1
|
Wan X, Wang D. Curcumin: Epigenetic Modulation and Tumor Immunity in Antitumor Therapy. PLANTA MEDICA 2025. [PMID: 39689889 DOI: 10.1055/a-2499-1140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Curcumin (turmeric) is the main ingredient of the Chinese herbal turmeric rhizome, used to treat tumors, diabetes, inflammation, neurodegenerative diseases, cardiovascular diseases, metabolic syndrome, and liver diseases. The antitumor effects of curcumin have received even more attention. One of the main mechanisms of the antitumor effects includes inhibition of tumor invasion and migration, induction of tumor cell apoptosis, and inhibition of various cell signaling pathways. It has been found that the antitumor biological activity of curcumin in the body is associated with epigenetic mechanisms. That also implies that curcumin may act as a potential epigenetic modulator to influence the development of tumor diseases. The immune system plays an essential role in the development of tumorigenesis. Tumor immunotherapy is currently one of the most promising research directions in the field of tumor therapy. Curcumin has been found to have significant regulatory effects on tumor immunity and is expected to be a novel adjuvant for tumor immunity. This paper summarizes the antitumor effects of curcumin from four aspects: molecular and epigenetic mechanisms of curcumin against a tumor, mechanisms of curcumin modulation of tumor immunotherapy, reversal of chemotherapy resistance, and a novel drug delivery system of curcumin, which provide new directions for the development of new antitumor drugs.
Collapse
Affiliation(s)
- Xin Wan
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Dong Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
2
|
Lin CC, Law BF, Hettick JM. MicroRNA-mediated Krüppel-like factor 4 upregulation induces alternatively activated macrophage-associated marker and chemokine transcription in 4,4'-methylene diphenyl diisocyanate exposed macrophages. Xenobiotica 2024; 54:730-748. [PMID: 38568505 PMCID: PMC11489325 DOI: 10.1080/00498254.2024.2334329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/20/2024]
Abstract
1. Occupational exposure to 4,4'-methylene diphenyl diisocyanate (MDI) is associated with occupational asthma (OA) development. Alveolar macrophage-induced recruitment of immune cells to the lung microenvironment plays an important role during asthma pathogenesis. Previous studies identified that MDI/MDI-glutathione (GSH)-exposure downregulates endogenous hsa-miR-206-3p/hsa-miR-381-3p. Our prior report shows that alternatively activated (M2) macrophage-associated markers/chemokines are induced by MDI/MDI-GSH-mediated Krüppel-Like Factor 4 (KLF4) upregulation in macrophages and stimulates immune cell chemotaxis. However, the underlying molecular mechanism(s) by which MDI/MDI-GSH upregulates KLF4 remain unclear. 2. Following MDI-GSH exposure, microRNA(miR)-inhibitors/mimics or plasmid transfection, endogenous hsa-miR-206-3p/hsa-miR-381-3p, KLF4, or M2 macrophage-associated markers (CD206, TGM2), and chemokines (CCL17, CCL22, CCL24) were measured by either RT-qPCR, western blot, or luciferase assay. 3. MDI-GSH exposure downregulates hsa-miR-206-3p/hsa-miR-381-3p by 1.46- to 9.75-fold whereas upregulates KLF4 by 1.68- to 1.99-fold, respectively. In silico analysis predicts binding between hsa-miR-206-3p/hsa-miR-381-3p and KLF4. Gain- and loss-of-function, luciferase reporter assays and RNA-induced silencing complex-immunoprecipitation (RISC-IP) studies confirm the posttranscriptional regulatory roles of hsa-miR-206-3p/hsa-miR-381-3p and KLF4 in macrophages. Furthermore, hsa-miR-206-3p/hsa-miR-381-3p regulate the expression of M2 macrophage-associated markers and chemokines via KLF4. 4. In conclusion, hsa-miR-206-3p/hsa-miR-381-3p play a major role in regulation of MDI/MDI-GSH-induced M2 macrophage-associated markers and chemokines by targeting the KLF4 transcript, and KLF4-mediated regulation in macrophages.
Collapse
Affiliation(s)
- Chen-Chung Lin
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505
| | - Brandon F. Law
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505
| | - Justin M. Hettick
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505
| |
Collapse
|
3
|
Davodabadi F, Mirinejad S, Malik S, Dhasmana A, Ulucan-Karnak F, Sargazi S, Sargazi S, Fathi-Karkan S, Rahdar A. Nanotherapeutic approaches for delivery of long non-coding RNAs: an updated review with emphasis on cancer. NANOSCALE 2024; 16:3881-3914. [PMID: 38353296 DOI: 10.1039/d3nr05656b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
The long noncoding RNAs (lncRNAs) comprise a wide range of RNA species whose length exceeds 200 nucleotides, which regulate the expression of genes and cellular functions in a wide range of organisms. Several diseases, including malignancy, have been associated with lncRNA dysregulation. Due to their functions in cancer development and progression, lncRNAs have emerged as promising biomarkers and therapeutic targets in cancer diagnosis and treatment. Several studies have investigated the anti-cancer properties of lncRNAs; however, only a few lncRNAs have been found to exhibit tumor suppressor properties. Furthermore, their length and poor stability make them difficult to synthesize. Thus, to overcome the instability of lncRNAs, poor specificity, and their off-target effects, researchers have constructed nanocarriers that encapsulate lncRNAs. Recently, translational medicine research has focused on delivering lncRNAs into tumor cells, including cancer cells, through nano-drug delivery systems in vivo. The developed nanocarriers can protect, target, and release lncRNAs under controlled conditions without appreciable adverse effects. To deliver lncRNAs to cancer cells, various nanocarriers, such as exosomes, microbubbles, polymer nanoparticles, 1,2-dioleyl-3-trimethylammoniumpropane chloride nanocarriers, and virus-like particles, have been successfully developed. Despite this, every nanocarrier has its own advantages and disadvantages when it comes to delivering nucleic acids effectively and safely. This article examines the current status of nanocarriers for lncRNA delivery in cancer therapy, focusing on their potential to enhance cancer treatment.
