1
|
Zhu S, Wang G, Zhang Y, Zou M, Li Z, Qu S, Zou X, Nong W, Miao W, Chen Q, Mo J, Chen H, Li L, Dong X, Luo H. Lnc-EST885 promotes hepatocellular carcinoma metastasis through PI3K / AKT pathway by interaction with TRAF4. Transl Oncol 2025; 52:102254. [PMID: 39721246 PMCID: PMC11732567 DOI: 10.1016/j.tranon.2024.102254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) represents a major malignancy globally, characterized by high malignancy and intricate molecular mechanisms. This study aims to explore the role of the long non-coding RNA (lncRNA) lnc-EST885 in HCC development. METHODS Cell experiments including FISH, western blot, flow cytometry and functional analysis were used to elucidate the effects of lnc-EST885 on cell proliferation, apoptosis, migration and EMT processes. RNA pull-down and ESI-FT-ICR-MS were used to identify proteins that interact with lnc-EST885 and were verified by RIP-qPCR. Furthermore, the association of lnc-EST885 and TRAF4 with HCC prognosis and metastasis was evaluated through bioinformatics analysis and animal models. RESULTS lnc-EST885 is one of the lncRNAs with the highest expression levels in M2-type macrophages. The expression of lnc-EST885 in HCC tissues is significantly higher than in normal tissues, and high expression is associated with poor prognosis. Functional experiments have shown that lnc-EST885 significantly promotes the proliferation and migration of liver cancer cells, inhibits apoptosis, and induces EMT. Studies in a mouse lung metastasis model have also confirmed that lnc-EST885 promotes the pulmonary metastasis of HCC cells in vivo. Mechanistic studies have revealed that lnc-EST885 can bind to the TRAF4 protein, activating the PI3K/AKT signaling pathway, thereby promoting the proliferation, migration, and EMT capability of liver cancer cells, contributing to the malignant phenotype of HCC. CONCLUSION lnc-EST885 plays a crucial role in the development of liver cancer, serving as a potential biomarker for predicting HCC prognosis and providing a new target for HCC treatment.
Collapse
Affiliation(s)
- Shaoliang Zhu
- Department of Hepatobiliary, Pancreas and Spleen Surgery, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning 530021, China
| | - Gang Wang
- Institute of Oncology, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning 530021, China
| | - Yuxuan Zhang
- Department of Nursing, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine 528400, China
| | - Mengjie Zou
- Department of Nephrology, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning 530021, China
| | - Zhi Li
- Department of Nursing, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine 528400, China
| | - Shenhong Qu
- Institute of Oncology, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning 530021, China; Department of Otolaryngology & Head and Neck, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, Nanning, Guangxi 530021, China
| | - Xiaosu Zou
- Institute of Oncology, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning 530021, China
| | - Wenqian Nong
- Institute of Oncology, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning 530021, China
| | - Weiwei Miao
- Institute of Oncology, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning 530021, China
| | - Qicong Chen
- Institute of Oncology, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning 530021, China
| | - Juanmei Mo
- Department of Oncology, Guangxi International Zhuang Medicine Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi 530021, China
| | - Huibing Chen
- Department of Nursing, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine 528400, China.
| | - Lequn Li
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, China.
| | - Xiaofeng Dong
- Department of Hepatobiliary, Pancreas and Spleen Surgery, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning 530021, China.
| | - Honglin Luo
- Institute of Oncology, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning 530021, China.
