1
|
Albulescu L, Suciu A, Neagu M, Tanase C, Pop S. Differential Biological Effects of Trifolium pratense Extracts-In Vitro Studies on Breast Cancer Models. Antioxidants (Basel) 2024; 13:1435. [PMID: 39765764 PMCID: PMC11672829 DOI: 10.3390/antiox13121435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/14/2024] [Accepted: 11/18/2024] [Indexed: 01/11/2025] Open
Abstract
The increasing popularity of herbal supplements emphasizes the need of scientific data regarding their health benefits and possible toxicological concerns. The complexity of botanical extracts, which include thousands of distinct compounds, contributes to the challenging nature of this endeavor. In this study, we explored the hormetic effects of two Trifolium pratense extracts on breast cell lines. Using a wide range of concentrations (0.1 to 3.33 mg/mL), we analyzed how extracts modulate cellular processes such as viability, proliferation, and oxidative stress on breast adenocarcinoma highly invasive estrogen receptor negative (ER-) and noninvasive ER+ cells, as well as on non-tumorigenic ER- normal cells. The cytotoxicity and real-time cell analysis (RTCA) assays showed that both extracts exercised a biphasic dose effect on adenocarcinoma ER+ and normal ER- cell proliferation and oxidative stress. We report a monotonic dose-dependent cytotoxicity on highly invasive adenocarcinoma ER- cells; the induced apoptosis was based on the pro-oxidant activity of extracts. The reactive oxygen species (ROS) generation by high-dose ethanolic extract was observed in all cells, followed by mitochondria dysfunction. Oxidative stress parameters, such as malondialdehyde (MDA) and reduced glutathione (GSH) levels, and superoxide dismutase (SOD) activity were affected. Our study demonstrates that T. pratense extracts have chemoprevention potential in normal and tumorigenic breast cells by modulating cellular proliferation and oxidative stress.
Collapse
Affiliation(s)
- Lucian Albulescu
- Biochemistry & Proteomics Laboratory, “Victor Babes” National Institute of Pathology, 050096 Bucharest, Romania; (L.A.); (C.T.)
| | - Alexandru Suciu
- Research Department, SC Hofigal Export-Import SA, 042124 Bucharest, Romania; (A.S.); (M.N.)
| | - Mihaela Neagu
- Research Department, SC Hofigal Export-Import SA, 042124 Bucharest, Romania; (A.S.); (M.N.)
| | - Cristiana Tanase
- Biochemistry & Proteomics Laboratory, “Victor Babes” National Institute of Pathology, 050096 Bucharest, Romania; (L.A.); (C.T.)
- “Nicolae Cajal” Institute of Medical Scientific Research, “Titu Maiorescu” University, 040441 Bucharest, Romania
| | - Sevinci Pop
- Cell Biology Laboratory, “Victor Babes” National Institute of Pathology, 050096 Bucharest, Romania
| |
Collapse
|
2
|
Zeng Y, Tao G, Zeng Y, He J, Cao H, Zhang L. Bibliometric and visualization analysis in the field of epigenetics and glioma (2009-2024). Front Oncol 2024; 14:1431636. [PMID: 39534093 PMCID: PMC11555291 DOI: 10.3389/fonc.2024.1431636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
Introduction Glioma represents the most prevalent primary malignant tumor in the central nervous system, a deeper understanding of the underlying molecular mechanisms driving glioma is imperative for guiding future treatment strategies. Emerging evidence has implicated a close relationship between glioma development and epigenetic regulation. However, there remains a significant lack of comprehensive summaries in this domain. This study aims to analyze epigenetic publications pertaining to gliomas from 2009 to 2024 using bibliometric methods, consolidate the extant research, and delineate future prospects for investigation in this critical area. Methods For the purpose of this study, publications spanning the years 2009 to 2024 were extracted from the esteemed Web of Science Core Collection (WoSCC) database. Utilizing advanced visualization tools such as CiteSpace and VOSviewer, comprehensive data pertaining to various aspects including countries, authors, author co-citations, countries/regions, institutions, journals, cited literature, and keywords were systematically visualized and analyzed. Results A thorough analysis was conducted on a comprehensive dataset consisting of 858 publications, which unveiled a discernible trend of steady annual growth in research output within this specific field. The nations of the United States, China, and Germany emerged as the foremost contributors to this research domain. It is noteworthy that von Deimling A and the Helmholtz Association were distinguished as prominent authors and institutions, respectively, in this corpus of literature. A rigorous keyword search and subsequent co-occurrence analysis were executed, ultimately leading to the identification of seven distinct clusters: "epigenetic regulation", "DNA repair", "DNA methylation", "brain tumors", "diffuse midline glioma (DMG)", "U-87 MG" and "epigenomics". Furthermore, an intricate cluster analysis revealed that the primary foci of research within this field were centered around the exploration of glioma pathogenesis and the development of corresponding treatment strategies. Conclusion This article underscores the prevailing trends and hotspots in glioma epigenetics, offering invaluable insights that can guide future research endeavors. The investigation of epigenetic mechanisms primarily centers on DNA modification, non-coding RNAs (ncRNAs), and histone modification. Furthermore, the pursuit of overcoming temozolomide (TMZ) resistance and the exploration of diverse emerging therapeutic strategies have emerged as pivotal avenues for future research within the field of glioma epigenetics.
Collapse
Affiliation(s)
- Yijun Zeng
- Department of Neurosurgery, The Third Affiliated Hospital of Chengdu Medical College, Chengdu Pidu District People’s Hospital, Chengdu, China
| | - Ge Tao
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Yong Zeng
- Department of Neurosurgery, The Third Affiliated Hospital of Chengdu Medical College, Chengdu Pidu District People’s Hospital, Chengdu, China
| | - Jihong He
- Department of Neurosurgery, The Third Affiliated Hospital of Chengdu Medical College, Chengdu Pidu District People’s Hospital, Chengdu, China
| | - Hui Cao
- Development and Regeneration Key Laboratory of Sichuan Province, Institute of Neuroscience, Department of Pathology and Pathophysiology, Chengdu Medical College, Chengdu, China
| | - Lushun Zhang
- Development and Regeneration Key Laboratory of Sichuan Province, Institute of Neuroscience, Department of Pathology and Pathophysiology, Chengdu Medical College, Chengdu, China
| |
Collapse
|
3
|
Alorfi NM, Ashour AM, Alharbi AS, Alshehri FS. Targeting inflammation in glioblastoma: An updated review from pathophysiology to novel therapeutic approaches. Medicine (Baltimore) 2024; 103:e38245. [PMID: 38788009 PMCID: PMC11124608 DOI: 10.1097/md.0000000000038245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
Glioblastoma (GBM) is a highly aggressive primary malignant brain tumor with a dismal prognosis despite current treatment strategies. Inflammation plays an essential role in GBM pathophysiology, contributing to tumor growth, invasion, immunosuppression, and angiogenesis. As a result, pharmacological intervention with anti-inflammatory drugs has been used as a potential approach for the management of GBM. To provide an overview of the current understanding of GBM pathophysiology, potential therapeutic applications of anti-inflammatory drugs in GBM, conventional treatments of glioblastoma and emerging therapeutic approaches currently under investigation. A narrative review was carried out, scanning publications from 2000 to 2023 on PubMed and Google Scholar. The search was not guided by a set research question or a specific search method but rather focused on the area of interest. Conventional treatments such as surgery, radiotherapy, and chemotherapy have shown some benefits, but their effectiveness is limited by various factors such as tumor heterogeneity and resistance.
Collapse
Affiliation(s)
- Nasser M. Alorfi
- Pharmacology and Toxicology Department, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ahmed M. Ashour
- Pharmacology and Toxicology Department, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Adnan S. Alharbi
- Pharmacy Practice Department, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Fahad S. Alshehri
- Pharmacology and Toxicology Department, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
4
|
Tahmasebi Dehkordi H, Khaledi F, Ghasemi S. Immunological processes of enhancers and suppressors of long non-coding RNAs associated with brain tumors and inflammation. Int Rev Immunol 2024; 43:178-196. [PMID: 37974420 DOI: 10.1080/08830185.2023.2280581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 03/18/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023]
Abstract
Immunological processes, such as inflammation, can both cause tumor suppression and cancer progression. Moreover, deregulated levels of long non-coding RNA (lncRNA) expression in the brain may cause inflammation and lead to the growth of tumors. Like other biological processes, the immune system's role in cancer is complicated, varies, and can help or hurt the cancer's maintenance. According to research, inflammation and brain cancer are correlated via several signaling pathways. A variety of lncRNAs have recently been revealed to influence cancer by modulating inflammatory pathways. As a result, lncRNAs have the potential to influence carcinogenesis, tumor formation, or tumor suppression via an increase or decrease in inflammation functions. Although the study and targeting of lncRNAs have made great progress in the treatment of cancer, there are definitely limitations and challenges. Using new technologies like nanocarriers and cell-penetrating peptides (CPPs) to target treatments without hurting healthy body tissues has shown to be very effective. In this review article, we have collected significantly related lncRNAs and their inhibitory or stimulating roles in inflammation and brain cancer for the first time. However, there are limitations, such as side effects and damage to normal tissues. With the advancement of new targeting technologies, these lncRNAs may be candidates for the specific targeting therapy of brain cancers by limiting inflammation or stimulating the immune system against them in the future.