Collapse
Affiliation(s)
- Fatemeh Davodabadi
- Department of Biology, Faculty of Basic Science, Payame Noor University, Tehran, Iran.
| | - Shekoufeh Mirinejad
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Sumira Malik
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi-834002, India.
| | - Archna Dhasmana
- Himalayan School of Biosciences, Swami Rama Himalayan University, Jolly Grant, Dehradun, Uttarakhand, 248140, India.
| | - Fulden Ulucan-Karnak
- Department of Medical Biochemistry, Institute of Health Sciences, Ege University, İzmir 35100, Turkey.
| | - Sara Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Sonia Fathi-Karkan
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, 94531-55166, Iran
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd 9414974877, Iran.
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol, P. O. Box. 98613-35856, Iran.
| |
Collapse
|
4
|
Todosenko N, Khlusov I, Yurova K, Khaziakhmatova O, Litvinova L. Signal Pathways and microRNAs in Osteosarcoma Growth and the Dual Role of Mesenchymal Stem Cells in Oncogenesis. Int J Mol Sci 2023; 24:ijms24108993. [PMID: 37240338 DOI: 10.3390/ijms24108993] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
The major challenges in Osteosarcoma (OS) therapy are its heterogeneity and drug resistance. The development of new therapeutic approaches to overcome the major growth mechanisms of OS is urgently needed. The search for specific molecular targets and promising innovative approaches in OS therapy, including drug delivery methods, is an urgent problem. Modern regenerative medicine focuses on harnessing the potential of mesenchymal stem cells (MSCs) because they have low immunogenicity. MSCs are important cells that have received considerable attention in cancer research. Currently, new cell-based methods for using MSCs in medicine are being actively investigated and tested, especially as carriers for chemotherapeutics, nanoparticles, and photosensitizers. However, despite the inexhaustible regenerative potential and known anticancer properties of MSCs, they may trigger the development and progression of bone tumors. A better understanding of the complex cellular and molecular mechanisms of OS pathogenesis is essential to identify novel molecular effectors involved in oncogenesis. The current review focuses on signaling pathways and miRNAs involved in the development of OS and describes the role of MSCs in oncogenesis and their potential for antitumor cell-based therapy.
Collapse
Affiliation(s)
- Natalia Todosenko
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
| | - Igor Khlusov
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
- Laboratory of Cellular and Microfluidic Technologies, Siberian State Medical University, 2, Moskovskii Trakt, 634050 Tomsk, Russia
| | - Kristina Yurova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
| | - Olga Khaziakhmatova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
| | - Larisa Litvinova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
- Laboratory of Cellular and Microfluidic Technologies, Siberian State Medical University, 2, Moskovskii Trakt, 634050 Tomsk, Russia
| |
Collapse
|
5
|
Ghafouri-Fard S, Pourtavakoli A, Hussen BM, Taheri M, Kiani A. A review on the importance of LINC-ROR in human disorders. Pathol Res Pract 2023; 244:154420. [PMID: 36989849 DOI: 10.1016/j.prp.2023.154420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023]
Abstract
Long Intergenic Non-Protein Coding RNA, Regulator Of Reprogramming (LINC-ROR) is a long non-coding RNA with diverse physiological functions. The gene encoding this transcript resides on 18q21.31. Expression levels of LINC-ROR have been reported to be dysregulated in patients with diverse disorders, including cancer, autoimmune disorders and neurodegenerative and neurodevelopmental disorders. Moreover, polymorphisms within this lncRNA have been shown to be associated with a variety of disorders, such as some kinds of cancer and some aspects of systemic lupus erythematous. Abnormal expression of LINC-ROR in some other human disorders is not yet understood. Emerging evidence suggests that LINC-ROR exerts pivotal roles in most types of human disorders as an oncogene. Differentially expressed LINC-ROR contributes in the development of diseases by changing the expression of genes that control the cell cycle. It can also exert its role by affecting the activity of some cancer-related signaling pathways and sponging tumor suppressor miRNAs. Expanding our understanding of LINC-ROR functions will pave the way for developing efficient therapeutic strategies against cancer and related disorders. The current review aims at providing a concise overview of the role of LINC-ROR in diverse human disorders through providing a summary of association studies and expression assays.
Collapse
|
6
|
Peña-Flores JA, Enríquez-Espinoza D, Muela-Campos D, Álvarez-Ramírez A, Sáenz A, Barraza-Gómez AA, Bravo K, Estrada-Macías ME, González-Alvarado K. Functional Relevance of the Long Intergenic Non-Coding RNA Regulator of Reprogramming (Linc-ROR) in Cancer Proliferation, Metastasis, and Drug Resistance. Noncoding RNA 2023; 9:ncrna9010012. [PMID: 36827545 PMCID: PMC9965135 DOI: 10.3390/ncrna9010012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Cancer is responsible for more than 10 million deaths every year. Metastasis and drug resistance lead to a poor survival rate and are a major therapeutic challenge. Substantial evidence demonstrates that an increasing number of long non-coding RNAs are dysregulated in cancer, including the long intergenic non-coding RNA, regulator of reprogramming (linc-ROR), which mostly exerts its role as an onco-lncRNA acting as a competing endogenous RNA that sequesters micro RNAs. Although the properties of linc-ROR in relation to some cancers have been reviewed in the past, active research appends evidence constantly to a better comprehension of the role of linc-ROR in different stages of cancer. Moreover, the molecular details and some recent papers have been omitted or partially reported, thus the importance of this review aimed to contribute to the up-to-date understanding of linc-ROR and its implication in cancer tumorigenesis, progression, metastasis, and chemoresistance. As the involvement of linc-ROR in cancer is elucidated, an improvement in diagnostic and prognostic tools could promote and advance in targeted and specific therapies in precision oncology.
