1
|
Elbakush AM, Trunschke O, Shafeeq S, Römling U, Gomelsky M. Maple compounds prevent biofilm formation in Listeria monocytogenes via sortase inhibition. Front Microbiol 2024; 15:1436476. [PMID: 39351304 PMCID: PMC11439720 DOI: 10.3389/fmicb.2024.1436476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/03/2024] [Indexed: 10/04/2024] Open
Abstract
The Pss exopolysaccharide (EPS) enhances the ability of the foodborne pathogen Listeria monocytogenes to colonize and persist on surfaces of fresh fruits and vegetables. Eradicating listeria within EPS-rich biofilms is challenging due to their increased tolerance to disinfectants, desiccation, and other stressors. Recently, we discovered that extracts of maple wood, including maple sap, are a potent source of antibiofilm agents. Maple lignans, such as nortrachelogenin-8'-O-β-D-glucopyranoside and lariciresinol, were found to inhibit the formation of, and promote the dispersion of pre-formed L. monocytogenes EPS biofilms. However, the mechanism remained unknown. Here, we report that these lignans do not affect Pss EPS synthesis or degradation. Instead, they promote EPS detachment, likely by interfering with an unidentified lectin that keeps EPS attached to the cell surfaces. Furthermore, the maple lignans inhibit the activity of L. monocytogenes sortase A (SrtA) in vitro. SrtA is a transpeptidase that covalently anchors surface proteins, including the Pss-specific lectin, to the cell wall peptidoglycan. Consistent with this, deletion of the srtA gene results in Pss EPS detachment from listerial cells. We also identified several additional maple compounds, including epicatechin gallate, isoscopoletin, scopoletin, and abscisic acid, which inhibit L. monocytogenes SrtA activity in vitro and prevent biofilm formation. Molecular modelling indicates that, despite their structural diversity, these compounds preferentially bind to the SrtA active site. Since maple products are abundant and safe for consumption, our finding that they prevent biofilm formation in L. monocytogenes offers a viable source for protecting fresh produce from this foodborne pathogen.
Collapse
Affiliation(s)
- Ahmed M Elbakush
- Department of Molecular Biology, University of Wyoming, Laramie, WY, United States
| | - Oliver Trunschke
- Department of Molecular Biology, University of Wyoming, Laramie, WY, United States
| | - Sulman Shafeeq
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Ute Römling
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Mark Gomelsky
- Department of Molecular Biology, University of Wyoming, Laramie, WY, United States
| |
Collapse
|
2
|
Liu M, Lv Q, Xu J, Liu B, Zhou Y, Zhang S, Shen X, Wang L. Isoflavone glucoside genistin, an inhibitor targeting Sortase A and Listeriolysin O, attenuates the virulence of Listeria monocytogenes in vivo and in vitro. Biochem Pharmacol 2023; 209:115447. [PMID: 36746262 DOI: 10.1016/j.bcp.2023.115447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
As a common intracellular facultative anaerobic Gram-positive bacterium, Listeria monocytogenes (L. monocytogenes) exhibits strong resistance to extreme environments, such as low temperature and a wide range of pH values, causing contamination in food production and processing. Sortase A (SrtA) and listeriolysin O (LLO), two crucial virulence factors of L. monocytogenes, are widely recognized as potential targets for the development of anti-L. monocytogenes infection drugs. In this study, we found that genistin simultaneously inhibits the peptidase activity of SrtA and the hemolytic activity of LLO without affecting the growth of L. monocytogenes, alleviating concerns about developing resistance. Furthermore, we demonstrated that genistin reduces L. monocytogenes biofilm formation and invasion of human colorectal cancer (Caco-2) cells. Subsequent mechanistic studies revealed that genistin inhibited LLO-mediated Caco-2 cell damage by blocking LLO oligomerization. Fluorescence quenching assay revealed the potential binding mode of SrtA and LLO to genistin. Genistin might bind to the active pocket of SrtA through residues Leu33, Asn29, and Met40, interacting with D1 domain of LLO involved in oligomerization and pore formation through residues Asn259. Studies in infection models revealed that genistin reduces mortality and pathological damage in mice infected with L. monocytogenes. These results indicate that genistin is a promising anti-virulence agent that could be considered an alternative candidate for the treatment of L. monocytogenes infection.