Collapse
Affiliation(s)
- Hossein Tahmasebi Dehkordi
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Fatemeh Khaledi
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Sorayya Ghasemi
- Cancer Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
5
|
Wen J, Ding Y, Zheng S, Li X, Xiao Y. Sevoflurane Suppresses Glioma Cell Proliferation, Migration, and Invasion Both In Vitro and In Vivo Partially Via Regulating KCNQ1OT1/miR-146b-5p/STC1 Axis. Cancer Biother Radiopharm 2024; 39:105-116. [PMID: 32996777 DOI: 10.1089/cbr.2020.3762] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background: Sevoflurane (Sev), a volatile anesthetic agent, is widely used in neurosurgery for anesthesia maintenance, accompanied with antitumor activity postanesthesia in multiple human cancers, including glioma. However, the molecular mechanism of Sev in glioma is largely unclear, including associated informative noncoding RNAs, such as long noncoding RNAs (lncRNA) and microRNAs (miRNAs). Methods: Expression of lncRNA KCNQ1 opposite strand/antisense transcript 1 (KCNQ1OT1), miRNA (miR)-146b-5p, and stanniocalcin-1 (STC1) was measured by real-time quantitative polymerase chain reaction and Western blotting. Cell proliferation, apoptosis, migration, and invasion in vitro were examined by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay, fluorescence-activated cell sorting method, and transwell assays, respectively. Tumor growth in vivo was determined by xenograft models. The direct interaction between genes was confirmed by dual-luciferase reporter assay. Results: Sev enhanced apoptotic rate, but inhibited cell viability, migration, and invasion abilities of human glioma A172 and U251 cells in vitro, as well as tumor growth inhibition in vivo. The tumor-suppressive role of Sev in glioma was accompanied with downregulated KCNQ1OT1 and STC1, and upregulated miR-146b-5p. Overexpression of KCNQ1OT1 through transfection reversed, while KCNQ1OT1 silencing aggravated the antitumor role of Sev in A172 and U251 cells. Moreover, KCNQ1OT1-mediated tumor-promoting activity in A172 and U251 cells under Sev treatment was abrogated by miR-146b-5p restoration or STC1 deletion. Essentially, KCNQ1OT1 could positively regulate STC1 by acting as miR-146b-5p decoy. Conclusion: KCNQ1OT1 knockdown mediated the role of Sev in glioma cell proliferation, apoptosis, migration, and invasion both in vitro and in vivo through miR-146b-5p/STC1 pathway.
Collapse
Affiliation(s)
- Jian Wen
- Department of Anesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Yan Ding
- Key laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Shaohua Zheng
- Department of Anesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Xin Li
- Department of Anesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Ying Xiao
- Department of Anesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| |
Collapse
|
6
|
Davodabadi F, Mirinejad S, Malik S, Dhasmana A, Ulucan-Karnak F, Sargazi S, Sargazi S, Fathi-Karkan S, Rahdar A. Nanotherapeutic approaches for delivery of long non-coding RNAs: an updated review with emphasis on cancer. NANOSCALE 2024; 16:3881-3914. [PMID: 38353296 DOI: 10.1039/d3nr05656b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
The long noncoding RNAs (lncRNAs) comprise a wide range of RNA species whose length exceeds 200 nucleotides, which regulate the expression of genes and cellular functions in a wide range of organisms. Several diseases, including malignancy, have been associated with lncRNA dysregulation. Due to their functions in cancer development and progression, lncRNAs have emerged as promising biomarkers and therapeutic targets in cancer diagnosis and treatment. Several studies have investigated the anti-cancer properties of lncRNAs; however, only a few lncRNAs have been found to exhibit tumor suppressor properties. Furthermore, their length and poor stability make them difficult to synthesize. Thus, to overcome the instability of lncRNAs, poor specificity, and their off-target effects, researchers have constructed nanocarriers that encapsulate lncRNAs. Recently, translational medicine research has focused on delivering lncRNAs into tumor cells, including cancer cells, through nano-drug delivery systems in vivo. The developed nanocarriers can protect, target, and release lncRNAs under controlled conditions without appreciable adverse effects. To deliver lncRNAs to cancer cells, various nanocarriers, such as exosomes, microbubbles, polymer nanoparticles, 1,2-dioleyl-3-trimethylammoniumpropane chloride nanocarriers, and virus-like particles, have been successfully developed. Despite this, every nanocarrier has its own advantages and disadvantages when it comes to delivering nucleic acids effectively and safely. This article examines the current status of nanocarriers for lncRNA delivery in cancer therapy, focusing on their potential to enhance cancer treatment.
Collapse
Affiliation(s)
- Fatemeh Davodabadi
- Department of Biology, Faculty of Basic Science, Payame Noor University, Tehran, Iran.
| | - Shekoufeh Mirinejad
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Sumira Malik
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi-834002, India.
| | - Archna Dhasmana
- Himalayan School of Biosciences, Swami Rama Himalayan University, Jolly Grant, Dehradun, Uttarakhand, 248140, India.
| | - Fulden Ulucan-Karnak
- Department of Medical Biochemistry, Institute of Health Sciences, Ege University, İzmir 35100, Turkey.
| | - Sara Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Sonia Fathi-Karkan
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, 94531-55166, Iran
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd 9414974877, Iran.
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol, P. O. Box. 98613-35856, Iran.
| |
Collapse
|
7
|
Farani MR, Sarlak M, Gholami A, Azaraian M, Binabaj MM, Kakavandi S, Tambuwala MM, Taheriazam A, Hashemi M, Ghasemi S. Epigenetic drugs as new emerging therapeutics: What is the scale's orientation of application and challenges? Pathol Res Pract 2023; 248:154688. [PMID: 37494800 DOI: 10.1016/j.prp.2023.154688] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 07/28/2023]
Abstract
Epigenetics is the study of heritable changes in gene expression or function without altering the DNA sequence. Important factors are part of epigenetic events, such as methylation, DNA histone rearrangements, nucleosome transposition, and non-coding RNAs. Dysregulated epigenetic mechanics are associated with various cancers' initiation, development, and metastasis. It is known that the occurrence and development of cancer can be controlled by regulating unexpected epigenetic events. Epi-drugs are used singly or in combination with chemotherapy and enhance antitumor activity, reduce drug resistance, and stimulate the host immune response. Despite these benefits, epigenetic therapy as a single therapy or in combination with other drugs leads to adverse effects. This review article introduces and compares the advantages, disadvantages, and side effects of using these drugs for the first time since their introduction. Also, this article describes the mechanism of action of various epigenetic drugs. Recommendations for future use of epigenetic drugs as cancer therapeutics are suggested as an overall conclusion.
Collapse
Affiliation(s)
- Marzieh Ramezani Farani
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), the Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, 1417614411 Tehran, Iran
| | - Maryam Sarlak
- Department of Chemistry, Portland State University, Portland, OR, USA
| | - Amir Gholami
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Maryam Azaraian
- Department of Radiology, Charité - Universitätsmedizin Berlin, Berlin 10117, Germany; Department of Bioanalytical Ecotoxicology, UFZ - Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Maryam Moradi Binabaj
- Clinical Biochemistry, Department of Biochemistry and Nutrition, School of Medicine, Sabzevar University of Medical Science, Sabzevar, Iran; Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Sareh Kakavandi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool, Lincoln, LN6 7TS, 0United Kingdom
| | - Afshin Taheriazam
- Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Sorayya Ghasemi
- Cancer Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
8
|
Ma X, Zhu H, Cheng L, Chen X, Shu K, Zhang S. Targeting FGL2 in glioma immunosuppression and malignant progression. Front Oncol 2022; 12:1004700. [PMID: 36313679 PMCID: PMC9606621 DOI: 10.3389/fonc.2022.1004700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/26/2022] [Indexed: 11/23/2022] Open
Abstract
Glioblastoma (GBM) is the most malignant type of glioma with the worst prognosis. Traditional therapies (surgery combined with radiotherapy and chemotherapy) have limited therapeutic effects. As a novel therapy emerging in recent years, immunotherapy is increasingly used in glioblastoma (GBM), so we expect to discover more effective immune targets. FGL2, a member of the thrombospondin family, plays an essential role in regulating the activity of immune cells and tumor cells in GBM. Elucidating the role of FGL2 in GBM can help improve immunotherapy efficacy and design treatment protocols. This review discusses the immunosuppressive role of FGL2 in the GBM tumor microenvironment and its ability to promote malignant tumor progression while considering FGL2-targeted therapeutic strategies. Also, we summarize the molecular mechanisms of FGL2 expression on various immune cell types and discuss the possibility of FGL2 and its related mechanisms as new GBM immunotherapy.