| |
Collapse
|
2
|
H19 and TUG1 lncRNAs as Novel Biomarkers for Irritable Bowel Syndrome in Diabetic Patients. Biomedicines 2022; 10:biomedicines10112978. [PMID: 36428545 PMCID: PMC9687602 DOI: 10.3390/biomedicines10112978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/10/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
Introduction: Irritable bowel syndrome (IBS) is a gastrointestinal disorder due to enteric nervous system impairment that produces different patterns of digestion. IBS is a common finding in diabetic patients. The functions of lncRNAs in IBS are still not clear and need to be further investigated. The aim of this study was to assess the diagnostic roles of lncRNA H19 and TUG1 for IBS associated with diabetes and to evaluate their association with clinical and laboratory findings. Subjects and Methods: Samples from 42 diabetic patients, 42 diabetic patients with IBS, and 42 healthy controls were obtained. The LncRNA H19 and TUG1 expressions were measured by quantitative real-time PCR. Results: The patients with IBS had significantly lower levels of lncRNA H19 and TUG1 expression than the healthy controls and diabetic-only patients (p < 0.001). LncRNA H19 and TUG1 can discriminate between diabetic-only patients and those with IBS (areas under the ROC curves of 0.95 and 0.722, respectively). The TUG1 expression levels were significantly different among types of IBS (IBS-D lower than IBS-M and IBS-C lower than IBS-M; p = 0.0165 and p = 0.043, respectively). H19 and TUG1 were downregulated in patients with poor glycemic control. lncRNA H19 and TUG1 expression in diabetic patients with IBS significantly negatively correlated with the IBS severity scoring system. Both lncRNAs’ expression significantly predicted the disease severity. LncRNA H19 expression can be an independent predictor for disease severity (adjusted odds ratio = 0.00001, 95% CI = 0−0.5, p = 0.045). Conclusions: Diabetic patients with IBS had significantly lower levels of lncRNA H19 and TUG1 expression than healthy controls and diabetic-only patients. LncRNA H19 had better diagnostic performance criteria for IBS. LncRNA H19 expression can be an independent predictor for IBS severity.
Collapse
|
3
|
Deng Y, Xu X, Meng F, Lou J, Liao Y, Li Q, Zhuang M, Sun Y. PRP8-Induced CircMaml2 Facilitates the Healing of the Intestinal Mucosa via Recruiting PTBP1 and Regulating Sec62. Cells 2022; 11:3460. [PMID: 36359856 PMCID: PMC9654005 DOI: 10.3390/cells11213460] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/26/2022] [Accepted: 10/30/2022] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND Multiple organ dysfunction syndrome (MODS) occurs in the gastrointestinal tract and injured intestinal mucosa is the anatomical basis for various diseases. The expression of circular RNAs (circRNAs) is implicated in many diseases; however, the role of circRNAs in intestinal mucosal injury is yet to be discovered. Our preliminary gene microarray analysis revealed a novel circular RNA, circMaml2, with a significant intestinal mucosal protection effect. Its expression was found to decrease in severely burned intestinal mucosal tissue, whereas its overexpression might facilitate the reconstruction of the injured intestinal mucous membrane. METHODS The function of circMaml2 in cell proliferation and migration was studied in MC38 cells. The repair function of circMaml2 was tested on the intestinal mucosa of mice. RNA-binding protein polypyrimidine tract-binding protein 1(PTBP1) was selected by pull-down assay and mass spectrometry (MS). RNA immunoprecipitation (RIP) was performed to confirm the binding of circMaml2 and PTBP1 and to study PTBP1 and its downstream target, early B-cell factor 1(Ebf1). Bioinformatics software forecast analysis and dual-luciferase reporter assay were performed to ascertain miR-683 and Sec62 as the downstream targets of circMaml2 and miR-683, respectively. Furthermore, PRP8 was discovered to promote the biogenesis of circMaml2. RESULTS CircMaml2 promotes cell proliferation and migration of MC38 cells and the repair of the intestinal mucosa of mice. This effect is brought about by combining with PTBP1 to improve Ebf1 and interacting with miR-683 to regulate Sec2. Furthermore, PRP8 was discovered to promote the biogenesis of circMaml2. CONCLUSIONS This is the first reported study of the effect of circMaml2 on intestinal mucosal repair.