Collapse
Affiliation(s)
- Minda Liu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China; Department of Respiratory Medicine, the First Hospital of Jilin University, Changchun, China
| | - Qianghua Lv
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China; Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, P.R.China; Key Laboratory of Livestock and Poultry Multi-omics of MARA, P.R.China
| | - Jingwen Xu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Baichen Liu
- The Second Bethune Clinical Medical College of Jilin University, Changchun 130012, Jilin, People's Republic of China
| | - Yonglin Zhou
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China; Department of Respiratory Medicine, the First Hospital of Jilin University, Changchun, China
| | - Siqi Zhang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China; Department of Respiratory Medicine, the First Hospital of Jilin University, Changchun, China
| | - Xue Shen
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China; Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, China.
| | - Lin Wang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China; Department of Respiratory Medicine, the First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
3
|
The Application of Cinnamon Twig Extract as an Inhibitor of Listeriolysin O against Listeria monocytogenes Infection. Molecules 2023; 28:molecules28041625. [PMID: 36838612 PMCID: PMC9962927 DOI: 10.3390/molecules28041625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 02/11/2023] Open
Abstract
As a major virulence factor of Listeria monocytogenes (L. monocytogenes), listeriolysin O (LLO) can assist in the immune escape of L. monocytogenes, which is critical for the pathogen to evade host immune recognition, leading to various infectious diseases. Cinnamon twig (CT), as a traditional medicine, has been widely used in clinics for multiple functions and it has exhibited excellent safety, efficacy and stability. There are few reports on the effects of the extracts of traditional medicine on bacterial virulence factors. CT has not been reported to be effective in the treatment of L. monocytogenes infection. Therefore, this study aims to explore the preventive effect of CT against L. monocytogenes infection in vivo and in vitro by targeting LLO. Firstly, a hemolysis assay and a cell viability determination are used to detect the effect of CT extract on the inhibition of the cytolytic activity of LLO. The potential mechanism through which CT extract inhibits LLO activity is predicted through network pharmacology, molecular docking assay, real-time polymerase chain reaction (RT-PCR), Western blotting and circular dichroism (CD) analysis. The experimental therapeutic effect of CT extract is examined in a mouse model infected with L. monocytogenes. Then, the ingredients are identified through a high-performance liquid chromatography (HPLC) and thin layer chromatography (TLC) analysis. Here we find that CT extract, containing mainly cinnamic acid, cinnamaldehyde, β-sitosterol, taxifolin, catechin and epicatechin, shows a potential inhibition of LLO-mediated hemolysis without any antimicrobial activity. The results of the mechanism research show that CT extract treatment can simultaneously inhibit LLO expression and oligomerization. Furthermore, the addition of CT extract led to a remarkable alleviation of LLO-induced cytotoxicity. After treatment with CT extract, the mortality, bacterial load, pathological damage and inflammatory responses of infected mice are significantly reduced when compared with the untreated group. This study suggests that CT extract can be a novel and multicomponent inhibitor of LLO with multiple strategies against L. monocytogenes infection, which could be further developed into a novel treatment for infections caused by L. monocytogenes.
Collapse
|
4
|
Synergistic Effect of Lithocholic Acid with Gentamicin against Gram-Positive Bacteria but Not against Gram-Negative Bacteria. Molecules 2022; 27:molecules27072318. [PMID: 35408717 PMCID: PMC9000364 DOI: 10.3390/molecules27072318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/26/2022] [Accepted: 03/29/2022] [Indexed: 12/04/2022] Open
Abstract
Listeria monocytogenes (L. monocytogenes) is an important Gram-positive food-borne pathogen that severely threatens public health. A checkerboard microdilution method was performed to evaluate the synergistic effect of lithocholic acid (LCA) with Gentamicin (Genta) against L. monocytogenes. BacLight LIVE/DEAD staining, scanning electron microscopy and biofilm inhibition assays were further used to explore the bactericidal effect and antibiofilm effect of this combination on L. monocytogenes. Additionally, the synergistic effects of LCA derivatives with Genta were also evaluated against L. monocytogenes, S.aureus and S. suis. The results indicated that a synergistic bactericidal effect was observed for the combined therapy of LCA at the concentration without affecting bacteria viability, with Genta. Additionally, LCA in combination with Genta had a synergistic effect against Gram-positive bacteria (L. monocytogenes, S. aureus and S. suis) but not against Gram-negative bacteria (E. coli, A. baumannii and Salmonella). BacLight LIVE/DEAD staining and scanning electron microscopy analysis revealed that the combination of LCA with Genta caused L. monocytogenes membrane injury, leading to bacteria death. We found that 8 μg/mL LCA treatment effectively improved the ability of Genta to eradicate L. monocytogenes biofilms. In addition, we found that chenodeoxycholic acid, as a cholic acid derivative, also improved the bactericidal effect of Genta against Gram-positive bacteria. Our results indicate that LCA represents a broad-spectrum adjuvant with Genta for infection caused by L. monocytogenes and other Gram-positive pathogens.
