1
|
Li X, Bao L, Wang X, Wu H, Chen T, Xie R, Sun H, Zhang D, Wang L, Chen L. TACC3 facilitates chondrocyte differentiation by attenuating abnormally activated FGFR3 signaling in achondroplasia - An in vitro study. Tissue Cell 2025; 96:102940. [PMID: 40373614 DOI: 10.1016/j.tice.2025.102940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/17/2025] [Accepted: 04/24/2025] [Indexed: 05/17/2025]
Abstract
BACKGROUND Achondroplasia is a common form of dwarfism. It is caused by mutations in the fibroblast growth factor receptor 3 (FGFR3), which inhibits chondrocyte proliferation and differentiation. AIM In this study, we intended to investigate the underlying mechanism of FGFR3 mutation-induced chondrocyte differentiation defection. METHOD Insulin-transferrin-selenium (ITS-G) stimulated ATDC5 cells was used as an in vitro model. Alcian Blue staining was performed to detect ATDC5 cell differentiation. RESULTS TACC3 expression was increased during ATDC5 cell differentiation. ITS-G induced ATDC5 cell differentiation was inhibited by the FGFR3 mutation, as evidenced by the decreased expression of ACAN and COL2A1. The downregulation of TACC3 expression induced by ITS-G stimulation was upregulated by FGFR3 overactivation. The TACC3 inhibitor (KHS101) promoted differentiation in FGFR3 mutant ATDC5 cells. The p38 signaling pathway has been implicated in FGFR3 mutation-induced chondrocyte differentiation defects. KHS101 promoted the expression of p38. KHS101-induced increase in ATDC5 cell differentiation was inhibited by the administration of a p38 inhibitor. These results suggest that TACC3 might play a role through the p38 signaling pathway in chondrocyte differentiation defects caused by FGFR3 mutations. CONCLUSION TACC3 might represent a novel target for achondroplasia.
Collapse
Affiliation(s)
- Xiang Li
- Department of Endocrinology, Genetics and Metabolism, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Long Bao
- Department of Neurosurgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Xiaoyan Wang
- Department of Endocrinology, Genetics and Metabolism, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Haiying Wu
- Department of Endocrinology, Genetics and Metabolism, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Ting Chen
- Department of Endocrinology, Genetics and Metabolism, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Rongrong Xie
- Department of Endocrinology, Genetics and Metabolism, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Hui Sun
- Department of Endocrinology, Genetics and Metabolism, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Dandan Zhang
- Department of Endocrinology, Genetics and Metabolism, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Lili Wang
- Department of Endocrinology, Genetics and Metabolism, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Linqi Chen
- Department of Endocrinology, Genetics and Metabolism, Children's Hospital of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
2
|
Pandey S, Peroni E, Jarkovska D, Chottova Dvorakova M, Monasson O, Jirasko M, Chmelir T, Kučera R. Role of Neuropeptide B/W Signaling in Modulating Intracellular Calcium in Human Skin Fibroblasts. FRONT BIOSCI-LANDMRK 2025; 30:26760. [PMID: 40018932 DOI: 10.31083/fbl26760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/30/2024] [Accepted: 12/13/2024] [Indexed: 03/01/2025]
Abstract
BACKGROUND The neuropeptide B/W signalling system (NPB/W) has been identified in multiple body regions and is integral to several physiological processes, including the regulation of food intake and energy homeostasis. Recently, it has also been detected in human skin; however, its specific functions in this context remain to be thoroughly investigated. This study aims to identify the expression of neuropeptides B/W receptor 1 (NPBWR1) and neuropeptides B/W receptor 2 (NPBWR2) in human dermal fibroblasts of mesenchymal origin using genomic and proteomic techniques. We will also investigate the role of these receptors in cell proliferation and calcium signalling. METHODS The mRNAs for NPBWR1 and NPBWR2 were detected using quantitative PCR (qPCR) analysis and further validated by western blot and immunofluorescence analyses. Additionally, we synthesised ligands for these receptors, specifically hNPB (25-53) and hNPW (33-62), to investigate their effects on cell proliferation and intracellular calcium levels in human fibroblasts. RESULTS Our results demonstrated that hNPW (33-62) has anti-proliferative effect on human dermal fibroblasts and concentration of 0.1-μmol/L can significantly decrease intracellular calcium levels (p < 0.05). CONCLUSION This finding suggests a potential role for the NPB/W signalling system in pathologies associated with impaired calcium handling, such as fibrosis. Furthermore, we observed that the proliferation of human fibroblasts was not affected by hNPB (25-53). Our findings could lead to the development of new therapeutic strategies for various skin conditions and improved wound healing.