Collapse
Affiliation(s)
- Xiaoyu Ma
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongtao Zhu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lidong Cheng
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Chen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Shu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Suojun Zhang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Suojun Zhang,
| |
Collapse
|
9
|
Huang L, Zhang J, Gong F, Han Y, Huang X, Luo W, Cai H, Zhang F. Identification and validation of ferroptosis-related lncRNA signatures as a novel prognostic model for glioma. Front Genet 2022; 13:927142. [PMID: 36226186 PMCID: PMC9549413 DOI: 10.3389/fgene.2022.927142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Ferroptosis is a newly discovered form of regulated cell death with distinct properties and recognizing functions involved in physical conditions or various diseases, including cancers. However, the relationship between gliomas and ferroptosis-related lncRNAs (FRLs) remains unclear.Methods: We collected a total of 1850 samples from The Cancer Genome Atlas (TCGA) and Genotype Tissue Expression (GTEX) databases, including 698 tumor and 1,152 normal samples. A list of ferroptosis-related genes was downloaded from the Ferrdb website. Differentially expressed FRLs (DEFRLS) were analyzed using the “limma” package in R software. Subsequently, prognosis-related FRLs were obtained by univariate Cox analysis. Finally, a prognostic model based on the 3 FRLs was constructed using Cox regression analysis with the least absolute shrinkage and selection operator (LASSO) algorithm. The prognostic power of the model was assessed using receiver operating characteristic (ROC) curve analysis and Kaplan-Meier (K-M) survival curve analysis. In addition, we further explored the relationship of the immune landscape and somatic mutations to prognostic model characteristics. Finally, we validated the function of LINC01426 in vitro.Results: We successfully constructed a 3-FRLs signature and classified glioma patients into high-risk and low-risk groups based on the risk score calculated from this signature. Compared with traditional clinicopathological features [age, sex, grade, isocitrate dehydrogenase (IDH) status], the prognostic accuracy of this model is more stable and stronger. Additionally, the model had stable predictive power for overall survival over a 5-year period. In addition, we found significant differences between the two groups in cellular immunity, the numbers of many immune cells, including NK cells, CD4+, CD8+ T-cells, and macrophages, and the expression of many immune-related genes. Finally, the two groups were also significantly different at the level of somatic mutations, especially in glioma prognosis-related genes such as IDH1 and ATRX, with lower mutation rates in the high-risk group leading to poorer prognosis. Finally, we found that the ferroptosis process of glioma cells was inhibited after knocking down the expression of LINC01426.Conclusion: The proposed 3-FRL signature is a promising biomarker for predicting prognostic features in glioma patients.
Collapse
Affiliation(s)
- Liang Huang
- Department of Rehabilitation Medicine, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Juan Zhang
- Department of Rehabilitation Medicine, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Fanghua Gong
- Department of Nursing, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Yuhua Han
- Department of Cadre Health Care, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Xing Huang
- Department of General Surgery, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Wanxiang Luo
- Department of Rehabilitation Medicine, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Huaan Cai
- Department of Rehabilitation Medicine, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
- *Correspondence: Huaan Cai, ; Fan Zhang,
| | - Fan Zhang
- Department of Rehabilitation Medicine, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
- *Correspondence: Huaan Cai, ; Fan Zhang,
| |
Collapse
|
10
|
Mischkulnig M, Kiesel B, Rötzer-Pejrimovsky T, Borkovec M, Lang A, Millesi M, Wadiura LI, Hervey-Jumper S, Penninger JM, Berger MS, Widhalm G, Erhart F. The impact of heme biosynthesis regulation on glioma aggressiveness: Correlations with diagnostic molecular markers. Front Mol Neurosci 2022; 15:928355. [PMID: 36187350 PMCID: PMC9515895 DOI: 10.3389/fnmol.2022.928355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
Background The prognosis of diffusely infiltrating glioma patients is dismal but varies greatly between individuals. While characterization of gliomas primarily relied on histopathological features, molecular markers increasingly gained importance and play a key role in the recently published 5th edition of the World Health Organization (WHO) classification. Heme biosynthesis represents a crucial pathway due to its paramount importance in oxygen transport, energy production and drug metabolism. Recently, we described a “heme biosynthesis mRNA expression signature” that correlates with histopathological glioma grade and survival. The aim of the current study was to correlate this heme biosynthesis mRNA expression signature with diagnostic molecular markers and investigate its continued prognostic relevance. Materials and methods In this study, patient data were derived from the “The Cancer Genome Atlas” (TCGA) lower-grade glioma and glioblastoma cohorts. We identified diffusely infiltrating gliomas correlating molecular tumor diagnosis according to the most recent WHO classification with heme biosynthesis mRNA expression. The following molecular markers were analyzed: EGFR amplification, TERT promoter mutation, CDKN2A/B homozygous loss, chromosome 7 + /10- aneuploidy, MGMT methylation, IDH mutation, ATRX loss, p53 mutation and 1p19q codeletion. Subsequently, we calculated the heme biosynthesis mRNA expression signature for correlation with distinct molecular glioma markers/molecular subgroups and performed survival analyses. Results A total of 649 patients with available data on up-to-date molecular markers and heme biosynthesis mRNA expression were included. According to analysis of individual molecular markers, we found a significantly higher heme biosynthesis mRNA expression signature in gliomas with IDH wildtype (p < 0.0005), without 1p19q codeletion (p < 0.0005), with homozygous CDKN2A/B loss (p < 0.0005) and with EGFR amplification (p = 0.001). Furthermore, we observed that the heme biosynthesis mRNA expression signature increased with molecular subgroup aggressiveness (p < 0.0005), being lowest in WHO grade 2 oligodendrogliomas and highest in WHO grade 4 glioblastomas. Finally, the heme biosynthesis mRNA expression signature was a statistically significant survival predictor after multivariate correction for all molecular markers (p < 0.0005). Conclusion Our data demonstrate a significant correlation between heme biosynthesis regulation and diagnostic molecular markers and a prognostic relevance independent of these established markers. Consequently, heme biosynthesis expression is a promising biomarker for glioma aggressiveness and might constitute a potential target for novel therapeutic approaches.
Collapse
Affiliation(s)
- Mario Mischkulnig
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
- Central Nervous System Tumors Unit, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Barbara Kiesel
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
- Central Nervous System Tumors Unit, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Thomas Rötzer-Pejrimovsky
- Central Nervous System Tumors Unit, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Martin Borkovec
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
- Department of Statistics, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Alexandra Lang
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
- Central Nervous System Tumors Unit, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Matthias Millesi
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
- Central Nervous System Tumors Unit, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Lisa I. Wadiura
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
- Central Nervous System Tumors Unit, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Shawn Hervey-Jumper
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Josef M. Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Mitchel S. Berger
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Georg Widhalm
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
- Central Nervous System Tumors Unit, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- *Correspondence: Georg Widhalm,
| | - Friedrich Erhart
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
- Central Nervous System Tumors Unit, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Friedrich Erhart,
| |
Collapse
|
11
|
Xu J, Liu F, Li Y, Shen L. A 1p/19q Codeletion-Associated Immune Signature for Predicting Lower Grade Glioma Prognosis. Cell Mol Neurobiol 2022; 42:709-722. [PMID: 32894375 PMCID: PMC11441237 DOI: 10.1007/s10571-020-00959-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 08/30/2020] [Indexed: 12/19/2022]
Abstract
Lower grade gliomas (LGGs) with codeletion of chromosomal arms 1p and 19q (1p/19 codeletion) have a favorable outcome. However, its overall survival (OS) varies. Here, we established an immune signature associated with 1p/19q codeletion for accurate prediction of prognosis of LGGs. The Chinese Glioma Genome Atlas (CGGA) and The Cancer Genome Atlas (TCGA) databases with RNA sequencing and corresponding clinical data were dichotomized into training group and testing group. The immune-related differentially expressed genes (DEGs) associated with 1p/19q codeletion were screened using Cox proportional hazards regression analyses. A prognostic signature was established using dataset from CGGA and tested in TCGA database. Subsequently, we explored the correlation between the prognostic signature and immune response. Thirteen immune genes associated with 1p/19q codeletion were used to construct a prognostic signature. The 1-, 3-, 5-year survival rates of the low-risk group were approximately 97%, 89%, and 79%, while those of the high-risk group were 81%, 50% and 34%, respectively, in the training group. The nomogram which comprised age, WHO grade, primary or recurrent types, 1p/19q codeletion status and risk score provided accurate prediction for the survival rate of glioma. DEGs that were highly expressed in the high-risk group clustered with many immune-related pathways. Immune checkpoints including TIM3, PD1, PDL1, CTLA4, TIGIT, MIR155HG, and CD48 were correlated with the risk score. VAV3 and TNFRFSF11B were found to be candidate immune checkpoints associated with prognosis. The 1p/19q codeletion-associated immune signature provides accurate prediction of OS. VAV3 and TNFRFSF11B are novel immune checkpoints.