Collapse
|
5
|
Janež N, Škrlj B, Sterniša M, Klančnik A, Sabotič J. The role of the Listeria monocytogenes surfactome in biofilm formation. Microb Biotechnol 2021; 14:1269-1281. [PMID: 34106516 PMCID: PMC8313260 DOI: 10.1111/1751-7915.13847] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 12/11/2022] Open
Abstract
Listeria monocytogenes is a highly pathogenic foodborne bacterium that is ubiquitous in the natural environment and capable of forming persistent biofilms in food processing environments. This species has a rich repertoire of surface structures that enable it to survive, adapt and persist in various environments and promote biofilm formation. We review current understanding and advances on how L. monocytogenes organizes its surface for biofilm formation on surfaces associated with food processing settings, because they may be an important target for development of novel antibiofilm compounds. A synthesis of the current knowledge on the role of Listeria surfactome, comprising peptidoglycan, teichoic acids and cell wall proteins, during biofilm formation on abiotic surfaces is provided. We consider indications gained from genome-wide studies and discuss surfactome structures with established mechanistic aspects in biofilm formation. Additionally, we look at the analogies to the species L. innocua, which is closely related to L. monocytogenes and often used as its model (surrogate) organism.
Collapse
Affiliation(s)
- Nika Janež
- Department of BiotechnologyJožef Stefan InstituteLjubljanaSlovenia
| | - Blaž Škrlj
- Department of Knowledge TechnologiesJožef Stefan InstituteLjubljanaSlovenia
- Jožef Stefan International Postgraduate SchoolLjubljanaSlovenia
| | - Meta Sterniša
- Department of Food Science and TechnologyBiotechnical FacultyUniversity of LjubljanaLjubljanaSlovenia
| | - Anja Klančnik
- Department of Food Science and TechnologyBiotechnical FacultyUniversity of LjubljanaLjubljanaSlovenia
| | - Jerica Sabotič
- Department of BiotechnologyJožef Stefan InstituteLjubljanaSlovenia
| |
Collapse
|
6
|
Nitulescu G, Margina D, Zanfirescu A, Olaru OT, Nitulescu GM. Targeting Bacterial Sortases in Search of Anti-Virulence Therapies with Low Risk of Resistance Development. Pharmaceuticals (Basel) 2021; 14:ph14050415. [PMID: 33946434 PMCID: PMC8147154 DOI: 10.3390/ph14050415] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 12/29/2022] Open
Abstract
Increasingly ineffective antibiotics and rapid spread of multi- and pan-resistant bacteria represent a global health threat; hence, the need of developing new antimicrobial medicines. A first step in this direction is identifying new molecular targets, such as virulence factors. Sortase A represents a virulence factor essential for the pathogenesis of Gram-positive pathogens, some of which have a high risk for human health. We present here an exhaustive collection of sortases inhibitors grouped by relevant chemical features: vinyl sulfones, 3-aryl acrylic acids and derivatives, flavonoids, naphtoquinones, anthraquinones, indoles, pyrrolomycins, isoquinoline derivatives, aryl β-aminoethyl ketones, pyrazolethiones, pyridazinones, benzisothiazolinones, 2-phenyl-benzoxazole and 2-phenyl-benzofuran derivatives, thiadiazoles, triazolothiadiazoles, 2-(2-phenylhydrazinylidene)alkanoic acids, and 1,2,4-thiadiazolidine-3,5-dione. This review focuses on highlighting their structure–activity relationships, using the half maximal inhibitory concentration (IC50), when available, as an indicator of each compound effect on a specific sortase. The information herein is useful for acquiring knowledge on diverse natural and synthetic sortases inhibitors scaffolds and for understanding the way their structural variations impact IC50. It will hopefully be the inspiration for designing novel effective and safe sortase inhibitors in order to create new anti-infective compounds and to help overcoming the current worldwide antibiotic shortage.