Collapse
|
7
|
Xiaotong S, Xiao L, Shiyu L, Zhiguo B, Chunyang F, Jianguo L. LncRNAs could play a vital role in osteosarcoma treatment: Inhibiting osteosarcoma progression and improving chemotherapy resistance. Front Genet 2023; 13:1022155. [PMID: 36726721 PMCID: PMC9885180 DOI: 10.3389/fgene.2022.1022155] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 12/29/2022] [Indexed: 01/19/2023] Open
Abstract
Osteosarcoma (OS) is one of the most common primary solid malignant tumors in orthopedics, and its main clinical treatments are surgery and chemotherapy. However, a wide surgical resection range, functional reconstruction of postoperative limbs, and chemotherapy resistance remain as challenges for patients and orthopedists. To address these problems, the discovery of new effective conservative treatments is important. Long non-coding RNAs (lncRNAs) are RNAs longer than 200 nucleotides in length that do not encode proteins. Researchers have recently found that long non-coding RNAs are closely associated with the development of OS, indicating their potentially vital role in new treatment methods for OS. This review presents new findings regarding the association of lncRNAs with OS and summarizes potential clinical applications of OS with lncRNAs, including the downregulation of oncogenic lncRNAs, upregulation of tumor suppressive lncRNAs, and lncRNAs-based treatment to improve chemotherapy resistance. We hope these potential methods will be translated into clinical applications and greatly reduce patient suffering.
Collapse
Affiliation(s)
- Shi Xiaotong
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Li Xiao
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Liao Shiyu
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Bi Zhiguo
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Feng Chunyang
- Department of Obstetrics and Gynecology, Renji Hospital of Shanghai Jiao Tong University, Shanghai, China,*Correspondence: Feng Chunyang, ; Liu Jianguo,
| | - Liu Jianguo
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China,*Correspondence: Feng Chunyang, ; Liu Jianguo,
| |
Collapse
|
8
|
Bahari Khasraghi L, Nouri M, Vazirzadeh M, Hashemipour N, Talebi M, Aghaei Zarch F, Majidpoor J, Kalhor K, Farnia P, Najafi S, Aghaei Zarch SM. MicroRNA-206 in human cancer: Mechanistic and clinical perspectives. Cell Signal 2023; 101:110525. [PMID: 36400383 DOI: 10.1016/j.cellsig.2022.110525] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022]
Abstract
MicroRNAs (miRNAs), small non-coding RNAs approximately 20-25 nt in length, play important roles via directly binding to the corresponding 3' UTR of target mRNAs. Recent research has shown that miRNAs cover a wide range of diseases, including several types of cancer. It is interesting to note that miR-206 operates as a tumor suppressor and is downregulated in abundant cancer types, such as breast cancer, lung cancer, colorectal cancer, and so forth. Interestingly, a growing number of studies have also reported that miR-206 could function as an oncogene and promote tumor cell proliferation. Thereby, miR-206 may act as either oncogenes or tumor suppressors under certain conditions. In addition, it was widely acknowledged that restoring tumor-suppressor miR-206 has emerged as an unconventional cancer therapy strategy. Therefore, miR-206 might be a newfangled procedure for achieving a more significant treatment outcome for cancer patients. This review summarizes the role of miR-206 in several cancer types and the contributions made between miR-206 and the diagnosis, treatment, and drug resistance of solid tumors.
Collapse
Affiliation(s)
- Leila Bahari Khasraghi
- 15 khordad Educational Hospital, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Morteza Nouri
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masoud Vazirzadeh
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | | | - Mehrdad Talebi
- Department of Medical Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Jamal Majidpoor
- Department of Anatomy, Faculty of Medicine, Infectious Disease Research Center, Gonabad University of Medical Sciences, Gonabad, Iran.