Collapse
Affiliation(s)
- Shashank Pandey
- Department of Pharmacology and Toxicology, Faculty of Medicine in Pilsen, Charles University, 23200 Pilsen, Czech Republic
| | - Elisa Peroni
- Depratment of Chemistry, CY Cergy Paris Université, CNRS, BioCIS, 95000 Cergy Pontoise, France
| | - Dagmar Jarkovska
- Department of Physiology, Faculty of Medicine in Pilsen, Charles University, 23200 Pilsen, Czech Republic
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 23200 Pilsen, Czech Republic
| | - Magdalena Chottova Dvorakova
- Department of Physiology, Faculty of Medicine in Pilsen, Charles University, 23200 Pilsen, Czech Republic
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 23200 Pilsen, Czech Republic
| | - Olivier Monasson
- Depratment of Chemistry, CY Cergy Paris Université, CNRS, BioCIS, 95000 Cergy Pontoise, France
| | - Michal Jirasko
- Department of Pharmacology and Toxicology, Faculty of Medicine in Pilsen, Charles University, 23200 Pilsen, Czech Republic
| | - Tomas Chmelir
- Department of Physiology, Faculty of Medicine in Pilsen, Charles University, 23200 Pilsen, Czech Republic
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 23200 Pilsen, Czech Republic
| | - Radek Kučera
- Department of Pharmacology and Toxicology, Faculty of Medicine in Pilsen, Charles University, 23200 Pilsen, Czech Republic
| |
Collapse
|
3
|
Shangguan H, Huang X, Lin J, Chen R. Knockdown of Kmt2d leads to growth impairment by activating the Akt/β-catenin signaling pathway. G3 (BETHESDA, MD.) 2024; 14:jkad298. [PMID: 38263533 PMCID: PMC10917512 DOI: 10.1093/g3journal/jkad298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/20/2023] [Indexed: 01/25/2024]
Abstract
The KMT2D variant-caused Kabuki syndrome (KS) is characterized by short stature as a prominent clinical characteristic. The initiation and progression of body growth are fundamentally influenced by chondrocyte proliferation. Uncertainty persists regarding the possibility that KMT2D deficiency affects growth by impairing chondrocyte proliferation. In this study, we used the CRISPR/Cas13d technique to knockdown kmt2d in zebrafish embryos and lentivirus to create a stable Kmt2d gene knockdown cell line in chondrocytes (ATDC5 cells). We also used CCK8 and flow cytometric studies, respectively, to determine proliferation and cell cycle state. The relative concentrations of phosphorylated Akt (ser473), phosphorylated β-catenin (ser552), and cyclin D1 proteins in chondrocytes and zebrafish embryos were determined by using western blots. In addition, Akt inhibition was used to rescue the phenotypes caused by kmt2d deficiency in chondrocytes, as well as a zebrafish model that was generated. The results showed that a knockdown of kmt2d significantly decreased body length and resulted in aberrant cartilage development in zebrafish embryos. Furthermore, the knockdown of Kmt2d in ATDC5 cells markedly increased proliferation and accelerated the G1/S transition. In addition, the knockdown of Kmt2d resulted in the activation of the Akt/β-catenin signaling pathway in ATDC5 cells. Finally, Akt inhibition could partly rescue body length and chondrocyte development in the zebrafish model. Our study demonstrated that KMT2D modulates bone growth conceivably via regulation of the Akt/β-catenin pathway.
