute of Psychiatry and NeuroscienceXinxiang Medical UniversityChina,Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory MedicineXinxiang Medical UniversityChina,Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory MedicineXinxiang Medical UniversityChina
| | - Eryan Kong
- Institute of Psychiatry and NeuroscienceXinxiang Medical UniversityChina
| |
Collapse
|
4
|
One-Two Punch Therapy for the Treatment of T-Cell Malignancies Involving p53-Dependent Cellular Senescence. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5529518. [PMID: 34603598 PMCID: PMC8481056 DOI: 10.1155/2021/5529518] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 06/27/2021] [Indexed: 11/17/2022]
Abstract
T-cell malignancies are still difficult to treat due to a paucity of plans that target critical dependencies. Drug-induced cellular senescence provides a permanent cell cycle arrest during tumorigenesis and cancer development, particularly when combined with senolytics to promote apoptosis of senescent cells, which is an innovation for cancer therapy. Here, our research found that wogonin, a well-known natural flavonoid compound, not only had a potential to inhibit cell growth and proliferation but also induced cellular senescence in T-cell malignancies with nonlethal concentration. Transcription activity of senescence-suppression human telomerase reverse transcriptase (hTERT) and oncogenic C-MYC was suppressed in wogonin-induced senescent cells, resulting in the inhibition of telomerase activity. We also substantiated the occurrence of DNA damage during the wogonin-induced aging process. Results showed that wogonin increased the activity of senescence-associated β-galactosidase (SA-β-Gal) and activated the DNA damage response pathway mediated by p53. In addition, we found the upregulated expression of BCL-2 in senescent T-cell malignancies because of the antiapoptotic properties of senescent cells. Following up this result, we identified a BCL-2 inhibitor Navitoclax (ABT-263), which was highly effective in decreasing cell viability and inducing apoptotic cell death in wogonin-induced senescent cells. Thus, the “one-two punch” approach increased the sensibility of T-cell malignancies with low expression of BCL-2 to Navitoclax. In conclusion, our research revealed that wogonin possesses potential antitumor effects based on senescence induction, offering a better insight into the development of novel therapeutic methods for T-cell malignancies.
Collapse
|
5
|
Qing Y, Wang X, Wang H, Hu P, Li H, Yu X, Zhu M, Wang Z, Zhu Y, Xu J, Guo Q, Hui H. Pharmacologic targeting of the P-TEFb complex as a therapeutic strategy for chronic myeloid leukemia. Cell Commun Signal 2021; 19:83. [PMID: 34372855 PMCID: PMC8351106 DOI: 10.1186/s12964-021-00764-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 07/02/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The positive transcription elongation factor b (P-TEFb) kinase activity is involved in the process of transcription. Cyclin-dependent kinase 9 (CDK9), a core component of P-TEFb, regulates the process of transcription elongation, which is associated with differentiation and apoptosis in many cancer types. Wogonin, a natural CDK9 inhibitor isolated from Scutellaria baicalensis. This study aimed to investigate the involved molecular mechanisms of wogonin on anti- chronic myeloid leukemia (CML) cells. MATERIALS AND METHODS mRNA and protein levels were analysed by RT-qPCR and western blot. Flow cytometry was used to assess cell differentiation and apoptosis. Cell transfection, immunofluorescence analysis and co-immunoprecipitation (co-IP) assays were applied to address the potential regulatory mechanism of wogonin. KU-812 cells xenograft NOD/SCID mice model was used to assess and verify the mechanism in vivo. RESULTS We reported that the anti-CML effects in K562, KU-812 and primary CML cells induced by wogonin were regulated by P-TEFb complex. We also confirmed the relationship between CDK9 and erythroid differentiation via knockdown the expression of CDK9. For further study the mechanism of erythroid differentiation induced by wogonin, co-IP experiments were used to demonstrate that wogonin increased the binding between GATA-1 and FOG-1 but decreased the binding between GATA-1 and RUNX1, which were depended on P-TEFb. Also, wogonin induced apoptosis and decreased the mRNA and protein levels of MCL-1 in KU-812 cells, which is the downstream of P-TEFb. In vivo studies showed wogonin had good anti-tumor effects in KU-812 xenografts NOD/ SCID mice model and decreased the proportion of human CD45+ cells in spleens of mice. We also verified that wogonin exhibited anti-CML effects through modulating P-TEFb activity in vivo. CONCLUSIONS Our study indicated a special mechanism involving the regulation of P-TEFb kinase activity in CML cells, providing evidences for further application of wogonin in CML clinical treatment. Video Abstract.
