1
|
Li L, Lin R, Xu Y, Li L, Pan Z, Huang J. FoxA1 knockdown promotes BMSC osteogenesis in part by activating the ERK1/2 signaling pathway and preventing ovariectomy-induced bone loss. Sci Rep 2025; 15:4594. [PMID: 39920313 PMCID: PMC11806018 DOI: 10.1038/s41598-025-88658-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 01/29/2025] [Indexed: 02/09/2025] Open
Abstract
The influence of deep learning in the medical and molecular biology sectors is swiftly growing and holds the potential to improve numerous crucial domains. Osteoporosis is a significant global health issue, and the current treatment options are highly restricted. Transplanting genetically engineered MSCs has been acknowledged as a highly promising therapy for osteoporosis. We utilized a random walk-based technique to discern genes associated with ossification. The osteogenic value of these genes was assessed on the basis of information found in published scientific literature. GO enrichment analysis of these genes was performed to determine if they were enriched in any certain function. Immunohistochemical and western blot techniques were used to identify and measure protein expression. The expression of genes involved in osteogenic differentiation was examined via qRT‒PCR. Lentiviral transfection was utilized to suppress the expression of the FOXA1 gene in hBMSCs. An in vivo mouse model of ovariectomy was created, and radiographic examination was conducted to confirm the impact of FOXA1 knockdown on osteoporosis. The osteogenic score of each gene was calculated by assessing its similarity to osteo-specific genes. The majority of the genes with the highest rankings were linked with osteogenic differentiation, indicating that our approach is useful for identifying genes associated with ossification. GO enrichment analysis revealed that these pathways are enriched primarily in bone-related processes. FOXA1 is a crucial transcription factor that controls the process of osteogenic differentiation, as indicated by similarity analysis. FOXA1 was significantly increased in those with osteoporosis. Downregulation of FOXA1 markedly augmented the expression of osteoblast-specific genes and proteins, activated the ERK1/2 signaling pathway, intensified ALP activity, and promoted mineral deposition. In addition, excessive expression of FOXA1 significantly reduced ALP activity and mineral deposits. Using a mouse model in which the ovaries were surgically removed, researchers reported that suppressing the FOXA1 gene in bone marrow stem cells (BMSCs) prevented the loss of bone density caused by ovariectomy. This finding was confirmed by analyzing the bone structure via micro-CT. Furthermore, our approach can distinguish genes that exhibit osteogenic differentiation characteristics. This ability can aid in the identification of novel genes associated with osteogenic differentiation, which can be utilized in the treatment of osteoporosis. Computational and laboratory evidence indicates that reducing the expression of FOXA1 enhances the process of bone formation in bone marrow-derived mesenchymal stem cells (BMSCs) and may serve as a promising approach to prevent osteoporosis.
Collapse
Affiliation(s)
- Lijun Li
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang, China
- Zhejiang Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases, Hangzhou, 310016, Zhejiang, China
| | - Renjin Lin
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hang Zhou, China
| | - Yang Xu
- Thoracic Surgery Department of Zhejiang Cancer Hospital, Hangzhou, China
| | - Lingdi Li
- Department of Medical Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang, China.
| | - Zhijun Pan
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China.
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China.
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hang Zhou, China.
| | - Jian Huang
- Department of Ultrasound, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
2
|
Zhou J, Hu J, Liu J, Zhang W. Elucidating the gastroprotective mechanisms of Imperata cylindrica Beauv.var. major (Nees) C.E.Hubb through UHPLC-MS/MS and systems network pharmacology. Sci Rep 2024; 14:27815. [PMID: 39537788 PMCID: PMC11560922 DOI: 10.1038/s41598-024-79483-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 11/11/2024] [Indexed: 11/16/2024] Open
Abstract
Imperata cylindrica Beauv.var. major (Nees) C.E.Hubb., commonly known as BaiMaoGen (BMG), a medicinal and edible traditional Chinese medicinal (TCM) herb commonly used in health supplements, has been observed to offer protective effects against gastrointestinal disorders. However, the specific bioactive compounds and their molecular mechanisms have not been fully elucidated. This study employed ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) and systematic network pharmacology to analyze and identify the key active components and their interactions with biological targets. Thirty-six main active compounds, including 3,4-dihydroxybenzoic acid and p-hydroxybenzoic acid, were identified and analyzed for their interaction with key protein targets using molecular docking and dynamic simulations. This combined approach highlighted the therapeutic pathways involved, particularly the PI3K/AKT signaling pathways, providing new insights into the molecular basis of BMG's gastroprotective effects. Our findings suggested that BMG's complex multi-target action can potentially be harnessed to develop effective treatments for gastrointestinal toxicity.