Collapse
Affiliation(s)
- Huakun Shangguan
- Department of Endocrinology, Genetics and Metabolism, Fuzhou Children’s Hospital of Fujian Medical University, Fuzhou 350000, China
| | - Xiaozhen Huang
- Department of Endocrinology, Genetics and Metabolism, Fuzhou Children’s Hospital of Fujian Medical University, Fuzhou 350000, China
| | - Jinduan Lin
- Department of Endocrinology, Genetics and Metabolism, Fuzhou Children’s Hospital of Fujian Medical University, Fuzhou 350000, China
| | - Ruimin Chen
- Department of Endocrinology, Genetics and Metabolism, Fuzhou Children’s Hospital of Fujian Medical University, Fuzhou 350000, China
| |
Collapse
|
4
|
Regulation of Prepro-NeuropeptideW/B and Its Receptor in the Heart of ZDF Rats: An Animal Model of Type II DM. Int J Mol Sci 2022; 23:ijms232315219. [PMID: 36499546 PMCID: PMC9739957 DOI: 10.3390/ijms232315219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Neuropeptide B (NPB) and neuropeptide W (NPW) are neuropeptides, which constitute NPB/W signaling systems together with G-protein coupled receptors NPBWR1. The location and function of NPB/W signaling systems have been predominantly detected and mapped within the CNS, including their role in the modulation of inflammatory pain, neuroendocrine functions, and autonomic nervous systems. The aim of the study is to investigate the impact of diabetes on the neuropeptide B/W signaling system in different heart compartments and neurons which innervates it. In the RT-qPCR analysis, we observed the upregulation of mRNA for preproNPB in RV, for preproNPW in LA, and for NPBWR1 in DRG in diabetic rats. On the contrary, the expression of mRNA for NPBWR1 was downregulated in LV in diabetic rats. In the WB analysis, significant downregulation of NPBWR1 in LV (0.54-fold, p = 0.046) in diabetic rats was observed at the proteomic level. The presence of NPBWR1 was also confirmed in a dissected LCM section of cardiomyocytes and coronary arteries. The positive inotropic effect of NPW described on the diabetic cardiomyocytes in vitro could point to a possible therapeutic target for compensation of the contractile dysfunction in the diabetic heart. In conclusion, the NPB/W signaling system is involved in the regulation of heart functions and long-term diabetes leads to changes in the expression of individual members of this signaling system differently in each cardiac compartment, which is related to the different morphology and function of these cardiac chambers.
Collapse
|
5
|
Yuan S, Zhang L, Ji L, Zhong S, Jiang L, Wan Y, Song Y, Zhang C, Wang R. FoxO3a cooperates with RUNX1 to promote chondrogenesis and terminal hypertrophic of the chondrogenic progenitor cells. Biochem Biophys Res Commun 2021; 589:41-47. [PMID: 34891040 DOI: 10.1016/j.bbrc.2021.12.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 12/02/2021] [Indexed: 12/27/2022]
Abstract
FoxO transcription factors (FoxOs) have recently been shown to protect against chondrocyte dysfunction and modulate cartilage homeostasis in osteoarthritis. The mechanism underlying of FoxOs regulate chondrocyte differentiation remains unknown. Runt related transcription factor 1 (RUNX1) mediated both chondrocyte and osteoblast differentiation. Our data showed that FoxO3a and RUNX1 are co-expressed in ATDC5 cells and undifferentiated mesenchyme cells and have similar high levels in chondrocytes undergoing transition from proliferation to hypertrophy. Overexpression of FoxO3a in ATDC5 cells or mouse mesenchymal cells resulted in a potent induction of the chondrocyte differentiation markers. Knockdown FoxO3a or RUNX1 potently inhibits the expressions of chondrocyte differentiation markers, including Sox9, Aggrecan, Col2, and hypertrophic chondrocyte markers including RUNX2, ColX, MMP13 and ADAMTs-5 in ATDC5 cells. Co-immunoprecipitation showed that FoxO3a binds the transcriptional regulator RUNX1. Immunohistochemistry showed that FoxO3a and RUNX1 are highly co-expressed in the proliferative chondrocytes of the growth plates in the hind limbs of newborn mice. Collectively, we revealed that FoxO3a cooperated with RUNX1 promoted chondrocyte differentiation through enhancing both early chondrogenesis and terminal hypertrophic of the chondrogenic progenitor cells, indicating FoxO3a interacting with RUNX1 may be a therapeutic target for the treatment of osteoarthritis and other bone diseases.