| | - Kambiz Kalhor
- Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, USA
| | - Poopak Farnia
- Mycobacteriology Research Centre, National Research Institute of Tuberculosis and Lung Disease, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Seyed Mohsen Aghaei Zarch
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Keremu A, Aila P, Tusun A, Abulikemu M, Zou X. Extracellular vesicles from bone mesenchymal stem cells transport microRNA-206 into osteosarcoma cells and target NRSN2 to block the ERK1/2-Bcl-xL signaling pathway. Eur J Histochem 2022; 66. [PMID: 35730574 PMCID: PMC9251612 DOI: 10.4081/ejh.2022.3394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/27/2022] [Indexed: 11/23/2022] Open
Abstract
Osteosarcoma (OS) is a kind of malignant tumor originating from mesenchymal tissues. Bone mesenchymal stem cells-derived extracellular vesicles (BMSCs-EVs) can play important roles in OS. This study investigated the mechanism of BMSCs-EVs on OS. BMSC surface antigens and adipogenic and osteogenic differentiation were detected by flow cytometry, and oil red O and alizarin red staining. EVs were isolated from BMSCs by differential centrifugation and identified by transmission electron microscopy, nanoparticle tracking analysis, and Western blot (WB). miR-206 and neurensin-2 (NRSN2) levels in human osteoblast hFOB 1.19 or OS cells (143B, MG-63, Saos2, HOS) were detected by RT-qPCR. Human OS cells with lower miR-206 levels were selected and treated with BMSCs-EVs or pSUPER-NRSN2. The uptake of EVs by 143B cells, cell proliferation, apoptosis, invasion, and migration were detected by immunofluorescence, 5-ethynyl-2’-deoxyuridine (EdU) and colony formation assays, flow cytometry, scratch test, and transwell assays. The binding sites between miR-206 and NRSN2 were predicted by Starbase database and verified by dual-luciferase assay. The OS xenograft model was established and treated with BMSCs-EVs. Tumor growth rate and volume, cell proliferation, and p-ERK1/2, ERK1/2, and Bcl-xL levels were detected by vernier caliper, immunohistochemistry, and WB. BMSCs-EVs were successfully extracted. miR-206 was diminished and NRSN2 was promoted in OS cells. BMSCs-EVs inhibited proliferation, migration, and invasion, and promoted apoptosis of OS cells. BMSCs-EVs carried miR-206 into OS cells. Inhibition of miR-206 in EVs partially reversed the inhibitory effect of EVs on malignant behaviors of OS cells. miR-206 targeted NRSN2. Overexpression of NRSN2 reversed the inhibitory effect of EVs on OS cells. NRSN2 activated the ERK1/2-Bcl-xL pathway. BMSC-EVs inhibited OS growth in vivo. In summary, BMSC-EVs targeted NRSN2 and inhibited the ERK1/2-Bcl-xL pathway by carrying miR-206 into OS cells, thus inhibiting OS progression.
Collapse
Affiliation(s)
- Alimu Keremu
- Orthopedic Center, First People's Hospital of Kashgar, Xinjiang.
| | - Pazila Aila
- Orthopedic Center, First People's Hospital of Kashgar, Xinjiang.
| | - Aikebaier Tusun
- Orthopedic Center, First People's Hospital of Kashgar, Xinjiang.
| | | | - Xiaoguang Zou
- Orthopedic Center, First People's Hospital of Kashgar, Xinjiang.
| |
Collapse
|
10
|
Zeng ZL, Zhu Q, Zhao Z, Zu X, Liu J. Magic and mystery of microRNA-32. J Cell Mol Med 2021; 25:8588-8601. [PMID: 34405957 PMCID: PMC8435424 DOI: 10.1111/jcmm.16861] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/25/2021] [Accepted: 08/02/2021] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) are a group of endogenous, small (∼22 nts in length) noncoding RNA molecules that function specifically by base pairing with the mRNA of genes and regulate gene expression at the post-transcriptional level. Alterations in miR-32 expression have been found in numerous diseases and shown to play a vital role in cell proliferation, apoptosis, oncogenesis, invasion, metastasis and drug resistance. MiR-32 has been documented as an oncomiR in the majority of related studies but has been also verified as a tumour suppressor miRNA in conflicting reports. Moreover, it has a crucial role in metabolic and cardiovascular disorders. This review provides an in-depth look into the most recent finding regarding miR-32, which is involved in the expression, regulation and functions in different diseases, especially tumours. Additionally, this review outlines novel findings suggesting that miR-32 may be useful as a noninvasive biomarker and as a targeted therapeutic in several diseases.
Collapse
Affiliation(s)
- ZL Zeng
- The First Affiliated HospitalDepartment of Metabolism and EndocrinologyHengyang Medical SchoolUniversity of South ChinaHengyangChina
- The First Affiliated HospitalDepartment of Clinical MedicineHengyang Medical SchoolUniversity of South ChinaHengyangChina
- Key Laboratory for Arteriosclerology of Hunan ProvinceDepartment of Cardiovascular DiseaseHengyang Medical SchoolUniversity of South ChinaHengyangChina
| | - Qingyun Zhu
- The First Affiliated HospitalDepartment of Metabolism and EndocrinologyHengyang Medical SchoolUniversity of South ChinaHengyangChina
- The First Affiliated HospitalDepartment of Clinical MedicineHengyang Medical SchoolUniversity of South ChinaHengyangChina
| | - Zhibo Zhao
- The First Affiliated HospitalDepartment of Metabolism and EndocrinologyHengyang Medical SchoolUniversity of South ChinaHengyangChina
- The First Affiliated HospitalDepartment of Clinical MedicineHengyang Medical SchoolUniversity of South ChinaHengyangChina
| | - Xuyu Zu
- The First Affiliated HospitalDepartment of Metabolism and EndocrinologyHengyang Medical SchoolUniversity of South ChinaHengyangChina
- The First Affiliated HospitalDepartment of Clinical MedicineHengyang Medical SchoolUniversity of South ChinaHengyangChina
| | - Jianghua Liu
- The First Affiliated HospitalDepartment of Metabolism and EndocrinologyHengyang Medical SchoolUniversity of South ChinaHengyangChina
- The First Affiliated HospitalDepartment of Clinical MedicineHengyang Medical SchoolUniversity of South ChinaHengyangChina
| |
Collapse
|
11
|
Luo D, Yang L, Yu L, Chen Y, Huang Z, Liu H. Clinicopathological and prognostic significance of long non-coding RNA-ROR in cancer patients: A systematic review and meta-analysis. Medicine (Baltimore) 2021; 100:e26535. [PMID: 34232190 PMCID: PMC8270596 DOI: 10.1097/md.0000000000026535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 06/16/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Accumulating studies have focused on the clinicopathological and prognostic roles of large intergenic noncoding RNA regulator of reprogramming (lincRNA-ROR) in cancer patients. However, the results were controversial and unconvincing. Thus, we performed a meta-analysis to assess the associations between lincRNA-ROR expression and survival and clinicopathological characteristics of cancer patients. METHODS Hazard ratios for overall survival and disease-free survival with their 95% confidence intervals were used to evaluate the role of lincRNA-ROR expression in the prognosis of cancer patients. Risk ratios with their 95% confidence intervals were applied to assess the relationship between lincRNA-ROR expression and clinicopathological parameters. RESULTS A total of 18 articles with 1441 patients were enrolled. Our results indicated that high lincRNA-ROR expression was significant associated with tumor size, TNM stage, clinical stage, lymph metastasis, metastasis and vessel invasion of cancer patients. There were no correlations between high lincRNA-ROR expression and age, gender, infiltration depth, differentiation, serum CA19-9 and serum CEA of cancer patients. In addition, high lincRNA-ROR expression was associated with shorter Overall survival and disease-free survival on both univariate and multivariate analyses. Meanwhile, there were no obvious publication bias in our meta-analysis. CONCLUSIONS LincRNA-ROR expression was associated with the clinicopathological features and outcome of cancer patients, which suggested that lincRNA-ROR might serve as a potential biomarker for cancer prognosis. ETHICAL APPROVAL Since this study is on the basis of published articles, ethical approval and informed consent of patients are not required.