Collapse
Affiliation(s)
- Yuequ Deng
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou 221004, China
- Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou 221004, China
| | - Xiaoqing Xu
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou 221004, China
- Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou 221004, China
| | - Fanze Meng
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou 221004, China
- Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou 221004, China
| | - Jiaqi Lou
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou 221004, China
- Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou 221004, China
| | - Yu Liao
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou 221004, China
- Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou 221004, China
| | - Qi Li
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou 221004, China
- Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou 221004, China
| | - Mengmeng Zhuang
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou 221004, China
- Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou 221004, China
| | - Yong Sun
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou 221004, China
- Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou 221004, China
| |
Collapse
|
4
|
Meng F, Shen F, Ling H, Jin P, Zhou D, Li Q. CircARHGAP12 Triggers Mesenchymal Stromal Cell Autophagy to Facilitate its Effect on Repairing Diabetic Wounds by Sponging miR-301b-3p/ATG16L1 and miR-301b-3p/ULK2. J Invest Dermatol 2022; 142:1976-1989.e4. [PMID: 34933019 DOI: 10.1016/j.jid.2021.11.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 11/07/2021] [Accepted: 11/23/2021] [Indexed: 10/19/2022]
Abstract
Circular RNAs have been confirmed to play vital roles in the development of human diseases. Nevertheless, their effects on modulating mesenchymal stromal cells (MSCs) to heal diabetic wounds are still elusive. In this study, our data revealed that MSCs treated with high glucose displayed an evident reduction in circARHGAP12 expression, whereas autophagy mediated by circARHGAP12 suppressed high glucose-triggered apoptosis of MSCs. Mechanistically, circARHGAP12 was capable of directly interacting with miR-301b-3p and subsequently sponged microRNA to modulate the expression of the miR-301b-3p target genes ATG16L1 and ULK2 and the downstream signaling pathway. Moreover, circARHGAP12 promoted the survival of MSCs in diabetic wounds in vivo and accelerated wound healing. Collectively, these results suggest that circARHGAP12/miR-301b-3p/ATG16L1 and circARHGAP12/miR-301b-3p/ULK2 regulatory networks might be an underlying therapeutic target for MSCs in diabetic wound healing.
Collapse
Affiliation(s)
- Fandong Meng
- Department of Endocrinology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Fengjie Shen
- Department of Endocrinology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Hongwei Ling
- Department of Endocrinology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Peisheng Jin
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Dongmei Zhou
- Department of Endocrinology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Qiang Li
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
5
|
The Role of lncRNAs in Regulating the Intestinal Mucosal Mechanical Barrier. BIOMED RESEARCH INTERNATIONAL 2021; 2021:2294942. [PMID: 34820453 PMCID: PMC8608538 DOI: 10.1155/2021/2294942] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/29/2021] [Accepted: 10/27/2021] [Indexed: 12/18/2022]
Abstract
lncRNA is a transcript that is more than 200 bp in length. Currently, evidence has shown that lncRNA is of great significance in cell activity, involved in epigenetics, gene transcription, chromatin regulation, etc. The existence of an intestinal mucosal mechanical barrier hinders the invasion of pathogenic bacteria and toxins, maintaining the stability of the intestinal environment. Serious destruction or dysfunction of the mechanical barrier often leads to intestinal diseases. This review first summarizes the ability of lncRNAs to regulate the intestinal mucosal mechanical barrier. We then discussed how lncRNAs participate in various intestinal diseases by regulating the intestinal mucosal mechanical barrier. Finally, we envision its potential as a new marker for diagnosing and treating intestinal inflammatory diseases.
Collapse
|
6
|
Chao G, Wang Z, Yang Y, Zhang S. LncRNA H19 as a Competing Endogenous RNA to Regulate AQP Expression in the Intestinal Barrier of IBS-D Patients. Front Physiol 2021; 11:602076. [PMID: 33584332 PMCID: PMC7874183 DOI: 10.3389/fphys.2020.602076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022] Open
Abstract
Objective The study aimed to investigate the role of Long non-coding RNA (LncRNA) H19 in the pathogenesis of Diarrhea Irritable Bowel Syndrome (IBS-D), and further to the regulatory effect of LncRNA H19 on AQP1, 3 in the intestinal mucosa of IBS-D patients, so as to seek a new way to elucidate the mechanism of IBS in clinic. Methods The levels of LncRNA H19, AQP1, and AQP3 were detected in colonic tissues of IBS-D patients, compared with that in healthy controls. Through RNA gene interference and activation methods, small activating RNA (saRNA) and small interfering (siRNA) were transfered into Caco-2 cells in vitro experiment, and sub-group for two control group, siH19 empty vector group, siH19 interference group, overexpression H19 vector group, and overexpression H19 empty vector group. Quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) and Western blot were applied to evaluate the expression levels of LncRNA H19 and the amount of AQP1 and AQP3 protein expression, respectively. Results Compared with healthy volunteers, the levels of LncRNA H19, AQP1, and AQP3 in the colonic mucosa of IBS-D patients were significantly decreased (P < 0.05). The results in vitro transfection experiment revealed that the level of LncRNA H19 in the siH19 interference group was significantly declined (P < 0.05), while there was a remarkable increase in the overexpression H19 vector group (P < 0.05), compared with the corresponding control groups. The expression of AQP1 and AQP3 in Caco-2 cells was of positive correlation with the level of LncRNA H19. Conclusion That the down-regulation of LncRNA H19 resulted in the expression changes of AQP1 and AQP3 may play an important role in the occurrence and development of IBS-D.