Collapse
Affiliation(s)
- Jiaxin Zhou
- School of Clinical Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi, China
| | - Jianping Hu
- Academician Workstation, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi, China
| | - Jiancheng Liu
- School of Clinical Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi, China
| | - Wenchun Zhang
- School of life science, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi, China.
| |
Collapse
|
3
|
Aouabdi S, Nedjadi T, Alsiary R, Mouffouk F, Ansari HR. Transcriptomics Demonstrates Significant Biological Effect of Growing Stem Cells on RGD-Cotton Scaffold. Tissue Eng Part A 2024. [PMID: 38666698 DOI: 10.1089/ten.tea.2023.0333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024] Open
Abstract
Stem cell therapy provides a viable alternative treatment for degenerated or damaged tissue. Stem cells have been used either alone or in conjunction with an artificial scaffold. The latter provides a structural advantage by enabling the cells to thrive in three-dimensional (3D) settings, closely resembling the natural in vivo environments. Previously, we disclosed the development of a 3D scaffold made from cotton, which was conjugated with arginyl-glycyl-aspartic acid (RGD), to facilitate the growth and proliferation of mesenchymal stem cells (MSCs). This scaffold allowed the MSCs to adhere and proliferate without compromising their viability or their stem cell markers. A comprehensive analysis investigation of the molecular changes occurring in MSCs adhering to the cotton fibers will contribute to the advancement of therapy. The objective of this study is to analyze the molecular processes occurring in the growth of MSCs on a cotton-RGD conjugated-based scaffold by examining their gene expression profiles. To achieve this, we conducted an experiment where MSCs were seeded with and without the scaffold for a duration of 48 h. Subsequently, cells were collected for RNA extraction, cDNA synthesis, and whole-transcriptomic analysis performed on both populations. Our analysis revealed several upregulated and downregulated differently expressed genes in the MSCs adhering to the scaffold compared with the control cells. Through gene ontology analysis, we were able to identify enriched biological processes, molecular functions, pathways, and protein-protein interactions in these differentially expressed genes. Our data suggest that the scaffold may have the potential to enhance osteogenesis in the MSCs. Furthermore, our results indicate that the scaffold does not induce oxidative stress, inflammation, or aging in the MSCs. These findings provide valuable insights for the application of MSCs in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Sihem Aouabdi
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Taoufik Nedjadi
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Rawiah Alsiary
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Fouzi Mouffouk
- Department of Chemistry, Kuwait University, Kuwait, Kuwait
| | - Hifzur Rahman Ansari
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| |
Collapse
|
4
|
Ghimire U, Kandel R, Ko SW, Adhikari JR, Kim CS, Park CH. Electrochemical technique to develop surface-controlled polyaniline nano-tulips (PANINTs) on PCL-reinforced chitosan functionalized (CS-f-Fe 2O 3) scaffolds for stimulating osteoporotic bone regeneration. Int J Biol Macromol 2024; 264:130608. [PMID: 38447840 DOI: 10.1016/j.ijbiomac.2024.130608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/15/2024] [Accepted: 02/26/2024] [Indexed: 03/08/2024]
Abstract
Bone defects pose significant challenges in orthopedic surgery, often leading to suboptimal outcomes and complications. Addressing these challenges, we employed a three-electrode electrochemical system to fabricate surface-controlled polyaniline nano-tulips (PANINTs) decorated polycaprolactone (PCL) reinforced chitosan functionalized iron oxide nanoparticles (CS-f-Fe2O3) scaffolds. These structures were designed to emulate the natural extracellular matrix (ECM) and promote enhanced osseointegration by establishing a continuous interface between host bone and graft, thereby improving both biological processes and mechanical stability. In vitro experiments demonstrated that PANINTs-PCL/CS-f-Fe2O3 substrates significantly promoted the proliferation, differentiation, and spontaneous outgrowth and extension of MC3T3-E1 cell activity. The nanomaterials exhibited increased cell viability and osteogenic differentiation, as evidenced by elevated expression of bone-related markers such as ALP, ARS, COL-I, RUNX2, and SPP-I, as determined by qRT-PCR. Our findings underscore the regenerative potential of in situ cell culture systems for bone defects, emphasizing the targeted stimulation of essential cell subpopulations to facilitate rapid bone tissue regeneration.
