1
|
Conlon JM, Owolabi BO, Flatt PR, Abdel-Wahab YHA. Amphibian host-defense peptides with potential for Type 2 diabetes therapy - an updated review. Peptides 2024; 175:171180. [PMID: 38401671 DOI: 10.1016/j.peptides.2024.171180] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
Investigations conducted since 2018 have identified several host-defense peptides present in frog skin secretions whose properties suggest the possibility of their development into a new class of agent for Type 2 diabetes (T2D) therapy. Studies in vitro have described peptides that (a) stimulate insulin release from BRIN-BD11 clonal β-cells and isolated mouse islets, (b) display β-cell proliferative activity and protect against cytokine-mediated apoptosis and (c) stimulate production of the anti-inflammatory cytokine IL-10 and inhibit production of the pro-inflammatory cytokines TNF-α and IL-1β. Rhinophrynin-27, phylloseptin-3.2TR and temporin F are peptides with therapeutic potential. Studies in vivo carried out in db/db and high fat-fed mice have shown that twice-daily administration of [S4K]CPF-AM1 and [A14K]PGLa-AM1, analogs of peptides first isolated from the octoploid frog Xenopus amieti, over 28 days lowers circulating glucose and HbA1c concentrations, increases insulin sensitivity and improves glucose tolerance and lipid profile. Peptide treatment produced potentially beneficial changes in the expression of skeletal muscle genes involved in insulin signaling and islet genes involved in insulin secretion in these murine models of T2D. Lead compounds uncovered by the study of frog HDPs may provide a basis for the design of new types of agents that can be used, alone or in combination with existing therapies, for the treatment of T2D.
Collapse
Affiliation(s)
- J Michael Conlon
- Diabetes Research Centre, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland BT52 1SA, UK.
| | - Bosede O Owolabi
- Diabetes Research Centre, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland BT52 1SA, UK
| | - Peter R Flatt
- Diabetes Research Centre, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland BT52 1SA, UK
| | - Yasser H A Abdel-Wahab
- Diabetes Research Centre, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland BT52 1SA, UK
| |
Collapse
|
2
|
Nogueira TAC, Kaefer IL, Sartim MA, Pucca MB, Sachett J, Barros AL, Júnior MBA, Baía-da-Silva DC, Bernarde PS, Koolen HHF, Monteiro WM. The Amazonian kambô frog Phyllomedusa bicolor (Amphibia: Phyllomedusidae): Current knowledge on biology, phylogeography, toxinology, ethnopharmacology and medical aspects. Front Pharmacol 2022; 13:997318. [PMID: 36278168 PMCID: PMC9582840 DOI: 10.3389/fphar.2022.997318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Phyllomedusa bicolor (Phyllomedusidae), popularly known as the kambô in Brazil, is a tree frog that is widely distributed in South American countries and is known for producing a skin secretion that is rich in bioactive peptides, which are often used in indigenous rituals. The biological effects of the skin secretion were observed in the first studies with indigenous communities. Over the last six decades, researchers have been studying the chemical composition in detail, as well as the potential pharmacological applications of its constituents. For this reason, indigenous communities and health agents fear the misuse of the kambô, or the inappropriate use of the species, which can result in health complications or even death of users. This article seeks to provide a transdisciplinary review that integrates knowledge regarding the biology of P. bicolor, ethnoknowledge about the ritual of the kambô, and the chemistry and pharmacology of the skin secretion of this species, in addition to medical aspects of the indiscriminate use of the kambô. Furthermore, this review seeks to shed light on perspectives on the future of research related to the kambô.