Collapse
|
7
|
Miao X, Liu H, Zheng Y, Guo D, Shi C, Xu Y, Xia X. Inhibitory Effect of Thymoquinone on Listeria monocytogenes ATCC 19115 Biofilm Formation and Virulence Attributes Critical for Human Infection. Front Cell Infect Microbiol 2019; 9:304. [PMID: 31508379 PMCID: PMC6718631 DOI: 10.3389/fcimb.2019.00304] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 08/07/2019] [Indexed: 02/06/2023] Open
Abstract
This study aimed to determine the antimicrobial activity of thymoquinone (TQ) against Listeria monocytogenes, and to examine its inhibitory effects on biofilm formation, motility, hemolysin production, and attachment-invasion of host cells. The minimum inhibitory concentrations (MICs) of TQ against eight different L. monocytogenes strains ranged from 6.25-12.50 μg/mL. Crystal violet staining showed that TQ clearly reduced biofilm biomass at sub-MICs in a dose-dependent manner. Scanning electron microscopy suggested that TQ inhibited biofilm formation on glass slides and induced an apparent collapse of biofilm architecture. At sub-MICs, TQ effectively inhibited the motility of L. monocytogenes ATCC 19115, and significantly impacted adhesion to and invasion of human colon adenocarcinoma cells as well as the secretion of listeriolysin O. Supporting these findings, real-time quantitative polymerase chain reaction analysis revealed that TQ down-regulated the transcription of genes associated with motility, biofilm formation, hemolysin secretion, and attachment-invasion in host cells. Overall, these findings confirm that TQ has the potential to be used to combat L. monocytogenes infection.
Collapse
Affiliation(s)
- Xin Miao
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Huanhuan Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yangyang Zheng
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Du Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Chao Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yunfeng Xu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Xiaodong Xia
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
- Sino-US Joint Research Center for Food Safety, Northwest A&F University, Yangling, China
| |
Collapse
|
8
|
Lu G, Xu L, Zhang T, Deng X, Wang J. A potential bio-control agent from baical skullcap root against listeriosis via the inhibition of sortase A and listeriolysin O. J Cell Mol Med 2019; 23:2042-2051. [PMID: 30585434 PMCID: PMC6378236 DOI: 10.1111/jcmm.14110] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 12/01/2018] [Indexed: 01/29/2023] Open
Abstract
Listeria monocytogenes (LM) is a classical model intracellular pathogen and the leading cause of listeriosis, which has long been a global public health issue. The successful infection of LM is related to a series of virulence factors, such as the transpeptidase enzyme sortase A (SrtA) and listeriolysin O (LLO), which are crucial for bacterial internalization and escape from phagosomes respectively. It is speculated that targeting multiple virulence factors may be due to a synergistic effect on listeriosis therapy. In this study, an active flavonoids component of Scutellaria baicalensis Georgi, baicalein, was found to potently block both listerial SrtA catalyzed activity and LLO hemolytic activity within 16 μg/mL. After pretreatment with baicalein, 86.30 (±11.35) % of LM failed to associate with Caco-2 cells compared to the LM without preincubation (regarded as 100% internalization). Furthermore, baicalein addition may aid in bacterial degradation and clearance in macrophagocytes. During a 5 h observation, LM in cells incubated with baicalein showed significantly decreased vacuole escapes and sluggish endocellular growth. In addition, baicalein directly prevented LM-induced cells injury and mice fatality (survival rate from 10.00% to 54.55% in 4 days post-intraperitoneal injection). Taken together, as an antagonist against SrtA and LLO, baicalein can be further developed into a biotherapeutic agent for listeriosis.
Collapse
Affiliation(s)
- Gejin Lu
- Center of Infection and Immunity, First HospitalJilin UniversityChangchunJilin, 130021China
- Key Laboratory of Zoonosis, Ministry of EducationInstitute of Zoonosis, College of Veterinary Medicine, Jilin UniversityChangchunJilin, 130062China
| | - Lei Xu
- Center of Infection and Immunity, First HospitalJilin UniversityChangchunJilin, 130021China
- Key Laboratory of Zoonosis, Ministry of EducationInstitute of Zoonosis, College of Veterinary Medicine, Jilin UniversityChangchunJilin, 130062China
| | - Tong Zhang
- Center of Infection and Immunity, First HospitalJilin UniversityChangchunJilin, 130021China
- Key Laboratory of Zoonosis, Ministry of EducationInstitute of Zoonosis, College of Veterinary Medicine, Jilin UniversityChangchunJilin, 130062China
| | - Xuming Deng
- Center of Infection and Immunity, First HospitalJilin UniversityChangchunJilin, 130021China
- Key Laboratory of Zoonosis, Ministry of EducationInstitute of Zoonosis, College of Veterinary Medicine, Jilin UniversityChangchunJilin, 130062China
| | - Jianfeng Wang
- Center of Infection and Immunity, First HospitalJilin UniversityChangchunJilin, 130021China
- Key Laboratory of Zoonosis, Ministry of EducationInstitute of Zoonosis, College of Veterinary Medicine, Jilin UniversityChangchunJilin, 130062China
| |
Collapse
|