Collapse
Affiliation(s)
- Shun Yuan
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, China
| | - Lang Zhang
- Jiangxi Provincial Children's Hospital, Nanchang, 330006, China
| | - Lianru Ji
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, China
| | - Sufang Zhong
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, China
| | - Liyun Jiang
- Jiangxi Pharmaceutical School, Nanchang, 330200, China
| | - Yang Wan
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, China
| | - Yonggui Song
- Key Laboratory of Animal Model of TCM Syndromes of Depression, Jiangxi Administration of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, China
| | - Changhua Zhang
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, China.
| | - Rikang Wang
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, China.
| |
Collapse
|
6
|
Wojciechowicz T, Billert M, Dhandapani P, Szczepankiewicz D, Wasielewski O, Strowski MZ, Nowak KW, Skrzypski M. Neuropeptide B promotes proliferation and differentiation of rat brown primary preadipocytes. FEBS Open Bio 2021; 11:1153-1164. [PMID: 33629519 PMCID: PMC8016125 DOI: 10.1002/2211-5463.13128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/27/2021] [Accepted: 02/23/2021] [Indexed: 12/28/2022] Open
Abstract
Neuropeptide B (NPB) is reported to regulate energy homeostasis and metabolism via the NPBWR1 and NPBWR2 receptors in various tissues. However, the molecular mechanisms triggered from their interaction are not well investigated in brown adipose tissue. In this study, we specifically analyzed the role of NPB in controlling brown adipogenesis in rat brown preadipocytes. We first detected the expression of NPBWR1 and NPB on mRNA and protein level in brown preadipocytes and observed that NPB increased viability and proliferation of preadipocytes. Moreover, NPB stimulated expression of adipogenic genes (Prdm16, Ucp1) and suppressed the expression of antiadipogenic preadipocyte factor 1 (Pref1) during the differentiation process. Altogether, this led to an increase in intracellular lipid accumulation during preadipocyte differentiation, coupled with an increase in adrenaline‐induced oxygen consumption mediated by NPB. Furthermore, Ucp1 expression stimulated by NPB was attenuated by blockade of p38 kinase. In summary, we conclude that NPB promotes proliferation and differentiation of rat brown preadipocytes via p38‐dependent mechanism and plays an important role in controlling brown adipose tissue formation.
Collapse
Affiliation(s)
- Tatiana Wojciechowicz
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, Poland.,Department of Hepatology and Gastroenterology, Charité-University Medicine Berlin, Germany
| | - Maria Billert
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, Poland
| | - Priyavathi Dhandapani
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, Poland
| | - Dawid Szczepankiewicz
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, Poland
| | | | - Mathias Z Strowski
- Department of Hepatology and Gastroenterology, Charité-University Medicine Berlin, Germany.,Department of Internal Medicine-Gastroenterology & Oncology, Park-Klinik Weissensee, Berlin, Germany
| | - Krzysztof W Nowak
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, Poland
| | - Marek Skrzypski
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, Poland
| |
Collapse
|
7
|
Zhang T, Yang Y, Yin X, Wang X, Ni J, Dong Z, Li C, Lu W. Two loss-of-function ANKRD11 variants in Chinese patients with short stature and a possible molecular pathway. Am J Med Genet A 2021; 185:710-718. [PMID: 33354850 PMCID: PMC7898801 DOI: 10.1002/ajmg.a.62024] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022]
Abstract
KBG syndrome is a rare genetic disease characterized mainly by skeletal abnormalities, distinctive facial features, and intellectual disability. Heterozygous mutations in ANKRD11 gene, or deletion of 16q24.3 that includes ANKRD11 gene are the cause of KBG syndrome. We describe two patients presenting with short stature and partial facial features, whereas no intellectual disability or hearing loss was observed in them. Two ANKRD11 variants, c.4039_4041del (p. Lys1347del) and c.6427C > G (p. Leu2143Val), were identified in this study. Both of them were classified as variants of uncertain significance (VOUS) by ACMG/AMP guidelines and were inherited from their mothers. ANKRD11 could enhance the transactivation of p21 gene, which was identified to participate in chondrogenic differentiation. In this study, we demonstrated that the knockdown of ANKRD11 could reduce the p21-promoter luciferase activities while re-introduction of wild type ANKRD11, but not ANKRD11 variants (p. Lys1347del or p. Leu2143Val), could restore the p21 levels. Thus, our study report two loss-of-function ANKRD11 variants which might provide new insight on pathogenic mechanism that correlates ANKRD11 variants with the short stature phenotype of KBG syndrome.