Collapse
Affiliation(s)
- Upasana Ghimire
- Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, Republic of Korea
| | - Rupesh Kandel
- Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, Republic of Korea; Division of Mechanical Design Engineering, Jeonbuk National University, Jeonju 561-756, Republic of Korea.
| | - Sung Won Ko
- Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, Republic of Korea; Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, Republic of Korea
| | - Jhalak Raj Adhikari
- Division of Mechanical Design Engineering, Jeonbuk National University, Jeonju 561-756, Republic of Korea
| | - Cheol Sang Kim
- Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, Republic of Korea; Division of Mechanical Design Engineering, Jeonbuk National University, Jeonju 561-756, Republic of Korea.
| | - Chan Hee Park
- Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, Republic of Korea; Division of Mechanical Design Engineering, Jeonbuk National University, Jeonju 561-756, Republic of Korea.
| |
Collapse
|
5
|
Zhu L, Wang Q, Guo M, Fang H, Li T, Zhu Y, Jiang H, Xiao P, Hu M. Mesenchymal Stem Cell-Derived Exosomes in Various Chronic Liver Diseases: Hype or Hope? J Inflamm Res 2024; 17:171-189. [PMID: 38223423 PMCID: PMC10788055 DOI: 10.2147/jir.s439974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/27/2023] [Indexed: 01/16/2024] Open
Abstract
Chronic liver conditions are associated with high mortality rates and have a large adverse effect on human well-being as well as a significant financial burden. Currently, the only effective treatment available for the effects of liver failure and cirrhosis resulting from the progression of several chronic liver diseases is liver transplantation carried out at the original location. This implies that developing novel and effective treatments is imperative. Regenerative medicine has long been associated with stem cell therapy. Mesenchymal stem cells (MSCs), a type of cell with great differentiation potential, have become the preferred source for stem cell therapy. According to recent studies, MSCs' paracrine products-rather than their capacity for differentiation-play a significant therapeutic effect. MSC exosomes, a type of extracellular vesicle (MSC-EV), came into view as the paracrine substances of MSCs. According to research, MSC exosomes can maintain tissue homeostasis, which is necessary for healthy tissue function. All tissues contain them, and they take part in a variety of biological activities that support cellular activity and tissue regeneration in order to preserve tissue homeostasis. The outcomes support the use of MSCs and the exosomes they produce as a therapeutic option for a range of diseases. This review provides a brief overview of the source of MSC-EVs and outlines their physiological roles and biochemical capabilities. The elucidation of the role of MSC-EVs in the recovery and repair of hepatic tissues, as well as their contribution to maintaining tissue homeostasis, is discussed in relation to different chronic liver diseases. This review aims to provide new insights into the unique roles that MSC-EVs play in the treatment of chronic liver diseases.
Collapse
Affiliation(s)
- Lujian Zhu
- Department of Infectious Diseases, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| | - Qin Wang
- Department of Infectious Diseases, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| | - Maodong Guo
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| | - Hao Fang
- Department of Traumatology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| | - Ting Li
- Department of Emergency Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Yin Zhu
- Department of Infectious Diseases, Taizhou Enze Medical Center (Group), Enze Hospital, Taizhou, People’s Republic of China
| | - Huimian Jiang
- Department of Infectious Diseases, the First Affiliated Hospital of Ningbo University, Ningbo, People’s Republic of China
| | - Peiguang Xiao
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| | - Minli Hu
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| |
Collapse
|
6
|
Luo W, Zhang N, Wang Z, Chen H, Sun J, Yao C, Zhang Y. LncRNA USP2-AS1 facilitates the osteogenic differentiation of bone marrow mesenchymal stem cells by targeting KDM3A/ETS1/USP2 to activate the Wnt/β-catenin signaling pathway. RNA Biol 2024; 21:1-13. [PMID: 38131611 PMCID: PMC10761055 DOI: 10.1080/15476286.2023.2290771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/06/2023] [Accepted: 08/10/2023] [Indexed: 12/23/2023] Open