Collapse
Affiliation(s)
- Yingjie Qing
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Xiangyuan Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Hongzheng Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Po Hu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Hui Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Xiaoxuan Yu
- Department of Pharmacology, School of Medicine and Holostic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Mengyuan Zhu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Zhanyu Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Yu Zhu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, People's Republic of China
| | - Jingyan Xu
- Department of Hematology, The Affiliated DrumTower Hospital of Nanjing University Medical School, Nanjing, 210008, People's Republic of China
| | - Qinglong Guo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China.
| | - Hui Hui
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
6
|
LW-213 induces cell apoptosis in human cutaneous T-cell lymphomas by activating PERK-eIF2α-ATF4-CHOP axis. Acta Pharmacol Sin 2021; 42:290-300. [PMID: 32747719 DOI: 10.1038/s41401-020-0466-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/22/2020] [Indexed: 11/08/2022]
Abstract
Cutaneous T-cell lymphoma (CTCL) is characterized by a heterogeneous group of extranodal non-Hodgkin lymphomas, in which monoclonal T lymphocytes infiltrate the skin. LW-213, a derivative of wogonin, was found to induce cell apoptosis in chronic myeloid leukemia (CML). In this study, we investigated the effects of LW-213 on CTCL cells and the underlying mechanisms. We showed that LW-213 (1-25 μM) dose-dependently inhibited human CTCL cell lines (Hut-102, Hut-78, MyLa, and HH) with IC50 values of around 10 μM, meanwhile it potently inhibited primary leukemia cells derived from peripheral blood of T-cell lymphoma patients. We revealed that LW-213-induced apoptosis was accompanied by ROS formation and the release of calcium from endoplasmic reticulum (ER) through IP3R-1channel. LW-213 selectively activated CHOP and induced apoptosis in Hut-102 cells via activating PERK-eIF2α-ATF4 pathway. Interestingly, the degree of apoptosis and expression of ER stress-related proteins were alleviated in the presence of either N-acetyl cysteine (NAC), an ROS scavenger, or 2-aminoethyl diphenylborinate (2-APB), an IP3R-1 inhibitor, implicating ROS/calcium-dependent ER stress in LW-213-induced apoptosis. In NOD/SCID mice bearing Hut-102 cell line xenografts, administration of LW-213 (10 mg/kg, ip, every other day for 4 weeks) markedly inhibited the growth of Hut-102 derived xenografts and prolonged survival. In conclusion, our study provides a new insight into the mechanism of LW-213-induced apoptosis, suggesting the potential of LW-213 as a promising agent against CTCL.
Collapse
|
7
|
Wu Z, Tan R, Zhu L, Yao P, Hu Q. Protein S-Palmitoylation and Lung Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1304:165-186. [PMID: 34019269 DOI: 10.1007/978-3-030-68748-9_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
S-palmitoylation of protein is a posttranslational, reversible lipid modification; it was catalyzed by a family of 23 mammalian palmitoyl acyltransferases in humans. S-palmitoylation can impact protein function by regulating protein sorting, secretion, trafficking, stability, and protein interaction. Thus, S-palmitoylation plays a crucial role in many human diseases including mental illness and cancers. In this chapter, we systematically reviewed the influence of S-palmitoylation on protein performance, the characteristics of S-palmitoylation regulating protein function, and the role of S-palmitoylation in pulmonary inflammation and pulmonary hypertension and summed up the treatment strategies of S-palmitoylation-related diseases and the research status of targeted S-palmitoylation agonists/inhibitors. In conclusion, we highlighted the potential role of S-palmitoylation and depalmitoylation in the treatment of human diseases.
Collapse
Affiliation(s)
- Zeang Wu
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China.,School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rubin Tan
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,School of Basic Medicine, Xuzhou Medical University, Xuzhou, China
| | - Liping Zhu
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Yao
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Qinghua Hu
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
8
|
Chen S, Wu Z, Ke Y, Shu P, Chen C, Lin R, Shi Q. Wogonoside inhibits tumor growth and metastasis in endometrial cancer via ER stress-Hippo signaling axis. Acta Biochim Biophys Sin (Shanghai) 2019; 51:1096-1105. [PMID: 31696210 DOI: 10.1093/abbs/gmz109] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Indexed: 12/14/2022] Open
Abstract
Wogonoside, a bioactive flavonoid component derived from Scutellaria baicalensis Georgi, has been reported to inhibit tumor growth in mice bearing various types of cancer cells such as breast cancer, lung cancer, and leukemia cells. However, whether wogonoside could inhibit tumor growth of endometrial cancer has not been elucidated. In this study, we explored the function of wogonoside on tumor growth and the underlying mechanism on endometrial cancer. Firstly, we investigated the effect of wogonoside on endometrial cancer cells and found that wogonoside could significantly decrease cell proliferation and metastasis. Mechanistically, wogonoside could aggravate the extent of ER stress and upregulate the phosphorylation level of Mammalian Ste20-like kinase 1, leading to the activation of the Hippo signaling pathway. Taken together, in vitro and in vivo data demonstrated that wogonoside could be a potent inducer of ER stress and could be further developed into a promising therapy for endometrial cancer.
Collapse
Affiliation(s)
- Shaorong Chen
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital, Fujian Medical University, Quanzhou 362000, China
| | - Zhuna Wu
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital, Fujian Medical University, Quanzhou 362000, China
| | - Yumin Ke
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital, Fujian Medical University, Quanzhou 362000, China
| | - Pingping Shu
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital, Fujian Medical University, Quanzhou 362000, China
| | - Caihong Chen
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital, Fujian Medical University, Quanzhou 362000, China
| | - Ruying Lin
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital, Fujian Medical University, Quanzhou 362000, China
| | - Qirong Shi
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital, Fujian Medical University, Quanzhou 362000, China
| |
Collapse
|