Collapse
Affiliation(s)
- Tingting Zhang
- Department of PediatricsRuijin Hospital Affiliated to Shanghai Jiao Tong UniversityShanghaiChina
| | - Yun Yang
- School of MedicineGuizhou UniversityGuiyangGuizhouChina
- Department of AnesthesiologyThe First Affiliated Hospital of Wenzhou Medical UniversityZhejiangChina
| | - Xueling Yin
- Department of PediatricsRuijin Hospital Affiliated to Shanghai Jiao Tong UniversityShanghaiChina
| | - Xueqing Wang
- Department of PediatricsRuijin Hospital Affiliated to Shanghai Jiao Tong UniversityShanghaiChina
| | - Jihong Ni
- Department of PediatricsRuijin Hospital Affiliated to Shanghai Jiao Tong UniversityShanghaiChina
| | - Zhiya Dong
- Department of PediatricsRuijin Hospital Affiliated to Shanghai Jiao Tong UniversityShanghaiChina
| | - Chuanyin Li
- Cancer Center, Shanghai Tenth People's Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Wenli Lu
- Department of PediatricsRuijin Hospital Affiliated to Shanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
8
|
Activation of Protein Kinase Cδ Contributes to the Induction of Src/EGF Receptor/ERK Signaling in Ammonia-treated Astrocytes. J Mol Neurosci 2020; 70:1110-1119. [PMID: 32125625 DOI: 10.1007/s12031-020-01517-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 02/19/2020] [Indexed: 02/06/2023]
Abstract
Previously, we showed that Src-mediated EGF receptor transactivation/ERK activation mediates ammonia-induced astrocyte swelling, which represents a major component of brain edema in hyperammonemic disorders. Here, we tested the role of PKC in the induction of this signaling pathway and its involvement in ammonia-mediated cell swelling. We found that incubating astrocytes with bisindolylmaleimide (BIM, an inhibitor of classical and novel PKC isoforms) or rottlerin, a PKCδ-specific inhibitor, attenuated the ammonia-induced phosphorylation of EGFR, while GF109203X had no effect on this pathway. We further found that BIM or rottlerin pretreatment inhibited the ammonia-induced phosphorylation of Src and that ammonia significantly increased the level of PKCδ pulled down by a Src antibody. AG1478, a specific EGFR kinase activity inhibitor, effectively inhibited phosphorylation at Tyr1068 but had no discernable effect on phosphorylation at Tyr845. Moreover, BIM or rottlerin abrogated ammonia-induced ERK phosphorylation. BIM-, rottlerin-, or GF109203X-treated astrocytes showed a significant reduction in cell swelling compared to that observed after treatment with ammonia alone. Finally, it was found that AG1478 attenuated ammonia-induced PKCα translocation to the particulate fraction. Taken together, our results indicate that PKCδ mediates ammonia-induced astrocyte swelling by activating Src and downstream EGF receptor/ERK signaling, which may contribute to the pathogenesis of neuropsychiatric disorders associated with hyperammonemia.
Collapse
|
9
|
Liu P, Li Y, Qi X, Xu J, Liu D, Ji X, Chi T, Liu H, Zou L. Protein kinase C is involved in the neuroprotective effect of berberine against intrastriatal injection of quinolinic acid-induced biochemical alteration in mice. J Cell Mol Med 2019; 23:6343-6354. [PMID: 31318159 PMCID: PMC6714207 DOI: 10.1111/jcmm.14522] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/04/2019] [Accepted: 06/11/2019] [Indexed: 12/11/2022] Open
Abstract
Protein kinase C (PKC) shows a neuronal protection effect in neurodegenerative diseases. In this study, we test whether berberine has a positive effect on the activity of PKC in quinolinic acid (QA)‐induced neuronal cell death. We used intrastriatal injections of QA mice model to test the effect of berberine on motor and cognitive deficits, and the PKC signalling pathway. Treatment with 50 mg/kg b.w of berberine for 2 weeks significantly prevented QA‐induced motor and cognitive impairment and related pathologic changes in the brain. QA inhibited the phosphorylation of PKC and its downstream molecules, GSK‐3β, ERK and CREB, enhanced the glutamate level and release of neuroinflammatory cytokines; these effects were attenuated by berberine. We used in vivo infusion of Go6983, a PKC inhibitor to disturb PKC activity in mice brain, and found that the effect of berberine to reverse motor and cognitive deficits was significantly reduced. Moreover, inhibition of PKC also blocked the anti‐excitotoxicity effect of berberine, which is induced by glutamate in PC12 cells and BV2 cells, as well as anti‐neuroinflammatory effect in LPS‐stimulated BV2 cells. Above all, berberine showed neuroprotective effect against QA‐induced acute neurotoxicity by activating PKC and its downstream molecules.
