1
|
Wang H. The RNA m6A writer RBM15 contributes to the progression of esophageal squamous cell carcinoma by regulating miR-3605-5p/KRT4 pathway. Heliyon 2024; 10:e24459. [PMID: 38312624 PMCID: PMC10835169 DOI: 10.1016/j.heliyon.2024.e24459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 02/06/2024] Open
Abstract
Cancer progression can be modulated by N6-methyladenosine (m6A) modification. RNA binding motif protein 15 (RBM15) is an essential RNA m6A writer that influences carcinogenesis, however its significance in esophageal squamous cell carcinoma (ESCC) is uncertain. This research is intended to examine how RBM15 regulates the development of ESCC. We performed qRT-PCR analysis to evaluate the expression of RBM15, microRNA (miR-3605-5p) as well as keratin 4 (KRT4) in ESCC. Target relationship between miR-3605-5p and KRT4 was validated by dual luciferase reporter assay. Western blotting analyzed the protein levels of KRT4, p53, and p21. To demonstrate that RBM15 is responsible for the m6A alteration of miR-3605-5p, RIP and Me-RIP experiments were carried out concurrently. m6A content was measured by m6A quantification assay. Cell growth and migration were assessed using the CCK-8 and transwell assays. In addition, the role of RBM15 in vivo was examined using a mouse tumor xenograft model. RBM15 and miR-3605-5p were both substantially expressed in ESCC, however KRT4 was not expressed highly. Overexpressed RBM15 triggered cell proliferation and migration in ESCC. Besides, RBM15/m6A could mediate pri-3605-5p to form the mature miR-3605-5p, and miR-3605-5p further targeted KRT4. Further investigations showed that upregulation of KRT4 overturned the promoting impact of RBM15 overexpression on cell proliferation as well as on cell migration in ESCC by activating p53 signaling pathway. This work implied the carcinogenic activity of RBM15/m6A in ESCC via miR-3605-5p/KRT4 pathway, providing a novel m6A modification pattern in the tumorigenesis of ESCC.
Collapse
Affiliation(s)
- Huan Wang
- General practice section, Wuhan University of Science and Technology Hospital, Wuhan, 430070, Hubei, China
| |
Collapse
|
2
|
Thomaidou AC, Batsaki P, Adamaki M, Goulielmaki M, Baxevanis CN, Zoumpourlis V, Fortis SP. Promising Biomarkers in Head and Neck Cancer: The Most Clinically Important miRNAs. Int J Mol Sci 2022; 23:ijms23158257. [PMID: 35897831 PMCID: PMC9367895 DOI: 10.3390/ijms23158257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 02/01/2023] Open
Abstract
Head and neck cancers (HNCs) comprise a heterogeneous group of tumors that extend from the oral cavity to the upper gastrointestinal tract. The principal etiologic factors for oral tumors include tobacco smoking and alcohol consumption, while human papillomavirus (HPV) infections have been accused of a high incidence of pharyngeal tumors. Accordingly, HPV detection has been extensively used to categorize carcinomas of the head and neck. The diverse nature of HNC highlights the necessity for novel, sensitive, and precise biomarkers for the prompt diagnosis of the disease, its successful monitoring, and the timely prognosis of patient clinical outcomes. In this context, the identification of certain microRNAs (miRNAs) and/or the detection of alterations in their expression patterns, in a variety of somatic fluids and tissues, could serve as valuable biomarkers for precision oncology. In the present review, we summarize some of the most frequently studied miRNAs (including miR-21, -375, -99, -34a, -200, -31, -125a/b, -196a/b, -9, -181a, -155, -146a, -23a, -16, -29, and let-7), their role as biomarkers, and their implication in HNC pathogenesis. Moreover, we designate the potential of given miRNAs and miRNA signatures as novel diagnostic and prognostic tools for successful patient stratification. Finally, we discuss the currently ongoing clinical trials that aim to identify the diagnostic, prognostic, or therapeutic utility of miRNAs in HNC.
Collapse
Affiliation(s)
- Arsinoe C. Thomaidou
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece; (A.C.T.); (M.A.)
| | - Panagiota Batsaki
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 11522 Athens, Greece; (P.B.); (M.G.); (C.N.B.)
| | - Maria Adamaki
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece; (A.C.T.); (M.A.)
| | - Maria Goulielmaki
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 11522 Athens, Greece; (P.B.); (M.G.); (C.N.B.)
| | - Constantin N. Baxevanis
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 11522 Athens, Greece; (P.B.); (M.G.); (C.N.B.)
| | - Vassilis Zoumpourlis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece; (A.C.T.); (M.A.)