Collapse
Affiliation(s)
- Thais A. C. Nogueira
- Departamento de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
- Grupo de Pesquisas em Metabolômica e Espectrometria de Massas, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
| | - Igor Luis Kaefer
- Instituto de Ciências Biológicas, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
| | - Marco A. Sartim
- Departamento de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
- Grupo de Pesquisas em Metabolômica e Espectrometria de Massas, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
- Departamento de Pós-Graduação, Universidade Nilton Lins, Manaus, Amazonas, Brazil
| | - Manuela B. Pucca
- Curso de Medicina, Universidade Federal de Roraima, Boa Vista, Roraima, Brazil
| | - Jacqueline Sachett
- Departamento de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
- Grupo de Pesquisas em Metabolômica e Espectrometria de Massas, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
- Departamento de Ensino e Pesquisa, Fundação Alfredo da Matta, Manaus, Amazonas, Brazil
| | - André L. Barros
- Grupo de Pesquisas em Metabolômica e Espectrometria de Massas, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
| | - Moysés B. A. Júnior
- Grupo de Pesquisas em Metabolômica e Espectrometria de Massas, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
- Instituto de Ciências Exatas e Tecnologia, Universidade Federal do Amazonas, Itacoatiara, Amazonas, Brazil
| | - Djane C. Baía-da-Silva
- Departamento de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
- Grupo de Pesquisas em Metabolômica e Espectrometria de Massas, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
| | - Paulo S. Bernarde
- Laboratório de Herpetologia, Campus Floresta, Universidade Federal do Acre, Cruzeiro do Sul, Acre, Brazil
| | - Hector H. F. Koolen
- Grupo de Pesquisas em Metabolômica e Espectrometria de Massas, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
| | - Wuelton M. Monteiro
- Departamento de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
- Grupo de Pesquisas em Metabolômica e Espectrometria de Massas, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
| |
Collapse
|
3
|
Wu Y, Wang L, Zhou M, Chen T, Shaw C. Phylloseptin-PBa1, -PBa2, -PBa3: Three novel antimicrobial peptides from the skin secretion of Burmeister's leaf frog (Phyllomedusa burmeisteri). Biochem Biophys Res Commun 2019; 509:664-673. [PMID: 30612735 DOI: 10.1016/j.bbrc.2018.12.156] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 12/22/2018] [Indexed: 11/16/2022]
Abstract
Skin secretions are known as a highly-complex mixture of abundant and diverse bioactive molecules and its study has attracted increasing attention over recent years. Phylloseptin is a unique family of antimicrobial peptides which have been only isolated from frogs of the Phyllomedusinae subfamily. Here, three novel peptide precursors were successfully cloned from a cDNA library, which was constructed from the skin secretion of Phyllomedusa burmeisteri, as pair of primers (one nested universal primer and a designed degenerate sense primer) were employed for "shotgun" cloning. The encoded mature peptides were validated by MS/MS sequencing, and subsequently termed as Phylloseptin-PBa1, -PBa2 and -PBa3. Phylloseptin-PBa1 and -PBa2 were demonstrated to possess potent antimicrobial activities against Gram-positive bacteria and yeast, as well as broad-spectrum anticancer activities, while they possess varying haemolytic activity at the effective concentration. In contrast, Phylloseptin-PBa3 was found to exhibit a strong haemolytic activity even though it was only found to possess a weak antimicrobial activity and inconspicuous anticancer activity.
Collapse
Affiliation(s)
- Youjia Wu
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, School of Pharmacy, Fujian Medical University, No.1 North Xuefu Road, 350108, Fuzhou, Fujian, China; Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, No.1 North Xuefu Road, 350108, Fuzhou, Fujian, China.