Collapse
Affiliation(s)
- Guanqun Chao
- Department of General Practice, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Zhaojun Wang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yi Yang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuo Zhang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
7
|
Li C, Zhuang M, Zhu B, Li Y, Zhang W, Yan H, Zhang P, Li D, Yang J, Sun Y, Chen H, Cui Q, Jin P, Sun Y. Epidermal growth factor regulation by autophagy-mediated lncRNA H19 in murine intestinal tract after severe burn. J Cell Mol Med 2020; 24:5878-5887. [PMID: 32301281 PMCID: PMC7214185 DOI: 10.1111/jcmm.15262] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/31/2019] [Accepted: 11/26/2019] [Indexed: 12/19/2022] Open
Abstract
To investigate the regulation of epidermal growth factor (EGF) by autophagy‐mediated long non‐coding RNA (lncRNA) H19 in the intestinal tracts of severely burned mice. C57BL/6J mice received third‐degree burns to 30% of the total body surface area. Rapamycin and 3‐methyladenine (3‐MA) were used to activate and inhibit autophagy, and the changes in LC3 and Beclin1 levels were assessed by Western blotting. The effect of autophagy on lncRNA H19 was detected by qRT‐PCR. Adenovirus‐mediated overexpression of lncRNA H19 in IEC‐6 cells was used to assess the effects of lncRNA H19 on EGF and let‐7g via bioinformatics analysis, Western blotting and qRT‐PCR. let‐7g mimic/inhibitor was used to overexpress/inhibit let‐7g, and qRT‐PCR and Western blotting were used to detect the effects of let‐7g on EGF. The expression levels of LC3‐II, Beclin1 and lncRNA H19 were increased in intestinal tissues and IEC‐6 cells after rapamycin treatment but were reversed after 3‐MA treatment. LC3‐II, Beclin1 and lncRNA H19 levels increased in intestinal tissues after the burn, and these increases were more significant after rapamycin treatment but decreased after 3‐MA treatment. The lncRNA H19 overexpression in IEC‐6 cells resulted in increased and decreased expression levels of EGF and let‐7g, respectively. Furthermore, overexpression and inhibition of let‐7g resulted in decreased and increased expression of EGF, respectively. Taken together, intestinal autophagy is activated after a serious burn, which can increase the transcription level of lncRNA H19. lncRNA H19 may regulate the repair of EGF via let‐7g following intestinal mucosa injury after a burn.
Collapse
Affiliation(s)
- Cuijie Li
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou, China.,Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou, China
| | - Mengmeng Zhuang
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou, China.,Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou, China
| | - Bo Zhu
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou, China.,Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou, China
| | - Ye Li
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou, China.,Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou, China
| | - Wenwen Zhang
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou, China.,Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou, China
| | - Hao Yan
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou, China.,Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou, China
| | - Pan Zhang
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou, China.,Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou, China
| | - Dan Li
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou, China.,Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou, China
| | - Juan Yang
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou, China.,Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou, China
| | - Yuan Sun
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou, China.,Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou, China
| | - Haijun Chen
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou, China.,Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou, China
| | - Qingwei Cui
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou, China.,Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou, China
| | - Peisheng Jin
- Department of Plastic Surgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yong Sun
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou, China.,Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou, China
| |
Collapse
|