Abstract
Human bone marrow mesenchymal stem cells (HBMSCs) can promote new bone formation. Previous studies have proven the ability of long non-coding RNAs (lncRNAs) to modulate the osteogenic differentiation of mesenchymal stem cells. However, the molecular mechanism modulated by lncRNAs in affecting the osteogenic differentiation of HBMSCs remains largely unknown. Thus, this study aims to reveal the role of lncRNA ubiquitin-specific peptidase 2 antisense RNA 1 (USP2-AS1) in regulating the osteogenic differentiation of HBMSCs and investigate its regulatory mechanism. Through bioinformatics analysis and RT-qPCR, we confirmed that USP2-AS1 expression was increased in HBMSCs after culturing in osteogenic differentiation medium (OM-HBMSCs). Moreover, we uncovered that knockdown of USP2-AS1 inhibited the osteogenic differentiation of HBMSCs. Further exploration indicated that USP2-AS1 positively regulated the expression of its nearby gene USP2. Mechanistically, USP2-AS1 recruited lysine demethylase 3A (KDM3A) to stabilize ETS proto-oncogene 1 (ETS1), transcription factor that transcriptionally activated USP2. Additionally, USP2-induced Wnt/β-catenin signalling pathway activation via deubiquitination of β-catenin protein. In summary, our study proved that lncRNA USP2-AS1 facilitates the osteogenic differentiation of HBMSCs by targeting KDM3A/ETS1/USP2 axis to activate the Wnt/β-catenin signalling pathway.
Collapse
Affiliation(s)
- Wanxin Luo
- Department of Orthopaedics, the Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Na Zhang
- Department of Endocrinology, Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi, China
- Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Ziping Wang
- Department of Orthopaedics, the Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Hao Chen
- Department of Orthopaedics, the Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jie Sun
- Department of Orthopaedics, the Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Chen Yao
- Department of Orthopaedics, the Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Yafeng Zhang
- Department of Orthopaedics, the Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
7
|
Liao X, Shen M, Li T, Feng L, Lin Z, Shi G, Pei G, Cai X. Combined Molybdenum Gelatine Methacrylate Injectable Nano-Hydrogel Effective Against Diabetic Bone Regeneration. Int J Nanomedicine 2023; 18:5925-5942. [PMID: 37881608 PMCID: PMC10596232 DOI: 10.2147/ijn.s428429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/08/2023] [Indexed: 10/27/2023] Open
Abstract
Introduction Bone defects in diabetes mellitus (DM) remain a major challenge for clinical treatment. Fluctuating glucose levels in DM patients lead to excessive production of reactive oxygen species (ROS), which disrupt bone repair homeostasis. Bone filler materials have been widely used in the clinical treatment of DM-related bone defects, but overall they lack efficacy in improving the bone microenvironment and inducing osteogenesis. We utilized a gelatine methacrylate (GelMA) hydrogel with excellent biological properties in combination with molybdenum (Mo)-based polyoxometalate nanoclusters (POM) to scavenge ROS and promote osteoblast proliferation and osteogenic differentiation through the slow-release effect of POM, providing a feasible strategy for the application of biologically useful bone fillers in bone regeneration. Methods We synthesized an injectable hydrogel by gelatine methacrylate (GelMA) and POM. The antioxidant capacity and biological properties of the synthesized GelMA/POM hydrogel were tested. Results In vitro, studies showed that hydrogels can inhibit excessive reactive oxygen species (ROS) and reduce oxidative stress in cells through the beneficial effects of pH-sensitive POM. Osteogenic differentiation assays showed that GelMA/POM had good osteogenic properties with upregulated expression of osteogenic genes (BMP2, RUNX2, Osterix, ALP). Furthermore, RNA-sequencing revealed that activation of the PI3K/Akt signalling pathway in MC3T3-E1 cells with GelMA/POM may be a potential mechanism to promote osteogenesis. In an in vivo study, radiological and histological analyses showed enhanced bone regeneration in diabetic mice, after the application of GelMA/POM. Conclusion In summary, GelMA/POM hydrogels can enhance bone regeneration by directly scavenging ROS and activating the PI3K/Akt signalling pathway.