Collapse
Affiliation(s)
- Jie Xu
- Department of Neurosurgery, Huzhou Cent Hospital, Affiliated Cent Hospital Huzhou University, 198 Hongqi Road, Huzhou, 313000, Zhejiang, China
| | - Fang Liu
- Department of Neurosurgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, 68 Gehu Road, Changzhou, 213000, Jiangsu, China
| | - Yuntao Li
- Department of Neurosurgery, Huzhou Cent Hospital, Affiliated Cent Hospital Huzhou University, 198 Hongqi Road, Huzhou, 313000, Zhejiang, China
| | - Liang Shen
- Department of Neurosurgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, 68 Gehu Road, Changzhou, 213000, Jiangsu, China.
| |
Collapse
|
12
|
Tamtaji OR, Derakhshan M, Rashidi Noshabad FZ, Razaviyan J, Hadavi R, Jafarpour H, Jafari A, Rajabi A, Hamblin MR, Mahabady MK, Taghizadieh M, Mirzaei H. Non-Coding RNAs and Brain Tumors: Insights Into Their Roles in Apoptosis. Front Cell Dev Biol 2022; 9:792185. [PMID: 35111757 PMCID: PMC8801811 DOI: 10.3389/fcell.2021.792185] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 12/08/2021] [Indexed: 12/18/2022] Open
Abstract
A major terrifying ailment afflicting the humans throughout the world is brain tumor, which causes a lot of mortality among pediatric and adult solid tumors. Several major barriers to the treatment and diagnosis of the brain tumors are the specific micro-environmental and cell-intrinsic features of neural tissues. Absence of the nutrients and hypoxia trigger the cells' mortality in the core of the tumors of humans' brains: however, type of the cells' mortality, including apoptosis or necrosis, has been not found obviously. Current studies have emphasized the non-coding RNAs (ncRNAs) since their crucial impacts on carcinogenesis have been discovered. Several investigations suggest the essential contribution of such molecules in the development of brain tumors and the respective roles in apoptosis. Herein, we summarize the apoptosis-related non-coding RNAs in brain tumors.
Collapse
Affiliation(s)
- Omid Reza Tamtaji
- Students’ Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Derakhshan
- Department of Pathology, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Javad Razaviyan
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Razie Hadavi
- Students’ Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Jafarpour
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ameneh Jafari
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Rajabi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Johannesburg, South Africa
| | - Mahmood Khaksary Mahabady
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Taghizadieh
- Department of Pathology, School of Medicine, Center for Women’s Health Research Zahra, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
13
|
Tanase C, Enciu AM, Codrici E, Popescu ID, Dudau M, Dobri AM, Pop S, Mihai S, Gheorghișan-Gălățeanu AA, Hinescu ME. Fatty Acids, CD36, Thrombospondin-1, and CD47 in Glioblastoma: Together and/or Separately? Int J Mol Sci 2022; 23:ijms23020604. [PMID: 35054787 PMCID: PMC8776193 DOI: 10.3390/ijms23020604] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 02/04/2023] Open
Abstract
Glioblastoma (GBM) is one of the most aggressive tumors of the central nervous system, characterized by a wide range of inter- and intratumor heterogeneity. Accumulation of fatty acids (FA) metabolites was associated with a low survival rate in high-grade glioma patients. The diversity of brain lipids, especially polyunsaturated fatty acids (PUFAs), is greater than in all other organs and several classes of proteins, such as FA transport proteins (FATPs), and FA translocases are considered principal candidates for PUFAs transport through BBB and delivery of PUFAs to brain cells. Among these, the CD36 FA translocase promotes long-chain FA uptake as well as oxidated lipoproteins. Moreover, CD36 binds and recognizes thrombospondin-1 (TSP-1), an extracellular matrix protein that was shown to play a multifaceted role in cancer as part of the tumor microenvironment. Effects on tumor cells are mediated by TSP-1 through the interaction with CD36 as well as CD47, a member of the immunoglobulin superfamily. TSP-1/CD47 interactions have an important role in the modulation of glioma cell invasion and angiogenesis in GBM. Separately, FA, the two membrane receptors CD36, CD47, and their joint ligand TSP-1 all play a part in GBM pathogenesis. The last research has put in light their interconnection/interrelationship in order to exert a cumulative effect in the modulation of the GBM molecular network.
Collapse
Affiliation(s)
- Cristiana Tanase
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (A.M.E.); (E.C.); (I.D.P.); (M.D.); (A.M.D.); (S.P.); (S.M.); (M.E.H.)
- Department of Cell Biology and Clinical Biochemistry, Faculty of Medicine, Titu Maiorescu University, 031593 Bucharest, Romania
- Correspondence: ; Tel.: +40-74-020-4717
| | - Ana Maria Enciu
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (A.M.E.); (E.C.); (I.D.P.); (M.D.); (A.M.D.); (S.P.); (S.M.); (M.E.H.)
- Department of Cell Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Elena Codrici
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (A.M.E.); (E.C.); (I.D.P.); (M.D.); (A.M.D.); (S.P.); (S.M.); (M.E.H.)
| | - Ionela Daniela Popescu
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (A.M.E.); (E.C.); (I.D.P.); (M.D.); (A.M.D.); (S.P.); (S.M.); (M.E.H.)
| | - Maria Dudau
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (A.M.E.); (E.C.); (I.D.P.); (M.D.); (A.M.D.); (S.P.); (S.M.); (M.E.H.)
- Department of Cell Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Ana Maria Dobri
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (A.M.E.); (E.C.); (I.D.P.); (M.D.); (A.M.D.); (S.P.); (S.M.); (M.E.H.)
- Department of Cell Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- Department of Neurology, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
| | - Sevinci Pop
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (A.M.E.); (E.C.); (I.D.P.); (M.D.); (A.M.D.); (S.P.); (S.M.); (M.E.H.)
| | - Simona Mihai
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (A.M.E.); (E.C.); (I.D.P.); (M.D.); (A.M.D.); (S.P.); (S.M.); (M.E.H.)
| | - Ancuța-Augustina Gheorghișan-Gălățeanu
- Department of Cell Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- ‘C.I. Parhon’ National Institute of Endocrinology, 001863 Bucharest, Romania
| | - Mihail Eugen Hinescu
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (A.M.E.); (E.C.); (I.D.P.); (M.D.); (A.M.D.); (S.P.); (S.M.); (M.E.H.)
- Department of Cell Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| |
Collapse
|
14
|
Tian X, Yuan Y, Wang L. LncRNA colorectal neoplasia differentially expressed exacerbates the impairments in learning and memory induced by isoflurane. Hum Exp Toxicol 2022; 41:9603271221132152. [DOI: 10.1177/09603271221132152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Background This observation aimed to investigate the effect of colorectal neoplasia differentially expressed (CRNDE) targeted miR-212-5p on cognitive impairment induced by isoflurane (ISO) anesthesia in rats. Methods The cognitive function of rats was measured by Morris water maze test. QRT-PCR detection of CRNDE and miR-212-5p expression levels in rats in each group. Double luciferase was used to verify the targeting relationship between miR-212-5p and CRNDE, and commercial kits were used to detect the level of inflammatory cytokines in hippocampus. Results The concentration of CRNDE was enhanced in rats treated by ISO anesthetic. The neurological severity score was elevated, the escape latency of rats was prolonged, the stay time in the quadrant of the platform, and the number of times crossing the platform decreased in the ISO group. The above indexes of rats in ISO + si-CRNDE were improved. MiR-212-5p is a mediator in the management of CRNDE on cognition and inflammation. Conclusion CRNDE led to the deterioration of impairment on cognition induced by ISO through suppressing miR-212-5p expression and promoting neuroinflammation.