- Correspondence: (V.Z.); (S.P.F.); Tel.: +30-210-727-3730 (V.Z.); +30-210-640-9462 (S.P.F.)
| | - Sotirios P. Fortis
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 11522 Athens, Greece; (P.B.); (M.G.); (C.N.B.)
- Correspondence: (V.Z.); (S.P.F.); Tel.: +30-210-727-3730 (V.Z.); +30-210-640-9462 (S.P.F.)
| |
Collapse
|
3
|
Subha ST, Chin JW, Cheah YK, Mohtarrudin N, Saidi HI. Multiple microRNA signature panel as promising potential for diagnosis and prognosis of head and neck cancer. Mol Biol Rep 2021; 49:1501-1511. [PMID: 34837627 DOI: 10.1007/s11033-021-06954-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 11/11/2021] [Indexed: 01/10/2023]
Abstract
MicroRNAs are small non-coding RNA that regulate gene expressions of human body. To date, numerous studies have reported that microRNAs possess great diagnostic and prognostic power in head and neck cancer and had governed a lot of attention. The factor for the successfulness of miRNAs in these aspects is due to cancer being fundamentally tied to genetic changes, which are regulated by these miRNAs. Head and neck cancer, leading the world record for cancer as number sixth, is caused by multiple risk factors such as tobacco consumption, alcohol consumption, dietary factors, ethnicity, family history, and human papilloma virus. It derives at locations such as oral cavity, pharynx, larynx, paranasal sinus and salivary gland and have high rate of mortality with high recurrence rate. Besides, head and neck cancer is also usually having poor prognosis due to its asymptomatic nature. However, this diagnostic and prognostic power can be further improved by using multiple panels of miRNA as a signature or even combined with TNM staging system to obtain even more remarkable results. This is due to multiple factors such as tumour heterogeneity and components of the tumour which may affect the composition of miRNAs. This review covers the examples of such miRNA signatures, compare their diagnostic and prognostic powers, discuss some controversial roles of unreported miRNAs, and the molecular mechanisms of the miRNAs in gene targeting and pathways.
Collapse
Affiliation(s)
- Sethu Thakachy Subha
- Department of Otorhinolaryngology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - Jun Wei Chin
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Yoke Kqueen Cheah
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Norhafizah Mohtarrudin
- Department of Pathology, Faculty of Medicine and Health Sciences, University Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Hasni Idayu Saidi
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| |
Collapse
|
4
|
Li L, Xie R, Wei Q. Network analysis of miRNA targeting m6A-related genes in patients with esophageal cancer. PeerJ 2021; 9:e11893. [PMID: 34395102 PMCID: PMC8325912 DOI: 10.7717/peerj.11893] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 07/29/2021] [Indexed: 01/07/2023] Open
Abstract
Background We investigated the miRNA-m6A related gene network and identified a miRNA-based prognostic signature in patients with esophageal cancer using integrated genomic analysis. Methods We obtained expression data for m6A-related genes and miRNAs from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets. Survival analysis was conducted to identify potential prognostic biomarkers. LASSO Cox regression was performed to construct the overall survival (OS) associated prediction signature. We used the Kaplan-Meier (K-M) curve and receiver operating characteristic (ROC) curves to explore the signature's efficiency and accuracy. Interactions between the m6A-related genes and miRNAs were identified in starBase3.0 and used to construct the miRNA-m6A related gene network. Results We found that HNRNPC, YTHDF, ZC3H13, YTHDC2, and METTL14 were dysregulated in esophageal cancer tissues. Multivariate Cox regression analysis revealed that HNRNPC may be an independent risk factor for OS. Five hundred twenty-two potential upstream miRNAs were obtained from starBase3.0. Four miRNAs (miR-186, miR-320c, miR-320d, and miR-320b) were used to construct a prognostic signature, which could serve as a prognostic predictor independent from routine clinicopathological features. Finally, we constructed a key miRNA-m6A related gene network and used one m6A-related gene and four miRNAs associated with the prognosis. The results of our bioinformatics analysis were successfully validated in the human esophageal carcinoma cell lines KYSE30 and TE-1. Conclusion Our study identified a 4-miRNA prognostic signature and established a key miRNA-m6A related gene network. These tools may reliably assist with esophageal cancer patient prognosis.