Collapse
Affiliation(s)
- Xun Liao
- Department of Orthopedics, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, People’s Republic of China
| | - Mingkui Shen
- Henan Provincial Third People’s Hospital, Zhengzhou, Henan Province, 450000, People’s Republic of China
| | - Tengbo Li
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, 519000, People’s Republic of China
| | - Li Feng
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, 519000, People’s Republic of China
| | - Zhao Lin
- Department of Orthopedics, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, People’s Republic of China
| | - Guang Shi
- Department of Orthopedics, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, People’s Republic of China
| | - Guoxian Pei
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, 519000, People’s Republic of China
| | - Xiyu Cai
- Department of Orthopedics, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, People’s Republic of China
| |
Collapse
|
8
|
Liu Y, Zhang Z, Lin W, Liang H, Lin M, Wang J, Chen L, Yang P, Liu M, Zheng Y. A novel FCTF evaluation and prediction model for food efficacy based on association rule mining. Front Nutr 2023; 10:1170084. [PMID: 37701374 PMCID: PMC10493461 DOI: 10.3389/fnut.2023.1170084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 08/16/2023] [Indexed: 09/14/2023] Open
Abstract
Introduction Food-components-target-function (FCTF) is an evaluation and prediction model based on association rule mining (ARM) and network interaction analysis, which is an innovative exploration of interdisciplinary integration in the food field. Methods Using the components as the basis, the targets and functions are comprehensively explored in various databases and platforms under the guidance of the ARM concept. The focused active components, key targets and preferred efficacy are then analyzed by different interaction calculations. The FCTF model is particularly suitable for preliminary studies of medicinal plants in remote and poor areas. Results The FCTF model of the local medicinal food Laoxianghuang focuses on the efficacy of digestive system cancers and neurological diseases, with key targets ACE, PTGS2, CYP2C19 and corresponding active components citronellal, trans-nerolidol, linalool, geraniol, α-terpineol, cadinene and α-pinene. Discussion Centuries of traditional experience point to the efficacy of Laoxianghuang in alleviating digestive disorders, and our established FCTF model of Laoxianghuang not only demonstrates this but also extends to its possible adjunctive efficacy in neurological diseases, which deserves later exploration. The FCTF model is based on the main line of components to target and efficacy and optimizes the research level from different dimensions and aspects of interaction analysis, hoping to make some contribution to the future development of the food discipline.
Collapse
Affiliation(s)
- Yaqun Liu
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, Guangdong, China
| | - Zhenxia Zhang
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, Guangdong, China
| | - Wanling Lin
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, Guangdong, China
| | - Hongxuan Liang
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, Guangdong, China
| | - Min Lin
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, Guangdong, China
- School of Laboratory Medicine, Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Junli Wang
- School of Laboratory Medicine, Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Lianghui Chen
- School of Laboratory Medicine, Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Peikui Yang
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, Guangdong, China
| | - Mouquan Liu
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, Guangdong, China
| | - Yuzhong Zheng
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, Guangdong, China
- School of Laboratory Medicine, Youjiang Medical University for Nationalities, Baise, Guangxi, China
| |
Collapse
|
9
|
Nagayama K, Kodama F, Wataya N, Sato A, Matsumoto T. Changes in the intra- and extra-mechanical environment of the nucleus in Saos-2 osteoblastic cells during bone differentiation process: Nuclear shrinkage and stiffening in cell differentiation. J Mech Behav Biomed Mater 2023; 138:105630. [PMID: 36565693 DOI: 10.1016/j.jmbbm.2022.105630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 12/05/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Osteogenic differentiation has been reportedly regulated by various mechanical stresses, including fluid shear stress and tensile and compressive loading. The promotion of osteoblastic differentiation by these mechanical stresses is accompanied by reorganization of the F-actin cytoskeleton, which is deeply involved in intracellular forces and the mechanical environment. However, there is limited information about the effect on the mechanical environment of the intracellular nucleus, such as the mechanical properties of the nucleus and intracellular forces exerted on the nucleus, which have recently been found to be directly involved in various cellular functions. Here, we investigated the changes in the intracellular force applied to the nucleus and the effect on nuclear morphology and mechanical properties during osteogenic differentiation in human osteoblast-like cells (Saos-2). We carried out cell morphological analyses with confocal fluorescence microscopy, nuclear indentation test with atomic force microscopy (AFM), and fluorescence recovery after photobleaching (FRAP) for intranuclear DNA. The results revealed that a significant reorganization of the F-actin cytoskeleton from the nuclear surfaces to the cell periphery occurred in the osteogenic differentiation processes, simultaneously with the reduction of compressive forces to the nucleus. Such changes also facilitated nuclear shrinkage and stiffening, and further intranuclear chromatin compaction. The results indicate that the reduction of the intracellular compressive force due to reorganization of the F-actin cytoskeleton affects the intra- and extra-mechanical environment of the nucleus, and this change may affect gene expression and DNA replication in the osteogenic differentiation process.