Collapse
Affiliation(s)
- Xiang Tian
- Department of Anesthesiology, Minda Hospital of Hubei Minzu University, Enshi, China
| | - Yawei Yuan
- Department of Anesthesiology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Long Wang
- Department of Pain Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
15
|
Bao X, Peng Y, Shen J, Yang L. Sevoflurane inhibits progression of glioma via regulating the HMMR antisense RNA 1/microRNA-7/cyclin dependent kinase 4 axis. Bioengineered 2021; 12:7893-7906. [PMID: 34719318 PMCID: PMC8806593 DOI: 10.1080/21655979.2021.1976712] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/29/2021] [Accepted: 08/31/2021] [Indexed: 11/04/2022] Open
Abstract
Sevoflurane (Sev) is a volatile anesthetic that can inhibit tumor malignancy. Glioma is a main brain problem, but the mechanism of Sev in glioma progression is largely unclear. This study aims to explore a potential regulatory network of long noncoding RNA (lncRNA)/microRNA (miRNA)/mRNA associated with the function of Sev in glioma progression. LncRNA HMMR antisense RNA 1 (HMMR-AS1), miR-7 and cyclin-dependent kinase 4 (CDK4) abundances were examined via quantitative reverse transcription polymerase chain reaction and western blot. Cell viability, invasion, and colony formation ability were analyzed via cell counting kit-8, transwell analysis, and colony formation. The target association was analyzed via dual-luciferase reporter analysis and RNA pull-down. The in vivo function of Sev was investigated by xenograft model. HMMR-AS1 abundance was increased in glioma tissues and cells, and reduced via Sev. Sev constrained cell viability, invasion, and colony formation ability via decreasing HMMR-AS1 in glioma cells. miR-7 expression was decreased in glioma, and was targeted via HMMR-AS1. HMMR-AS1 silence restrained cell viability, invasion, and colony formation ability by up-regulating miR-7 in glioma cells. Sev increases miR-7 abundance via decreasing HMMR-AS1. CDK4 was targeted via miR-7, and highly expressed in glioma. miR-7 overexpression inhibited cell viability, invasion, and colony formation ability via reducing CDK4 in glioma cells. CDK4 expression was reduced by Sev via HMMR-AS1/miR-7 axis. Sev suppressed cell growth in glioma by regulating HMMR-AS1. Sev represses glioma cell progression by regulating HMMR-AS1/miR-7/CDK4 axis.
Collapse
Affiliation(s)
- Xi’an Bao
- Department of Anesthesiology, The Affiliated Nanchang Hospital of SUN YAT-SEN University, Nanchang, 330006, China
| | - Yibo Peng
- Department of Anesthesiology, Chinese Medicine Hospital of Yangxin County, Huangshi, China
| | - Jun Shen
- Department of Anesthesiology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, China
| | - Longqiu Yang
- Department of Anesthesiology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, China
- Medical College, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
16
|
Dietary Phytoestrogens and Their Metabolites as Epigenetic Modulators with Impact on Human Health. Antioxidants (Basel) 2021; 10:antiox10121893. [PMID: 34942997 PMCID: PMC8750933 DOI: 10.3390/antiox10121893] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/17/2021] [Accepted: 11/25/2021] [Indexed: 12/12/2022] Open
Abstract
The impact of dietary phytoestrogens on human health has been a topic of continuous debate since their discovery. Nowadays, based on their presumptive beneficial effects, the amount of phytoestrogens consumed in the daily diet has increased considerably worldwide. Thus, there is a growing need for scientific data regarding their mode of action in the human body. Recently, new insights of phytoestrogens’ bioavailability and metabolism have demonstrated an inter-and intra-population heterogeneity of final metabolites’ production. In addition, the phytoestrogens may have the ability to modulate epigenetic mechanisms that control gene expression. This review highlights the complexity and particularity of the metabolism of each class of phytoestrogens, pointing out the diversity of their bioactive gut metabolites. Futhermore, it presents emerging scientific data which suggest that, among well-known genistein and resveratrol, other phytoestrogens and their gut metabolites can act as epigenetic modulators with a possible impact on human health. The interconnection of dietary phytoestrogens’ consumption with gut microbiota composition, epigenome and related preventive mechanisms is discussed. The current challenges and future perspectives in designing relevant research directions to explore the potential health benefits of dietary phytoestrogens are also explored.
Collapse
|
17
|
lncRNA SNHG7 promotes cell proliferation in glioma by acting as a competing endogenous RNA and sponging miR-138-5p to regulate EZH2 expression. Oncol Lett 2021; 22:565. [PMID: 34113393 PMCID: PMC8185700 DOI: 10.3892/ol.2021.12826] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 05/12/2021] [Indexed: 12/13/2022] Open
Abstract
Glioma is the most common type of primary brain cancer in adults. Accumulating studies have reported that long non-coding RNAs (lncRNAs) serve a significant role in the initiation and development of glioma. lncRNA small nucleolar RNA host gene 7 (SNHG7) has been previously demonstrated to serve a role in numerous glioma biological processes, including cell proliferation, invasion and migration. The present study aimed to investigate the role of SNHG7 in glioma through reverse transcription-quantitative PCR, western blotting and cell function assays. The results revealed that SNHG7 expression was upregulated in glioma tissues and cell lines, while microRNA (miR)-138-5p expression was downregulated. Moreover, the knockdown of SNHG7 expression decreased the proliferation of glioma cells. Mechanistic studies demonstrated that SNHG7 downregulated miR-138-5p expression, which subsequently affected the expression levels of its target gene, enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2). In conclusion, the results of the present study suggested that SNHG7 may act as a competing endogenous RNA to sponge miR-138-5p and modulate EZH2 expression. Thus, SNHG7 may enhance glioma proliferation via modulating the miR-138-5p/EZH2 signaling axis.
Collapse
|
18
|
Chang L, Bian Z, Xiong X, Liu J, Wang D, Zhou F, Zhang J, Zhang Y. Long Non-coding RNA LINC00320 Inhibits Tumorigenicity of Glioma Cells and Angiogenesis Through Downregulation of NFKB1-Mediated AQP9. Front Cell Neurosci 2021; 14:542552. [PMID: 33414706 PMCID: PMC7782426 DOI: 10.3389/fncel.2020.542552] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 11/09/2020] [Indexed: 12/24/2022] Open
Abstract
The inhibitory effect of long intergenic non-coding RNA 00320 (LINC00320) in glioma cell proliferation has been proposed in a recent study. However, the mechanisms by which LINC00320 regulate aquaporin 9 (AQP9) in glioma require further exploration. Hence, this study aims to investigate effects of LINC00320 on tumorigenicity of glioma cells and angiogenesis of microvascular endothelial cells (MVECs). Expression of LINC00320 and AQP9 in glioma tissues and cells was measured by reverse transcription–quantitative polymerase chain reaction and Western blot analysis. The relationship among LINC00320, nuclear factor κB subunit 1 (NFKB1) and AQP9 was examined by RNA immunoprecipitation, dual-luciferase reporter gene, and chromatin immunoprecipitation assays. The participation of LINC00320 and AQP9 in glioma cell proliferation and MVEC angiogenesis was analyzed using gain- and loss-of-function approaches. Finally, a nude mouse orthotopic xenograft model of glioma was established to investigate the effects of LINC00320 and AQP9 on glioma growth in vivo. LINC00320 was under-expressed and AQP9 was over-expressed in glioma tissues. Further mechanistic investigation showed that LINC00320 downregulated AQP9 by inhibiting the recruitment of NFKB1 to the promoter region of AQP9. LINC00320 overexpression or AQP9 silencing inhibited the proliferation of glioma cells and angiogenesis of MVECs. Also, upregulation of LINC00320 restrained tumor growth and angiogenesis in xenograft mice by downregulating AQP9. Taken together, LINC00320 acts as a tumor suppressor in glioma, thus presenting a novel therapeutic target.
Collapse
Affiliation(s)
- Lisha Chang
- Department of Neurology, North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Zhe Bian
- Department of Neurology, North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Xin Xiong
- Department of Neurology, North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Jian Liu
- Department of Neurology, North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Dali Wang
- Department of Neurology, North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Fuling Zhou
- Department of Neurology, North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Jiang Zhang
- Department of Neurology, North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Yunhe Zhang
- Department of Neurosurgery, North China University of Science and Technology Affiliated Hospital, Tangshan, China
| |
Collapse
|
19
|
Zuo W, Zhou K, Deng M, Lin Q, Yin Q, Zhang C, Zhou J, Song Y. LINC00963 facilitates acute myeloid leukemia development by modulating miR-608/MMP-15. Aging (Albany NY) 2020; 12:18970-18981. [PMID: 33012724 PMCID: PMC7732318 DOI: 10.18632/aging.103252] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/20/2020] [Indexed: 01/24/2023]
Abstract
Despite continuous improvements of AML therapy, the prognosis of AML patients remains unsatisfactory. Recently, lncRNAs have been reported to participate in the development of AML. Our data demonstrated that MMP15 and LINC00963 were upregulated and miR-608 was decreased in AML cells (THP-1, HL-60, HEL and MOLM-13) compared to HS-5 cells. RT-qPCR results showed that LINC00963 levels were higher in the serum and bone marrow of AML cases than in controls. Moreover, overexpression of LINC00963 promoted AML cell growth and EMT progression in both THP-1 and HL-60 cells. Furthermore, miR-608 levels were downregulated in the serum and bone marrow of AML cases compared with controls, and Pearson's correlation analysis indicated that LINC00963 was negatively correlated with miR-608 in the serum and bone marrow of AML samples. In addition, we demonstrated that LINC00963 sponged miR-608 expression and that MMP-15 was a target of miR-608 in AML cells. Finally, rescue experiments indicated that ectopic expression of LINC00963 accelerated cell growth and EMT development by modulating MMP-15. These data demonstrated that LINC00963 acted as an oncogene and may be a potential target for AML treatment.