Collapse
Affiliation(s)
- Deqing Luo
- Department of Orthopaedic Surgery, The Affiliated Southeast Hospital of Xiamen University, Orthopaedic Center of People's Liberation Army, Zhangzhou, Fujian Province, China
| | - Limin Yang
- Department of Pathology, The Affiliated Southeast Hospital of Xiamen University, Orthopaedic Center of People's Liberation Army, Zhangzhou, Fujian Province, China
| | - Le Yu
- Department of Pathology, The Affiliated Southeast Hospital of Xiamen University, Orthopaedic Center of People's Liberation Army, Zhangzhou, Fujian Province, China
| | - Yijin Chen
- Department of Pathology, The Affiliated Southeast Hospital of Xiamen University, Orthopaedic Center of People's Liberation Army, Zhangzhou, Fujian Province, China
| | - Zunxian Huang
- Department of Orthopaedic Surgery, Quanzhou Orthopedic-Traumatological Hospital of Fujian Chinese Medical University, Quanzhou, Fujian Province, China
| | - Hui Liu
- Department of Orthopaedic Surgery, The Affiliated Southeast Hospital of Xiamen University, Orthopaedic Center of People's Liberation Army, Zhangzhou, Fujian Province, China
| |
Collapse
|
12
|
|
13
|
Li Z, Wang X, Liang S. Long non-coding RNA small nucleolar RNA host gene 1 knockdown suppresses the proliferation, migration and invasion of osteosarcoma cells by regulating microRNA-424-5p/FGF2 in vitro. Exp Ther Med 2021; 21:325. [PMID: 33732298 DOI: 10.3892/etm.2021.9756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 01/08/2021] [Indexed: 12/27/2022] Open
Abstract
The aim of the present study was to clarify the effect of long non-coding RNA (lncRNA) small nucleolar RNA host gene 1 (SNHG1) on the proliferation, migration and invasion of osteosarcoma (OS) cells and to explore the potential underlying mechanisms. The expression levels of SNHG1, microRNA (miR)-424-5p and fibroblast growth factor 2 (FGF2) in OS tissues and cells were detected using reverse transcription-quantitative polymerase chain reaction. OS cell proliferation, migration and invasion were analysed by MTT, wound healing and Transwell invasion assays, respectively. The targeting relationships between SNHG1 and miR-424-5p, as well as between miR-424-5p and FGF2, were confirmed using RNA-binding protein immunoprecipitation and/or dual-luciferase reporter gene assays. The results demonstrated that the expression levels of SNHG1 and FGF2 were upregulated, whereas the expression of miR-424-5p was downregulated in OS tissues and cells. The silencing of SNHG1 significantly inhibited the proliferation, migration and invasion of OS cells. Additionally, FGF2 was shown to be a target of miR-424-5p, which in turn, was a target of SNHG1. miR-424-5p silencing and FGF2 overexpression both reversed the suppressive effects of SNHG1 knockdown on the proliferation, migration and invasion of OS cells. Thus, the silencing of SNHG1 may inhibit the proliferation, migration and invasion of OS cells by regulating the miR-424-5p/FGF2 axis.