Collapse
Affiliation(s)
- Kazuaki Nagayama
- Biomechanics Laboratory, Department of Mechanical Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi, 466-8555, Japan; Micro-Nano Biomechanics Laboratory, Department of Mechanical Systems Engineering, Ibaraki University, Nakanarusawa-cho, Hitachi, Ibaraki, 316-8511, Japan.
| | - Fumiki Kodama
- Biomechanics Laboratory, Department of Mechanical Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi, 466-8555, Japan
| | - Naoki Wataya
- Micro-Nano Biomechanics Laboratory, Department of Mechanical Systems Engineering, Ibaraki University, Nakanarusawa-cho, Hitachi, Ibaraki, 316-8511, Japan
| | - Akiko Sato
- Micro-Nano Biomechanics Laboratory, Department of Mechanical Systems Engineering, Ibaraki University, Nakanarusawa-cho, Hitachi, Ibaraki, 316-8511, Japan
| | - Takeo Matsumoto
- Biomechanics Laboratory, Department of Mechanical Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi, 466-8555, Japan; Biomechanics Laboratory, Department of Mechanical Systems Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8603, Japan
| |
Collapse
|
10
|
Shang X, Liu K, Wang Z, Sun Y, Cao N, Huang W, Zhu Y, Wang W. Screening and analysis of key genes in the biological behavior of bone mesenchymal stem cells seeded on gradient nanostructured titanium compared with native pure Ti. J Biomater Appl 2023; 37:1086-1101. [PMID: 36063429 DOI: 10.1177/08853282221125036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Titanium (Ti) and Ti-based alloy materials are ideal brackets that restore bone defect, and the mechanism of related genes inducing bone mesenchymal stem cells (BMSCs) to osteogenic differentiation is currently a hot research topic. In order to screen key genes of BMSCs during the osteogenic expression process, we acquired data sets (GSE37237 and GSE84500) which were in the database Gene Expression Omnibus (GEO). Investigations on differentially expressed genes (DEGs) and their enrichment of functions were conducted. We constructed relative protein-protein interaction (PPI) network by using Search Tool for the Retrieval of Interacting Genes (STRING) and visualized the expression of DEGs with Cytoscape. A total of 279 DEGs were discerned, which could be divided into 177 down regulated genes and 102 up regulated genes. In addition, the DEGs' enrichment and pathways included regulation of actin cytoskeleton, inflammatory mediator regulation of transient receptor potential (TRP) channels, peroxisome proliferator-activated receptors (PPAR) pathway, cell cycle, Rheumatoid arthritis, mitogen-activated protein kinases (MAPK) signaling pathway and Ras signaling pathway ect. It showed that 10 notable up regulated genes were mainly in AMP-activated protein kinase (AMPK) pathway. Then we used a technology named surface mechanical attrition treatment (SMAT) to prepare gradient nanostructured (GNS) surface Ti and seeded well-growing BMSCs on the surface of SMAT Ti and native pure Ti. Cell Counting Kits-8 (CCK-8), apoptosis experiment, immunofluorescence technology and staining experiments for alka-line phosphatase (ALP) and alizarin red staining (ARS) were used to research the proliferation, adhesion and differentiation ability of BMSCs seeded on SMAT Ti compared with native pure Ti. We used quantitative real-time PCR (qRT-PCR) technology so as to verify the expression of the most significant 5 genes. In summary, these results indicated novel point of views into candidate genes and potential mechanism for the further study of BMSCs' behaviors seeded on SMAT Ti.