Collapse
Affiliation(s)
- Wenli Zuo
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, Henan, China
| | - Keshu Zhou
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, Henan, China
| | - Mei Deng
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, Henan, China
| | - Quande Lin
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, Henan, China
| | - Qingsong Yin
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, Henan, China
| | - Chunlei Zhang
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, Henan, China
| | - Jian Zhou
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, Henan, China
| | - Yongping Song
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, Henan, China
| |
Collapse
|
20
|
Fu CH, Lai FF, Chen S, Yan CX, Zhang BH, Fang CZ, Wang GH. Silencing of long non-coding RNA CRNDE promotes autophagy and alleviates neonatal hypoxic-ischemic brain damage in rats. Mol Cell Biochem 2020; 472:1-8. [PMID: 32632609 DOI: 10.1007/s11010-020-03754-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 05/16/2020] [Indexed: 12/14/2022]
Abstract
Hypoxic-ischemic (HI) brain damage (HIBD) leads to high neonatal mortality and severe neurologic morbidity. Autophagy is involved in the pathogenesis of HIBD. This study aims to investigate the effect of long non-coding RNA colorectal neoplasia differentially expressed (CRNDE) on HIBD and to validate whether autophagy is involved in this process. A HIBD model in rat pups and a HI model in rat primary cerebrocortical neurons were established. Autophagy was evaluated by western blot. The HIBD in rats was evaluated by hematoxylin and eosin staining, TUNEL staining, triphenyl tetrazolium chloride staining, and morris water maze test. The HI injury in vitro was evaluated by determining cell viability and apoptosis. The results showed that CRNDE expression was time-dependently increased in the brain after HIBD. Administration with CRNDE shRNA-expressing lentiviruses alleviated pathological injury and apoptosis in rat hippocampus, decreased infarct volume, and improved behavior performance of rats subjected to HIBD. Furthermore, CRNDE silencing promoted cell viability and inhibited cell apoptosis in neurons exposed to HI. Moreover, CRNDE silencing promoted autophagy and the autophagy inhibitor 3-methyladenine counteracted the neuroprotective effect of CRNDE silencing on HI-induced neuronal injury both in vivo and in vitro. Collectively, CRNDE silencing alleviates HIBD, at least partially, through promoting autophagy.
Collapse
Affiliation(s)
- Chun-Hua Fu
- Department of Neonatology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Fang-Fang Lai
- Department of Pediatric, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Sai Chen
- Department of Neonatology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Cai-Xia Yan
- Department of Neonatology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Bing-Hong Zhang
- Department of Neonatology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Cheng-Zhi Fang
- Department of Neonatology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Gao-Hua Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, No.99 Zhangzhidong Road, Wuchang District, Wuhan, 430060, Hubei, China.
| |
Collapse
|
21
|
Yao X, Wu L, Gu Z, Li J. LINC01535 Promotes the Development of Osteosarcoma Through Modulating miR-214-3p/KCNC4 Axis. Cancer Manag Res 2020; 12:5575-5585. [PMID: 32753970 PMCID: PMC7354912 DOI: 10.2147/cmar.s232757] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 05/09/2020] [Indexed: 12/26/2022] Open
Abstract
Background Osteosarcoma (OS) is the most common primary bone tumor in group of children and adolescents. Increasing studies showed that long non-coding RNAs (lncRNAs) exerted important functions in the development of tumors, including OS. LINC01535 is an lncRNA which has been studied in cervical cancer but not in OS. Aim of the Study This study was aimed to explore the biological function and mechanism of LINC01535 in OS. Methods LINC01535 expression was detected by qRT-PCR. Colony formation assay, EdU assay and CCK-8 assay were applied to check cell proliferation ability in OS. Flow cytometry analysis was conducted to measure cell apoptosis capacity. Wound healing assay and transwell assay were performed to assess cell migration and invasion. Luciferase reporter assay and RNA pull-down assay were carried out to verify the molecular mechanism. Results The high expression of LINC01535 was presented in OS tissues and cell lines compared with adjacent normal tissues and human osteoblasts. Moreover, OS patients with high LINC01535 expression exhibited poor prognosis. Loss-of-function assay revealed that silenced LINC01535 significantly attenuated cell proliferation, migration and invasion, and enhanced cell apoptosis in OS. Through mechanistic exploration, we found that LINC01535 interacted with miR-214-3p, and KCNC4 was validated to be a target gene of miR-214-3p. The levels of KCNC4 mRNA and protein were positively modulated by LINC01535 and reversely mediated by miR-214-3p. Based on rescue experiments, KCNC4 overexpression reserved the suppressive function of silenced LINC01535 on OS cell growth, migration and invasion. Conclusion LINC01535, miR-214-3p and KCNC4 constituted an effective axis that exerted a pregnant regulation in OS development, which is a quite meaningful discovery for exploring potential therapeutic methods for OS patients.
Collapse
Affiliation(s)
- Xiaoke Yao
- Department of Orthopedics, Chengdu First People's Hospital, Chengdu 610041, Sichuan, People's Republic of China
| | - Lingna Wu
- Intensive Care Unit, Chengdu First People's Hospital, Chengdu, Sichuan, 610041, People's Republic of China
| | - Zuchao Gu
- Department of Orthopedics, Chengdu First People's Hospital, Chengdu 610041, Sichuan, People's Republic of China
| | - Jianhua Li
- Department of Orthopedics, Chengdu First People's Hospital, Chengdu 610041, Sichuan, People's Republic of China
| |
Collapse
|
22
|
Joshi P, Jallo G, Perera RJ. In silico analysis of long non-coding RNAs in medulloblastoma and its subgroups. Neurobiol Dis 2020; 141:104873. [PMID: 32320737 DOI: 10.1016/j.nbd.2020.104873] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 03/03/2020] [Accepted: 04/15/2020] [Indexed: 02/08/2023] Open
Abstract
Medulloblastoma is the most common malignant pediatric brain tumor with high fatality rate. Recent large-scale studies utilizing genome-wide technologies have sub-grouped medulloblastomas into four major subgroups: wingless (WNT), sonic hedgehog (SHH), group 3, and group 4. However, there has yet to be a global analysis of long non-coding RNAs, a crucial part of the regulatory transcriptome, in medulloblastoma. Here, we performed bioinformatic analysis of RNA-seq data from 175 medulloblastoma patients. Differential lncRNA expression sub-grouped medulloblastomas into the four main molecular subgroups. Some of these lncRNAs were subgroup-specific, with a random forest-based machine-learning algorithm identifying an 11-lncRNA diagnostic signature. We also validated the diagnostic signature in patient derived xenograft (PDX) models. We further identified a 17-lncRNA prognostic model using LASSO based penalized Cox' PH model (Score HR = 13.6301, 95% CI = 8.857-20.98, logrank p-value ≤ 2e-16). Our analysis represents the first global lncRNA analysis in medulloblastoma. Our results identify putative candidate lncRNAs that could be evaluated for their functional role in medulloblastoma genesis and progression or as diagnostic and prognostic biomarkers.
Collapse
Affiliation(s)
- Piyush Joshi
- Cancer and Blood Disorder Institute, Johns Hopkins All Children's Hospital, 600 5th St. South, St. Petersburg, FL 33701, USA; Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, 1650 Orleans St., Baltimore, MD 21231, USA
| | - George Jallo
- Institute of Brain Protection Sciences, Johns Hopkins All Children's Hospital, 600 5th St. South, St. Petersburg, FL 33701 USA
| | - Ranjan J Perera
- Cancer and Blood Disorder Institute, Johns Hopkins All Children's Hospital, 600 5th St. South, St. Petersburg, FL 33701, USA; Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, 1650 Orleans St., Baltimore, MD 21231, USA; Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA.
| |
Collapse
|
23
|
Fu CH, Zhang BH, Fang CZ, Yan CX, Lai FF, Chen S, Wang GH. Long non-coding RNA CRNDE deteriorates intrauterine infection-induced neonatal brain injury. Mol Cell Probes 2020; 52:101565. [PMID: 32234564 DOI: 10.1016/j.mcp.2020.101565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 03/09/2020] [Accepted: 03/24/2020] [Indexed: 01/22/2023]
Abstract
BACKGROUND This study aimed to test the hypothesis that long non-coding RNA (lncRNA) colorectal neoplasia differentially expressed (CRNDE) could exacerbate brain injury caused by intrauterine infection in neonatal rats. METHODS Intrauterine infection was induced in pregnant rats by lipopolysaccharide (LPS). After delivery, newborn rats with brain injury caused by intrauterine infection were randomly divided into control, control shRNA, and CRNDE shRNA groups. CRNDE expression in serum and amniotic fluid of pregnant rats and neonatal brain tissues were determined by quantitative real-time PCR (qRT-PCR). Morris water maze (MWM) task was used to test the spatial learning and memory ability. Histological examination and apoptosis detection were performed by hematoxylin and eosin (H&E) and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining, respectively. Immunohistochemistry was conducted to evaluate the activation of astrocytes and microglia. RESULTS LncRNA CRNDE was highly expressed in serum and amniotic fluid of maternal rats and in brain tissues of offspring rats. Furthermore, shRNA-mediated CRNDE downregulation could rescue the spatial learning and memory ability, improve brain histopathological changes and cell death, and inhibit the activation of astrocytes and microglia caused by LPS. CONCLUSION CRNDE silencing possessed a cerebral protective effect in neonatal rats with brain injury caused by interauterine infection.