Collapse
Affiliation(s)
- Lili Li
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Medical Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Rongrong Xie
- Department of Medical Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qichun Wei
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
5
|
A Potential miRNA-mRNA Network for Dementia and Hernia Crosstalk. BIOMED RESEARCH INTERNATIONAL 2021; 2021:4324068. [PMID: 34341761 PMCID: PMC8325595 DOI: 10.1155/2021/4324068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/11/2021] [Accepted: 07/08/2021] [Indexed: 12/13/2022]
Abstract
Background It has been reported that there may be a potential link between hernia and dementia. However, the exact mechanisms of their association have not been established. This study is aimed at constructing miRNA-mRNA networks to elucidate on the potential link between dementia and hernia. Methods Gene expression profiles for dementia, herniation, and skeletal muscle were downloaded from the GEO database after which differentially expressed mRNAs and miRNAs were obtained. In addition, fascia tissue samples were obtained during surgery. A total of 41 patients were recruited in this study, and expression levels of candidate genes were examined using quantitative RT-PCR. Luciferase reporter gene assays were used to identify potential miRNA-mRNA regulatory pathways. Results Differentially expressed mRNAs and miRNAs were screened. A potential miRNA-mRNA network revealing the crosstalk mechanism between herniation and dementia was identified. Single cell analysis revealed that PI16 was highly enriched in adipose tissues, skeletal muscles, and in the skin. GSEA enrichment analysis showed that PI16 is involved in adipose metabolism, muscle functions, and energy metabolism. In clinical samples, PI16 was found to be upregulated in hernia, while miR-4451 was found to be downregulated. The luciferase reporter gene assay revealed that downregulation of circulating miR-4451 may be responsible for the upregulated PI16 expression in hernia sacs. Conclusions We constructed an miRNA-mRNA network that shows the potential association between dementia and hernia. We also found that miR-4451 regulates the PI16 expression, which may be a key target and biomarker for hernia pathogenesis and dementia crosstalk.
Collapse
|
6
|
Chen W, Huang L, Liang J, Ye Y, He S, Niu J. RETRACTED: Hepatocellular carcinoma cells-derived exosomal microRNA-378b enhances hepatocellular carcinoma angiogenesis. Life Sci 2021; 273:119184. [PMID: 33577844 DOI: 10.1016/j.lfs.2021.119184] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/24/2022]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor-in-Chief. Concern was raised about the reliability of the Western blot results in Figs. 2D/G/H, 4C, 5F and 6D, which appear to have the same eyebrow shaped phenotype as many other publications tabulated here (https://docs.google.com/spreadsheets/d/149EjFXVxpwkBXYJOnOHb6RhAqT4a2llhj9LM60MBffM/edit#gid=0). The journal requested the corresponding author comment on these concerns and provide the raw data. However the authors were not able to satisfactorily fulfil this request and therefore the Editor-in-Chief decided to retract the article.
Collapse
Affiliation(s)
- Wei Chen
- Department of Gastroenterology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang 3420272, Hubei, China.
| | - Li Huang
- Neurology Department, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang 3420272, Hubei, China
| | - Junhua Liang
- Department of Gastroenterology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang 3420272, Hubei, China
| | - Yingjian Ye
- Department of Gastroenterology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang 3420272, Hubei, China
| | - Shan He
- Department of Gastroenterology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang 3420272, Hubei, China
| | - Junli Niu
- Department of Gastroenterology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang 3420272, Hubei, China
| |
Collapse
|
7
|
Liu X, Zhao W, Wang X. Inhibition of long non-coding RNA MALAT1 elevates microRNA-429 to suppress the progression of hypopharyngeal squamous cell carcinoma by reducing ZEB1. Life Sci 2020; 262:118480. [PMID: 32980391 DOI: 10.1016/j.lfs.2020.118480] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/08/2020] [Accepted: 09/16/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Hypopharyngeal squamous cell carcinoma (HSCC) is a common type of malignant tumor. Long non-coding RNAs (lncRNAs) are known to participate in HSCC development, while the role of lncRNA MALAT1 in HSCC remains largely unknown. We aimed to explore function of the lncRNA MALAT1/miR-429/ZEB1 axis in HSCC progression. METHODS Levels of MALAT1, miR-429 and ZEB1 in HSCC tissues samples were assessed. The FaDu cells were respectively treated with relative sequence or plasmid of MALAT1, miR-429, or ZEB1. Then, CCK-8 assay, colony formation assay, flow cytometry and Transwell assay were used to determine the cell proliferation, apoptosis, cell cycle, migration and invasion of the cells. The PI3K/Akt/mTOR signaling pathway-related proteins, proliferation-related proteins, cell cycle-related proteins, apoptosis-related proteins, and migration-related proteins were detected using Western blot analysis. The cell growth in vivo was observed. The targeting relationships between MALAT1 and miR-429, and between miR-429 and ZEB1 were confirmed. RESULTS MALAT1 and ZEB1 expression in HSCC was upregulated while miR-429 expression was downregulated. Reduced MALAT1 and ZEB1, and upregulated miR-429 inactivated the PI3K/Akt/mTOR signaling pathway, suppressed in vitro viability, colony formation ability, migration and invasion, as well as cell growth in vivo, and promoted the apoptosis of FaDu cells. Downregulated miR-429 reversed the role of MALAT1 inhibition in FaDu cell growth. LncRNA MALAT1 served as a sponge of miR-429, thus regulating ZEB1 expression. CONCLUSION Inhibition of MALAT1 was able to elevate miR-429 to suppress the progression of HSCC via reducing ZEB1. Our research provided a potential therapeutic target for HSCC.