| | - Lei Wang
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, BT9 7BL, Belfast, Northern Ireland, UK
| | - Mei Zhou
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, BT9 7BL, Belfast, Northern Ireland, UK
| | - Tianbao Chen
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, BT9 7BL, Belfast, Northern Ireland, UK
| | - Chris Shaw
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, BT9 7BL, Belfast, Northern Ireland, UK
| |
Collapse
|
4
|
Long Q, Li L, Wang H, Li M, Wang L, Zhou M, Su Q, Chen T, Wu Y. Novel peptide dermaseptin-PS1 exhibits anticancer activity via induction of intrinsic apoptosis signalling. J Cell Mol Med 2018; 23:1300-1312. [PMID: 30461197 PMCID: PMC6349196 DOI: 10.1111/jcmm.14032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/15/2018] [Indexed: 01/10/2023] Open
Abstract
Antimicrobial peptides (AMP) secreted by the granular glands of frog skin have been widely reported to exhibit strong bacteriostatic and bactericidal activities. Many of them have been documented with potent antiproliferative effects on multiple cancer cells, many studies also suggested that AMPs exert their functions via disrupting cell membranes. However, whether and how other cell death induction mechanism is involved in mammalian cancer cells has rarely been investigated. In this study, a novel AMP named Dermaseptin-PS1 was isolated and identified from Phyllomedusa sauvagei, it showed strong antimicrobial activities against three types of microorganisms. In vitro antiproliferative studies on human glioblastoma U-251 MG cells indicated that Dermaseptin-PS1 disrupted cell membranes at the concentrations of 10-5 M and above, while the cell membrane integrity was not affected when concentrations were decreased to 10-6 M or lower. Further examinations revealed that, at the relatively low concentration (10-6 M), Dermaseptin-PS1 induced apoptosis through mitochondrial-related signal pathway in U-251 MG cells. Thus, for the first time, we report a novel frog skin derived AMP with anticancer property by distinct mechanisms, which largely depends on its concentration. Together, our study provides new insights into the mechanism-illustrated drug design and the optimisation of dose control for cancer treatment in clinic.
Collapse
Affiliation(s)
- Qilin Long
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, UK
| | - Lei Li
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, UK
| | - Hao Wang
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, UK.,Department of Nutrition and Metabolic Disease, The Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - Miaoran Li
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, UK
| | - Lei Wang
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, UK
| | - Mei Zhou
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, UK
| | - Qiaozhu Su
- Department of Nutrition and Metabolic Disease, The Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - Tianbao Chen
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, UK
| | - Yuxin Wu
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, UK.,Department of Nutrition and Metabolic Disease, The Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, UK
| |
Collapse
|
5
|
Long Q, Wang L, Zhou M, Wu Y, Chen T. A novel peptide Phylloseptin-PBu from Phyllomedusa burmeisteri possesses insulinotropic activity via potassium channel and GLP-1 receptor signalling. J Cell Mol Med 2018. [PMID: 29516672 PMCID: PMC5908111 DOI: 10.1111/jcmm.13573] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Insulin, as one of the most important hormones regulating energy metabolism, plays an essential role in maintaining glucose and lipid homeostasis in vivo. Failure or insufficiency of insulin secretion from pancreatic beta‐cells increases glucose and free fatty acid level in circulation and subsequently contributes to the emergence of hyperglycaemia and dyslipidaemia. Therefore, stimulating the insulin release benefits the treatment of type 2 diabetes and obesity significantly. Frog skin peptides have been extensively studied for their biological functions, among which, Phylloseptin peptides discovered in Phyllomedusinae frogs have been found to exert antimicrobial, antiproliferative and insulinotropic activities, while the mechanism associated with Phylloseptin‐induced insulin secretion remains elusive. In this study, we reported a novel peptide named Phylloseptin‐PBu, isolated and identified from Phyllomedusa burmeisteri, exhibited dose‐dependent insulinotropic property in rat pancreatic beta BRIN‐BD11 cells without altering cell membrane integrity. Further mechanism investigations revealed that Phylloseptin‐PBu‐induced insulin output is predominantly modulated by KATP‐[K+] channel depolarization triggered extracellular calcium influx and GLP‐1 receptor initiated PKA signalling activation. Overall, our study highlighted that this novel Phylloseptin‐PBu peptide has clear potential to be developed as a potent antidiabetic agent with established function‐traced mechanism and low risk of cytotoxicity.
Collapse
Affiliation(s)
- Qilin Long
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, UK
| | - Lei Wang
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, UK
| | - Mei Zhou
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, UK
| | - Yuxin Wu
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, UK
| | - Tianbao Chen
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, UK
| |
Collapse
|