Collapse
Affiliation(s)
- Zhuokai Li
- Department of Orthopaedics, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, P.R. China
| | - Xiaohe Wang
- Department of Orthopaedics, Jinan Zhangqiu District Hospital of TCM, Jinan, Shandong 250200, P.R. China
| | - Shuofu Liang
- Department of Orthopaedics, Zibo Zhoucun People's Hospital, Zibo, Shandong 255300, P.R. China
| |
Collapse
|
14
|
Yao XY, Liu JF, Luo Y, Xu XZ, Bu J. LncRNA HOTTIP facilitates cell proliferation, invasion, and migration in osteosarcoma by interaction with PTBP1 to promote KHSRP level. Cell Cycle 2021; 20:283-297. [PMID: 33475442 DOI: 10.1080/15384101.2020.1870820] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
This study designs to investigate the role and potential mechanism of lncNRA HOTTIP in OS progression in vitro and in vivo. HOTTIP, PTBP1, and KHSRP expression levels were tested through qRT-PCR and western blot in OS tissues or cell lines. Cell proliferation was examined via CCK-8 and colony formation. Cell cycle and apoptosis were analyzed via flow cytometry analysis. The invasive and migratory abilities of OS cells were evaluated by transwell and wound-healing assays. The localization of HOTTIP in OS cells was determined by subcellular fractionation assay. RNA pull down and RNA immunoprecipitation were allowed to assess the interaction between HOTTIP and PTBP1. Xenograft tumor growth assay was employed to test the role of HOTTIP and KHSRP in OS progression. Our data demonstrated HOTTIP was upregulated in OS tissues. HOTTIP knockdown resulted in a suppression of OS cell proliferation, invasion and migration, as well as a promotion of OS cell apoptosis, while HOTTIP overexpression exhibited opposite effects. In mechanism, PTBP1 and KHSRP highly expressed in OS and HOTTIP was identified to interact with PTBP1 to promote KHSRP expression. Meanwhile, we found that overexpression of KHSRP or PTBP1, individually, can partially remove the repression of HOTTIP suppression for OS cell progression. Moreover, xenograft tumor growth assay revealed that HOTTIP knockdown significantly inhibited tumor growth, and this inhibitory effect was abolished by KHSRP overexpression. Collectively, these findings confirmed that HOTTIP facilitates OS cell proliferation, invasion and migration by binding to PTBP1 to promote KHSRP level. Abbreviation: LncRNA: long noncoding RNA; HOTTIP: HOXA distal transcript antisense RNA; KHSRP: KH-Type Splicing Regulatory Protein; qRT-PCR: quantitative real-time PCR; OS: osteosarcoma; OST: osteosarcoma tissues; ANT: adjacent normal tissue.
Collapse
Affiliation(s)
- Xin-Yu Yao
- Department of Orthopaedics, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University , Changsha, Hunan, P.R. China
| | - Jian-Fan Liu
- Department of Orthopaedics, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University , Changsha, Hunan, P.R. China
| | - Yi Luo
- Department of Orthopaedics, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University , Changsha, Hunan, P.R. China
| | - Xue-Zheng Xu
- Department of Orthopaedics, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University , Changsha, Hunan, P.R. China
| | - Jie Bu
- Department of Orthopaedics, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University , Changsha, Hunan, P.R. China
| |
Collapse
|
15
|
Chen H, Chen J. LncRNA SOX21-AS1 Promotes the Growth and Invasiveness of Osteosarcoma Cells Through miR-7-5p/IRS2 Regulatory Network. Arch Med Res 2020; 52:294-303. [PMID: 33341286 DOI: 10.1016/j.arcmed.2020.11.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 09/07/2020] [Accepted: 11/12/2020] [Indexed: 01/18/2023]
Abstract
BACKGROUND Osteosarcoma (OS) is commonly known as a bone malignancy, causing a mass of lethality worldwide. Long coding RNAs (lncRNAs) have been widely reported by documents that they exert important functions in the development of cancers. However, the relative mechanism of lncRNA SOX21-AS1 needs to be fully discovered in OS, as it has never been studied in the past. AIM OF THE STUDY To find out how SOX21-AS1 materializes its function in OS. METHODS qRT-PCR detected RNA expression, and western blot tested the protein level. CCK8 and TUNEL assays were performed to assess cell viability and apoptosis. Next, Transwell analyses were applied to identify OS cell migration and invasion. Luciferase reporter, RIP and RNA pull-down experiments were employed for investigating the relationships among RNAs. RESULTS SOX21-AS1 had high expression in OS, and its presence accelerated OS cell proliferation, migration and invasion. Interestingly, we evidenced that SOX21-AS1 sponged miR-7-5p, which then targeted IRS2 in OS cells. SOX21-AS1 competed with IRS2 in binding to miR-7-5p, which formulated the ceRNA signaling in OS. SOX21-AS1 could negatively regulate miR-7-5p expression. Rescue experiments certified that the enhancement of IRS2 would neutralize the inhibition of SOX21-AS1 depletion on OS cell proliferation and metastasis. CONCLUSIONS SOX21-AS1 enhances IRS2 level by absorbing miR-7-5p, so as to boost the progression of OS.
Collapse
Affiliation(s)
- Huiping Chen
- Department of Pain Treatment, Jingmen No. 2 People's Hospital, Jingmen, Hubei, China
| | - Juan Chen
- Department of Vascular lnterventional, Jingmen No. 2 People's Hospital, Jingmen, Hubei, China.
| |
Collapse
|
16
|
Wang W, Li Y, Zhi S, Li J, Miao J, Ding Z, Peng Y, Huang Y, Zheng R, Yu H, Qi P, Wang J, Fu X, Hu M, Chen S. LncRNA-ROR/microRNA-185-3p/YAP1 axis exerts function in biological characteristics of osteosarcoma cells. Genomics 2020; 113:450-461. [PMID: 32898639 DOI: 10.1016/j.ygeno.2020.09.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/21/2020] [Accepted: 09/03/2020] [Indexed: 11/19/2022]
Abstract
AIM The co-expression network of long non-coding RNA ROR (lncRNA-ROR) and microRNA-185-3p (miR-185-3p) has not been focused on osteosarcoma. Therein, this work was initiated to uncover lncRNA-ROR and miR-185-3p functions in osteosarcoma. METHODS LncRNA-ROR, miR-185-3p and Yes-associated protein 1 (YAP1) expression in osteosarcoma tissues and cells were detected. The screened cells (MG63 and U2OS) were transfected with decreased and/or increased lncRNA-ROR and miR-185-3p to explore osteosarcoma progression. Tumor growth was detected by tumor xenografts in mice. RESULTS Up-regulated lncRNA-ROR and YAP1 and down-regulated miR-185-3p were found in osteosarcoma. LncRNA ROR knockdown or miR-185-3p overexpression inhibited osteosarcoma cell progression while lncRNA ROR elevation or miR-185-3p inhibition presented the opposite effects. Function of lncRNA ROR was rescued by miR-185-3p and regulated the growth and metastasis of osteosarcoma cells via modulating YAP1, the target gene of miR-185-3p. CONCLUSION This work illustrates that lncRNA-ROR down-regulation or miR-185-3p up-regulation inhibits osteosarcoma progression via YAP1 repression.