Collapse
Affiliation(s)
- Chun-Hua Fu
- Department of Neonatology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Bing-Hong Zhang
- Department of Neonatology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Cheng-Zhi Fang
- Department of Neonatology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Cai-Xia Yan
- Department of Neonatology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Fang-Fang Lai
- Department of Pediatric, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Sai Chen
- Department of Neonatology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Gao-Hua Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
| |
Collapse
|
24
|
Liu X, Chen F, Li W. Elevated expression of DOK3 indicates high suppressive immune cell infiltration and unfavorable prognosis of gliomas. Int Immunopharmacol 2020; 83:106400. [PMID: 32193105 DOI: 10.1016/j.intimp.2020.106400] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/07/2020] [Accepted: 03/10/2020] [Indexed: 02/07/2023]
Abstract
Docking protein 3 has been implicated in immune response, including interferon-β production in macrophage and plasma cell differentiation. And its importance in lung adenocarcinoma has been reported. However, studies about its role in gliomas are rare. In this study, we explored the clinical and prognostic characteristics of DOK3 expression in 921 glioma samples. Kaplan-Meier survival analysis and Cox regression analysis verified the independent unfavorable prognostic value and high prognostic accuracy of DOK3 expression for overall survival. Functional analysis with Database for Annotation, Visualization and Integrated Discovery (DAVID) and Gene Set Enrichment Analysis (GSEA) implied the involvement of DOK3 in immune related responses. Immune cell infiltration analysis with online tools, CIBERSORT and EPIC, showed that samples with higher DOK3 expression were infiltrated with much more macrophages. DOK3 was also found to be strongly positively correlated with marker genes of tumor-associated macrophages and M2 macrophages, not M1. Results of immunohistochemical staining also demonstrated that samples with higher DOK3 expression level were infiltrated with more microglia/macrophages and immunosuppressive M2 macrophages. In summary, our results demonstrated the correlation between high DOK3 expression level and malignant progression of gliomas, and the possible involvement of DOK3 in immunosuppressive responses in gliomas.
Collapse
Affiliation(s)
- Xiu Liu
- Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, PR China
| | - Feng Chen
- Department of Neuro-Oncology, Neurosurgery Center, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, PR China.
| | - Wenbin Li
- Department of Neuro-Oncology, Neurosurgery Center, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, PR China.
| |
Collapse
|
25
|
Hu Y, Ma Y, Liu J, Cai Y, Zhang M, Fang X. LINC01128 expedites cervical cancer progression by regulating miR-383-5p/SFN axis. BMC Cancer 2019; 19:1157. [PMID: 31779593 PMCID: PMC6883532 DOI: 10.1186/s12885-019-6326-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/04/2019] [Indexed: 12/13/2022] Open
Abstract
Background Cervical cancer (CC), causing significant morbidity and mortality worldwide, is one of the most common gynecological malignancies in women. SFN has been reported as a potential prognostic marker with apparent high expression in tumors. Nevertheless, the function mechanism of SFN is not clear yet in CC. Methods The relative expressions of RNAs were detected by real-time quantitative PCR (RT-qPCR). Colony formation assay, EdU stained assay and CCK-8 assay were to check cell proliferation ability in CC. Flow cytometry and apoptosis related proteins analysis were used to measure cells apoptosis capacity. Luciferase reporter assay and RNA pull down assay were to verify the molecular mechanism. Results SFN was highly expressed in CC tissues and CC cell lines compared with normal tissues and normal cell line. After interfering SFN, cell proliferation, migration and invasion ability was inhibited as well as cell apoptosis ability was promoted. In subsequence, miR-383-5p exhibited conspicuous low expression in CC tissues. And miR-383-5p was found to bind to SFN and have anti-cancerous effects in CC. Moreover, LINC01128 displayed remarkable high expression in CC tissues. Besides, LINC01128 shortage could reduce the expression of SFN at mRNA and protein levels. And the affinity between LINC01128 and miR-383-5p was verified. In the end, it was proved that LINC01128 could enhance cell proliferation, migration and invasion as well as inhibit cell apoptosis by binding with miR-383-5p and upregulating SFN. Conclusion LINC01128 expedited cells cellular process in CC by binding with miR-383-5p to release SFN. Graphical Abstract ![]()
Collapse
Affiliation(s)
- Yi Hu
- Department of Obstetrics and Gynaecology, The Second Xiangya Hospital, Central South University, 139 Renmin road, Changsha, 410011, Hunan, China.,Department of Obstetrics and Gynaecology, the First Affiliated Hospital of University of South China, Hengyang, 421001, Hunan, China
| | - Yan Ma
- Department of Obstetrics and Gynaecology, the First Affiliated Hospital of University of South China, Hengyang, 421001, Hunan, China
| | - Jie Liu
- Department of Obstetrics and Gynaecology, the First Affiliated Hospital of University of South China, Hengyang, 421001, Hunan, China
| | - Yanlin Cai
- Department of Obstetrics and Gynaecology, the First Affiliated Hospital of University of South China, Hengyang, 421001, Hunan, China
| | - Mengmeng Zhang
- Department of Obstetrics and Gynaecology, The Second Xiangya Hospital, Central South University, 139 Renmin road, Changsha, 410011, Hunan, China
| | - Xiaoling Fang
- Department of Obstetrics and Gynaecology, The Second Xiangya Hospital, Central South University, 139 Renmin road, Changsha, 410011, Hunan, China.
| |
Collapse
|
26
|
Niculite CM, Enciu AM, Hinescu ME. CD 36: Focus on Epigenetic and Post-Transcriptional Regulation. Front Genet 2019; 10:680. [PMID: 31379931 PMCID: PMC6659770 DOI: 10.3389/fgene.2019.00680] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 06/28/2019] [Indexed: 12/11/2022] Open
Abstract
CD36 is a transmembrane protein involved in fatty acid translocation, scavenging for oxidized fatty acids acting as a receptor for adhesion molecules. It is expressed on macrophages, as well as other types of cells, such as endothelial and adipose cells. CD36 participates in muscle lipid uptake, adipose energy storage, and gut fat absorption. Recently, several preclinical and clinical studies demonstrated that upregulation of CD36 is a prerequisite for tumor metastasis. Cancer metastasis-related research emerged much later and has been less investigated, though it is equally or even more important. CD36 protein expression can be modified by epigenetic changes and post-transcriptional interference from non-coding RNAs. Some data indicate modulation of CD36 expression in specific cell types by epigenetic changes via DNA methylation patterns or histone tails, or through miRNA interference, but this is largely unexplored. The few papers addressing this topic refer mostly to lipid metabolism-related pathologies, whereas in cancer research, data are even more scarce. The aim of this review was to summarize major epigenetic and post-transcriptional mechanisms that impact CD36 expression in relation to various pathologies while highlighting the areas in need of further exploration.