Collapse
Affiliation(s)
- Xiuling Liu
- Department of Otolaryngology Head and Neck Surgery, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai 264200, Shandong, PR China.
| | - Weixia Zhao
- Department of Otolaryngology, Weihai Central Hospital, Weihai 264200, Shandong, PR China
| | - Xuehai Wang
- Department of Otolaryngology Head and Neck Surgery, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai 264200, Shandong, PR China
| |
Collapse
|
8
|
Xu X, Lu Z, Gross N, Li G, Zhang F, Lei D, Pan X. A 3-miRNA signature predicts survival of patients with hypopharyngeal squamous cell carcinoma after post-operative radiotherapy. J Cell Mol Med 2019; 23:8280-8291. [PMID: 31578816 PMCID: PMC6850940 DOI: 10.1111/jcmm.14702] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 07/23/2019] [Accepted: 09/15/2019] [Indexed: 12/19/2022] Open
Abstract
Since the prognosis of hypopharyngeal squamous cell carcinoma (HSCC) remains poor, identification of miRNA as a potential prognostic biomarker for HSCC may help improve personalized therapy. In the 2 cohorts with a total of 511 patients with HSCC (discovery: N = 372 and validation: N = 139) after post-operative radiotherapy, we used miRNA microarray and qRT-PCR to screen out the significant miRNAs which might predict survival. Associations of miRNAs and the signature score of these miRNAs with survival were performed by Kaplan-Meier survival analysis and multivariate Cox hazard model. Among 9 candidate, miRNAs, miR-200a-3p, miR-30b-5p, miR-3161, miR-3605-5p, miR-378b and miR-4451 were up-regulated, while miR-200c-3p, miR-429 and miR-4701 were down-regulated after validation. Moreover, the patients with high expression of miR-200a-3p, miR-30b-5p and miR-4451 had significantly worse overall survival (OS) and disease-specific survival (DSS) than did those with low expression (log-rank P < .05). Patients with a high-risk score had significant worse OS and DSS than those with low-risk score. Finally, after adjusting for other important prognostic confounders, patients with high expression of miR-200a-3p, miR-30b-5p and miR-4451 had significantly high risk of overall death and death owing to HSCC and patients with a high-risk score has approximately 2-fold increased risk in overall death and death owing to HSCC compared with those with a low-risk score. These findings indicated that the 3-miRNA-based signature may be a novel independent prognostic biomarker for patients given surgery and post-operative radiotherapy, supporting that these miRNAs may jointly predict survival of HSCC.
Collapse
Affiliation(s)
- Xinbo Xu
- Department of Otolaryngology, Qilu Hospital of Shandong University, Jinan, China.,NHC Key Laboratory of Otorhinolaryngology, Shandong University, Jinan, China
| | - Zhongming Lu
- Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Neil Gross
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Guojun Li
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Fenghua Zhang
- Thyroid and Breast Surgery Department, Hebei General Hospital, Shijiazhuang, China
| | - Dapeng Lei
- Department of Otolaryngology, Qilu Hospital of Shandong University, Jinan, China.,NHC Key Laboratory of Otorhinolaryngology, Shandong University, Jinan, China
| | - Xinliang Pan
- Department of Otolaryngology, Qilu Hospital of Shandong University, Jinan, China.,NHC Key Laboratory of Otorhinolaryngology, Shandong University, Jinan, China
| |
Collapse
|