Collapse
Affiliation(s)
- Peng Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Yinjie Li
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiaoxiao Qi
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Jia Xu
- Sanhome Pharmaceutical Limited Company, Nanjing, China
| | - Danyang Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Xuefei Ji
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Tianyan Chi
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Han Liu
- Department of Clinical Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Libo Zou
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
10
|
Wang R, Zheng C, Jiang W, Xie X, Liao R, Zhou G. Neuropeptide W regulates proliferation and differentiation of ATDC5: Possible involvement of GPR7 activation, PKA and PKC-dependent signalling cascades. J Cell Mol Med 2019; 23:2093-2102. [PMID: 30609248 PMCID: PMC6378237 DOI: 10.1111/jcmm.14118] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/28/2018] [Accepted: 11/30/2018] [Indexed: 12/18/2022] Open
Abstract
Various neuropeptides related to the energy equilibrium affect bone growth in humans and animals. Neuropeptides W (NPW) are identical in the internal ligands of the two G‐protein receptors (GPRs) included in subtypes 7 and 8. Neuropeptides W inhibits proliferation in the cultivated rat calvarial osteoblast‐like (ROB) cells. This study examines the expression of NPW and GPR7 in murine chondrocyte and their function. An immunohistochemical analysis showed that NPW and GPR7 were expressed in the proliferative chondrocytes of the growth plates in the hind limbs of mice. The NPW mRNA quickly elevated in the early differentiation (7‐14 days) of ATDC5 cells, while NPW and GPR7 mRNA were reduced during the late stage (14‐21 days) of differentiation. Neuropeptide W‐23 (NPW‐23) promoted the proliferation of ATDC5 cells, which was attenuated by inhibiting the GPR7, protein kinase A (PKA), protein kinase C (PKC) and ERK1/2 pathways. Neuropeptide W‐23 enhanced the early cell differentiation, as evaluated by collagen type II and the aggrecan gene expression, which was unaffected by inhibiting the ERK1/2 pathway, but significantly decreased by inhibiting the PKA, PKC and p38 MAPK pathways. In contrast, NPW‐23 was not involved in the terminal differentiation of the chondrocytes, as evaluated by the mineralization of the chondrocytes and the activity of the alkaline phosphatase. Neuropeptides W stimulated the PKA, PKC, p38 MAPK and ERK1/2 activities in a dose‐ and time‐dependent manner in the ATDC5 cells. These results show that NPW promotes the proliferation and early differentiation of murine chondrocyte via GPR7 activation, as well as PKA and PKC‐dependent signalling cascades, which may be involved in endochondral bone formation.
Collapse
Affiliation(s)
- RiKang Wang
- Shenzhen Key Laboratory for Anti-ageing and Regenerative Medicine, Guangdong Key Laboratory for Genome Stability and Disease Prevention, Department of Medical Cell Biology and Genetics, Shenzhen University Health Science Center, Shenzhen, China.,National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Chaojun Zheng
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Wenyu Jiang
- Shenzhen Key Laboratory for Anti-ageing and Regenerative Medicine, Guangdong Key Laboratory for Genome Stability and Disease Prevention, Department of Medical Cell Biology and Genetics, Shenzhen University Health Science Center, Shenzhen, China
| | - Xinshu Xie
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Rifang Liao
- Department of pharmacy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Guangqian Zhou
- Shenzhen Key Laboratory for Anti-ageing and Regenerative Medicine, Guangdong Key Laboratory for Genome Stability and Disease Prevention, Department of Medical Cell Biology and Genetics, Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|