Collapse
Affiliation(s)
- Cristina-Mariana Niculite
- Cell Biology Department, "Victor Babes" National Institute of Pathology, Bucharest, Romania.,Department of Cellular and Molecular Biology and Histology, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Ana-Maria Enciu
- Cell Biology Department, "Victor Babes" National Institute of Pathology, Bucharest, Romania.,Department of Cellular and Molecular Biology and Histology, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Mihail Eugen Hinescu
- Cell Biology Department, "Victor Babes" National Institute of Pathology, Bucharest, Romania.,Department of Cellular and Molecular Biology and Histology, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
27
|
Song H, Liu Y, Jin X, Liu Y, Yang Y, Li L, Wang X, Li G. Long non-coding RNA LINC01535 promotes cervical cancer progression via targeting the miR-214/EZH2 feedback loop. J Cell Mol Med 2019; 23:6098-6111. [PMID: 31273925 PMCID: PMC6714211 DOI: 10.1111/jcmm.14476] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 05/12/2019] [Accepted: 05/15/2019] [Indexed: 02/06/2023] Open
Abstract
Long non‐coding RNAs (lncRNAs) have shown critical roles in multiple cancers via competitively binding common microRNAs. miR‐214 has been proved to play tumour suppressive roles in various cancers, including cervical cancer. In this study, we identified that lncRNA LINC01535 physically binds miR‐214, relieves the repressive roles of miR‐214 on its target EZH2, and therefore up‐regulates EZH2 protein expression. Intriguingly, we also found that EZH2 directly represses the expression of miR‐214. Thus, miR‐214 and EZH2 form double negative regulatory loop. Through up‐regulating EZH2, LINC01535 further represses miR‐214 expression. Functional experiments showed that enhanced expression of LINC01535 promotes cervical cancer cell growth, migration and invasion in vitro and cervical cancer xenograft growth in vivo. Reciprocally, LINC01535 knockdown suppresses cervical cancer cell growth, migration and invasion. Activation of the miR‐214/EZH2 regulatory loop by overexpression of miR‐214 or silencing of EZH2 reverses the roles of LINC01535 in promoting cervical canc`er cell growth, migration and invasion in vitro and cervical cancer xenograft growth in vivo. Clinically, LINC01535 is significantly up‐regulated in cervical cancer tissues and correlated with advanced clinical stage and poor prognosis. Moreover, the expression of LINC01535 is reversely associated with the expression of miR‐214 and positively associated with the expression of EZH2 in cervical cancer tissues. In conclusion, this study reveals that LINC01535 promotes cervical cancer progression via repressing the miR‐214/EZH2 regulatory loop.
Collapse
Affiliation(s)
- Hongjuan Song
- Department of Gynecology, Xuzhou Maternal & Child Health Care Hospital, Xuzhou, China
| | - Yuan Liu
- Department of Gynecology, Xuzhou Maternal & Child Health Care Hospital, Xuzhou, China
| | - Xin Jin
- Department of Gynecology, Xuzhou Maternal & Child Health Care Hospital, Xuzhou, China
| | - Yang Liu
- Department of Gynecology, Xuzhou Maternal & Child Health Care Hospital, Xuzhou, China
| | - Yanling Yang
- Department of Gynecology, Xuzhou Maternal & Child Health Care Hospital, Xuzhou, China
| | - Lei Li
- Department of Gynecology, Xuzhou Maternal & Child Health Care Hospital, Xuzhou, China
| | - Xuan Wang
- Department of Gynecology, Xuzhou Maternal & Child Health Care Hospital, Xuzhou, China
| | - Guilin Li
- Department of Gynecology, Xuzhou Maternal & Child Health Care Hospital, Xuzhou, China
| |
Collapse
|
28
|
Low LINC00599 expression is a poor prognostic factor in glioma. Biosci Rep 2019; 39:BSR20190232. [PMID: 30867254 PMCID: PMC6443953 DOI: 10.1042/bsr20190232] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 02/26/2019] [Accepted: 03/10/2019] [Indexed: 12/24/2022] Open
Abstract
LINC00599 has been suggested to be involved in physiological and pathological processes including carcinogenesis. However, the clinical and prognostic significance of LINC00599 in glioma patients and the effect of LINC00599 on glioma cell migration and invasion remain unknown. In our results, we first observe the expression of LINC00599 in 31 types of human cancers including tumor tissues and corresponding normal tissues at The Cancer Genome Atlas (TCGA) database, and found that LINC00599 expression levels were only reduced in lower grade glioma (LGG) tissues and glioblastoma multiforme (GBM) tissues compared with normal brain tissues. Moreover, we confirmed levels of LINC00599 expression were decreased in glioma tissues and cell lines compared with matched adjacent normal tissues and normal human astrocytes (NHAs), respectively. Meanwhile, we found that glioma tissues with WHO III-IV grade exhibited lower levels of LINC00599 expression than glioma tissues with I-II grade. The survival analysis at TCGA data showed low LINC00599 expression was associated with poor disease-free survival and overall survival in glioma patients. In vitro study suggested up-regulation of LINC00599 depressed glioma cell migration and invasion through regulating epithelial–mesenchymal transition (EMT) process. In conclusion, LINC00599 acts as a tumor-suppressing long non-coding RNA (lncRNA) in glioma.
Collapse
|
29
|
Long noncoding RNA TUG1 promotes proliferation and inhibits apoptosis in multiple myeloma by inhibiting miR-29b-3p. Biosci Rep 2019; 39:BSR20182489. [PMID: 30842339 PMCID: PMC6430741 DOI: 10.1042/bsr20182489] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/21/2019] [Accepted: 03/05/2019] [Indexed: 02/07/2023] Open
Abstract
Background: Long non-coding RNA taurine up-regulated gene 1 (TUG1) was reportedly involved in initiation and development of several cancers. However, its function and molecular mechanisms in multiple myeloma (MM) are still unclear. The present study aimed to determine the expression status, biological function, and potential mechanisms of TUG1 in the progression of MM. Materials and methods: The expression levels of TUG1 were examined in MM samples and cell lines by real-time quantitative PCR. The effects of TUG1 on MM cells proliferation and apoptosis were assessed using Cell Counting Kit-8 assay and flow cytometry respectively. MiRNAs-targeted sites in TUG1 were screened by Starbase2.0 and were identified by RNA immunoprecipitation assay combined with luciferase reporter assay. Results: The expression levels of TUG1 were markedly increased in MM samples and cell lines. Knockdown of TUG1 significantly suppressed the proliferation, induced cell cycle arrest at G1/G0 phase, and promoted apoptosis of MM cells. In exploring the regulatory mechanism, miR-29b-3p was confirmed to be a direct target of TUG1, and repression of miR-29b-3p could partially rescue the effect TUG1 knockdown on MM cell proliferation, cycle, and apoptosis. In addition, TUG1 positively modulated histone deacetylases 4 (HDAC4, a target of miR-29b-3p) expression through sponging of miR-29b-3p in MM cells. Conclusion: These findings suggested that TUG1 exerted an oncogenic role in MM by acting as a competing endogenous RNA of miR-29b-3p, and implied the potential application of TUG1 in treatment for MM.
Collapse
|
30
|
González-Castro TB, Juárez-Rojop IE, López-Narváez ML, Tovilla-Zárate CA, Genis-Mendoza AD, Pérez-Hernández N, Martínez-Magaña JJ, Rodríguez-Pérez JM. Genetic Polymorphisms of CCDC26 rs891835, rs6470745, and rs55705857 in Glioma Risk: A Systematic Review and Meta-analysis. Biochem Genet 2019; 57:583-605. [DOI: 10.1007/s10528-019-09911-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 02/07/2019] [Indexed: 01/03/2023]
|
31
|
Pop S, Enciu AM, Necula LG, Tanase C. Long non-coding RNAs in brain tumours: Focus on recent epigenetic findings in glioma. J Cell Mol Med 2018; 22:4597-4610. [PMID: 30117678 PMCID: PMC6156469 DOI: 10.1111/jcmm.13781] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 06/07/2018] [Indexed: 02/07/2023] Open
Abstract
Glioma biology is a major focus in tumour research, primarily due to the aggressiveness and high mortality rate of its most aggressive form, glioblastoma. Progress in understanding the molecular mechanisms behind poor prognosis of glioblastoma, regardless of treatment approaches, has changed the classification of brain tumours after nearly 100 years of relying on anatomopathological criteria. Expanding knowledge in genetic, epigenetic and translational medicine is also beginning to contribute to further elucidating molecular dysregulation in glioma. Long non‐coding RNAs (lncRNAs) and their main representatives, large intergenic non‐coding RNAs (lincRNAs), have recently been under scrutiny in glioma research, revealing novel mechanisms of pathogenesis and reinforcing others. Among those confirmed was the reactivation of events significant for foetal brain development and neuronal commitment. Novel mechanisms of tumour suppression and activation of stem‐like behaviour in tumour cells have also been examined. Interestingly, these processes involve lncRNAs that are present both during normal brain development and in brain malignancies and their reactivation might be explained by epigenetic mechanisms, which we discuss in detail in the present review. In addition, the review discusses the lncRNAs‐induced changes, as well as epigenetic changes that are consequential for tumour formation, affecting, in turn, the expression of various types of lncRNAs.
Collapse
Affiliation(s)
- Sevinci Pop
- "Victor Babes" National Institute of Pathology, Bucharest, Romania
| | - Ana-Maria Enciu
- "Victor Babes" National Institute of Pathology, Bucharest, Romania.,"Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Laura G Necula
- "Victor Babes" National Institute of Pathology, Bucharest, Romania.,"Stefan N. Nicolau" National Institute of Virology, Bucharest, Romania.,Faculty of Medicine, "Titu Maiorescu" University, Bucharest, Romania
| | - Cristiana Tanase
- "Victor Babes" National Institute of Pathology, Bucharest, Romania.,Faculty of Medicine, "Titu Maiorescu" University, Bucharest, Romania
| |
Collapse
|