Collapse
Affiliation(s)
- Weiguo Wang
- Department of Orthopedics, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Yuezhan Li
- Department of Orthopedics, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Shuang Zhi
- Four Gynecological Wards, Ningbo Women & Children's Hospital, Ningbo 315000, Zhejiang, China
| | - Jinsong Li
- Department of Orthopedics, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Jinglei Miao
- Department of Orthopedics, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Zhiyu Ding
- Department of Orthopedics, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Yi Peng
- Department of Orthopedics, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Yan Huang
- The Second Xiangya Hospital of Central South University, Changsha 410013, Hunan, China
| | - Ruping Zheng
- School of Basic Medical Science, Central South University, Changsha 410013, Hunan, China
| | - Haiyang Yu
- School of Basic Medical Science, Central South University, Changsha 410013, Hunan, China
| | - Pei Qi
- Department of pharmacy, The Third Xiangya Hospital of Central South University, Changsha 410013, Hunan, China
| | - Jianlong Wang
- Department of Orthopedics, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Xingchang Fu
- Department of Orthopedics, Hunan Aerospace hospital, Changsha 410205, Hunan, China
| | - Minghua Hu
- Department of Anatomy, Histology and Embryology, Changsha Medical University, Changsha 410219, China
| | - Shijie Chen
- Department of Orthopedics, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China; Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
17
|
LincRNA-ROR is activated by H3K27 acetylation and induces EMT in retinoblastoma by acting as a sponge of miR-32 to activate the Notch signaling pathway. Cancer Gene Ther 2020; 28:42-54. [PMID: 32439866 DOI: 10.1038/s41417-020-0181-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 12/19/2022]
Abstract
Recent studies have suggested that lincRNA-ROR is involved in the tumorigenesis of different types of cancers. However, the role of lincRNA-ROR in retinoblastoma has not been determined. We investigated lincRNA-ROR levels in 58 retinoblastoma and adjacent non-tumor tissues by quantitative reverse transcription PCR. Recurrence-free survival was analyzed using Cox regression analyses. Cell migration and invasion abilities were detected by wound-healing, Transwell invasion, and bioluminescence imaging assays. Western blotting was performed to detect epithelial-mesenchymal transition markers. Interactions between lincRNA-ROR, miR-32-5p, and Notch1 were confirmed by Luciferase, RNA pull-down, and RIP assays. Histone acetylation was detected by chromatin immunoprecipitation assays. We showed that lincRNA-ROR was significantly upregulated in retinoblastoma tissues, and overexpression of lincRNA-ROR was significantly correlated with optic nerve invasion, nodal or distant metastasis, and recurrence. We also showed that lincRNA-ROR is a critical promoter of retinoblastoma cell metastasis, both in vivo and in vitro. Further, we demonstrated that lincRNA-ROR activates the Notch signaling pathway by acting as a sponge of miR-32-5p. Upregulation of lincRNA-ROR was attributed to the CBP-mediated H3K27 acetylation at the promoter region. Our results reveal a potential competing endogenous RNA regulatory pathway, in which lincRNA-ROR modulates the epithelial-mesenchymal transition program by competitively binding to endogenous miR-32-5p and regulating Notch signaling pathway activity in retinoblastoma cells, which may provide new insights into novel molecular therapeutic targets for retinoblastoma.
Collapse
|
18
|
Wang X, Chen K, Zhao Z. LncRNA OR3A4 Regulated the Growth of Osteosarcoma Cells by Modulating the miR-1207-5p/G6PD Signaling. Onco Targets Ther 2020; 13:3117-3128. [PMID: 32346295 PMCID: PMC7167273 DOI: 10.2147/ott.s234514] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 01/20/2020] [Indexed: 01/12/2023] Open
Abstract
Background Increasing evidence has demonstrated the importance of non-coding RNAs including long non-coding RNA (lncRNA) and microRNAs (miRNAs) in the tumorigenesis of osteosarcoma (OS). Abnormal expression of lncRNA olfactory receptor family 3 subfamily A member 4 (OR3A4) was found in multiple human cancers; however, the function of OR3A4 in OS remains largely unknown. Materials and Methods The expression level of OR3A4 in OS tissues and cell lines was detected by RT-qPCR. Cell counting kit-8 assay, colony formation and flow cytometry analysis were performed to determine the growth of OS cells. The targets of OR3A4 were predicted using the miRDB database. The binding between OR3A4 and miRNAs was confirmed by dual-luciferase reporter assay. Results OR3A4 was overexpressed in OS tissues and correlated with the advanced progression of OS patients. Down-regulation of OR3A4 significantly inhibited the proliferation and colony formation of OS cells. Mechanistically, OR3A4 acted as a sponge of miR-1207-5p. Glucose-6-phosphate dehydrogenase (G6PD) was identified as a target of miR-1207-5p. Knockdown of OR3A4 increased the expression of miR-1207-5p and consequently, suppressed the level of G6PD in OS cells. Due to the essential role of G6PD in the pentose phosphate pathway (PPP), depletion of OR3A4 inhibited NADPH production, glucose consumption and lactate generation. Decreased level of NADPH by depletion of OR3A4 up-regulated the redox state (ROS) content and resulted in endoplasmic reticulum (ER) stress in OS cells. Restoration of G6PD significantly attenuated the cell growth inhibition induced by OR3A4 knockdown. Conclusion Our finding suggested the critical role of OR3A4 in the proliferation of OS cells via targeting the miR-1207-5p/G6PD axis.
Collapse
Affiliation(s)
- Xiaole Wang
- Department of Traumatology, The First People's Hospital of Shangqiu, Shangqiu, Henan Province 476000, People's Republic of China
| | - Kunfeng Chen
- Department of Traumatology, The First People's Hospital of Shangqiu, Shangqiu, Henan Province 476000, People's Republic of China
| | - Zhijian Zhao
- Department of Traumatology, The First People's Hospital of Shangqiu, Shangqiu, Henan Province 476000, People's Republic of China
| |
Collapse
|
19
|
Shi J, Zhang D, Zhong Z, Zhang W. lncRNA ROR promotes the progression of renal cell carcinoma through the miR‑206/VEGF axis. Mol Med Rep 2019; 20:3782-3792. [PMID: 31485634 PMCID: PMC6755161 DOI: 10.3892/mmr.2019.10636] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/25/2019] [Indexed: 12/16/2022] Open
Abstract
Renal cell carcinoma (RCC) is the most common kidney malignancy, responsible for ~80% of all cases in adults. The pathogenesis of RCC is complex, involving alterations at both the genetic and epigenetic levels. Numerous signaling pathways, such as PI3K/Akt/mTOR and Wnt‑β‑catenin have been demonstrated to be associated with the tumorigenesis and development of RCC. Long non‑coding RNAs (lncRNAs) are functional RNA molecules involved in the initiation and progression of cancer, and investigating the effects of lncRNA could facilitate the development of novel treatments. The lncRNA regulator of reprogramming (ROR) is aberrantly expressed in a variety of tumors. However, its underlying mechanisms remain largely unknown. In the present study, ROR was found to be upregulated and microRNA (miR)‑206 was found to be downregulated in RCC tissues and cells. Furthermore, the knockdown of ROR inhibited the proliferation, migration and invasion of RCC cells. It was found that ROR binds to miR‑206, and that ROR‑induced cell proliferation and metastasis were reversed by the overexpression of miR‑206. In addition, the levels of miR‑206 and ROR were negatively correlated in RCC tissues. Furthermore, the overexpression of miR‑206 notably suppressed the proliferation, migration and invasion of RCC cells, and these effects were enhanced by the knockdown of vascular endothelial growth factor (VEGF); cell growth and metastasis induced by miR‑206 inhibitors could be reversed by the knockdown of VEGF. In addition, the expression levels of miR‑206 and VEGF were inversely correlated in RCC samples. In summary, the results of the present study revealed that ROR was upregulated in RCC tissues, which promoted tumor progression by regulating the miR‑206/VEGF axis. The present findings provided a novel insight into the potential functions of ROR in RCC, and the ROR/miR‑206/VEGF pathway may be a promising therapeutic target for the treatment of patients with RCC.
Collapse
Affiliation(s)
- Jianguo Shi
- Department of Urology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Datian Zhang
- Department of Urology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Zhenhai Zhong
- Department of Andrology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Wen Zhang
- Department of Obstetrics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| |
Collapse
|
20
|
Fei D, Sui G, Lu Y, Tan L, Dongxu Z, Zhang K. The long non-coding RNA-ROR promotes osteosarcoma progression by targeting miR-206. J Cell Mol Med 2019; 23:1865-1872. [PMID: 30565392 PMCID: PMC6378210 DOI: 10.1111/jcmm.14087] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 11/02/2018] [Accepted: 11/22/2018] [Indexed: 01/02/2023] Open
Abstract
The long intergenic non-protein coding RNA regulator of reprogramming (lncRNA-ROR) has been reported to play crucial regulatory roles in the pathogenesis and progression of multiple cancers. However, whether ROR is associated with the initiation and development of osteosarcoma (OS) remains unclear. Here, we found that ROR expression level was significantly up-regulated in OS tissue samples compared to adjacent normal tissues, and the elevated ROR was closely correlated with advanced tumour-node-metastasis (TNM) stage and lymph node metastasis and poor overall survival rate. Functional assays showed that ROR knockdown suppressed the OS cell proliferation, colony formation, migration and invasion in vitro, and retarded tumour growth in vivo. In addition, miR-206 was verified to be a target miRNA of ROR using bioinformatics online program and luciferase report assay. miR-206 inhibition partially rescued the inhibitory effects on OS cells induced by ROR knockdown. In conclusion, these results suggested that ROR function as an oncogene in OS by sponging miR-206 and might be a potential therapeutic target for patients with OS.
Collapse
Affiliation(s)
- Dan Fei
- Ultrasonographic DepartmentChina‐Japan Union Hospital of Jilin UniversityChangchunP.R. China
| | - Guoqing Sui
- Ultrasonographic DepartmentChina‐Japan Union Hospital of Jilin UniversityChangchunP.R. China
| | - Yang Lu
- Ultrasonographic DepartmentChina‐Japan Union Hospital of Jilin UniversityChangchunP.R. China
| | - Long Tan
- Ultrasonographic DepartmentChina‐Japan Union Hospital of Jilin UniversityChangchunP.R. China
| | - Zhao Dongxu
- Department of Orthopaedic SurgeryChina‐Japan Union Hospital of Jilin UniversityChangchunP.R. China
| | - Kewei Zhang
- Department of Thoracic SurgeryThe First Hospital of Jilin UniversityChangchunP.R. China
| |
Collapse
|