Collapse
Affiliation(s)
- Xinyue Shang
- 576019General Dentistry Dep, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang 110001, China
| | - Keda Liu
- 576019General Dentistry Dep, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang 110001, China
| | - Zhenbo Wang
- 71123Metallic Nano-Materials Division, Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy Sciences, Shenyang 110016, China
| | - Yantao Sun
- 71123Metallic Nano-Materials Division, Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy Sciences, Shenyang 110016, China
| | - Nanjue Cao
- 576019General Dentistry Dep, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang 110001, China
| | - Wei Huang
- 576019General Dentistry Dep, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang 110001, China
| | - Yuhe Zhu
- 576019General Dentistry Dep, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang 110001, China
| | - Wei Wang
- 576019General Dentistry Dep, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang 110001, China
| |
Collapse
|
11
|
Li L, Wang Y, Wang Z, Xue D, Dai C, Gao X, Ma J, Hang K, Pan Z. Knockdown of FOXA1 enhances the osteogenic differentiation of human bone marrow mesenchymal stem cells partly via activation of the ERK1/2 signalling pathway. Stem Cell Res Ther 2022; 13:456. [PMID: 36064451 PMCID: PMC9446550 DOI: 10.1186/s13287-022-03133-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/11/2022] [Indexed: 11/21/2022] Open
Abstract
Background The available therapeutic options for large bone defects remain extremely limited, requiring new strategies to accelerate bone healing. Genetically modified bone mesenchymal stem cells (BMSCs) with enhanced osteogenic capacity are recognised as one of the most promising treatments for bone defects. Methods We performed differential expression analysis of miRNAs between human BMSCs (hBMSCs) and human dental pulp stem cells (hDPSCs) to identify osteogenic differentiation-related microRNAs (miRNAs). Furthermore, we identified shared osteogenic differentiation-related miRNAs and constructed an miRNA-transcription network. The Forkhead box protein A1 (FOXA1) knockdown strategy with a lentiviral vector was used to explore the role of FOXA1 in the osteogenic differentiation of MSCs. Cell Counting Kit-8 was used to determine the effect of the knockdown of FOXA1 on hBMSC proliferation; real-time quantitative reverse transcription PCR (qRT-PCR) and western blotting were used to investigate target genes and proteins; and alkaline phosphatase (ALP) staining and Alizarin Red staining (ARS) were used to assess ALP activity and mineral deposition, respectively. Finally, a mouse model of femoral defects was established in vivo, and histological evaluation and radiographic analysis were performed to verify the therapeutic effects of FOXA1 knockdown on bone healing. Results We identified 22 shared and differentially expressed miRNAs between hDPSC and hBMSC, 19 of which were downregulated in osteogenically induced samples. The miRNA-transcription factor interaction network showed that FOXA1 is the most significant and novel osteogenic differentiation biomarker among more than 300 transcription factors that is directly targeted by 12 miRNAs. FOXA1 knockdown significantly promoted hBMSC osteo-specific genes and increased mineral deposits in vitro. In addition, p-ERK1/2 levels were upregulated by FOXA1 silencing. Moreover, the increased osteogenic differentiation of FOXA1 knockdown hBMSCs was partially rescued by the addition of ERK1/2 signalling inhibitors. In a mouse model of femoral defects, a sheet of FOXA1-silencing BMSCs improved bone healing, as detected by microcomputed tomography and histological evaluation. Conclusion These findings collectively demonstrate that FOXA1 silencing promotes the osteogenic differentiation of BMSCs via the ERK1/2 signalling pathway, and silencing FOXA1 in vivo effectively promotes bone healing, suggesting that FOXA1 may be a novel target for bone healing.
Collapse
Affiliation(s)
- Lijun Li
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, People's Republic of China.,Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, People's Republic of China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, People's Republic of China.,Clinical Research Center of Motor System Disease of Zhejiang Province, Zhejiang Province, Hangzhou City, People's Republic of China
| | - Yibo Wang
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, People's Republic of China.,Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, People's Republic of China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, People's Republic of China.,Clinical Research Center of Motor System Disease of Zhejiang Province, Zhejiang Province, Hangzhou City, People's Republic of China
| | - Zhongxiang Wang
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, People's Republic of China.,Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, People's Republic of China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, People's Republic of China.,Clinical Research Center of Motor System Disease of Zhejiang Province, Zhejiang Province, Hangzhou City, People's Republic of China
| | - Deting Xue
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, People's Republic of China.,Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, People's Republic of China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, People's Republic of China.,Clinical Research Center of Motor System Disease of Zhejiang Province, Zhejiang Province, Hangzhou City, People's Republic of China
| | - Chengxin Dai
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, People's Republic of China.,Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, People's Republic of China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, People's Republic of China.,Clinical Research Center of Motor System Disease of Zhejiang Province, Zhejiang Province, Hangzhou City, People's Republic of China
| | - Xiang Gao
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, People's Republic of China.,Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, People's Republic of China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, People's Republic of China.,Clinical Research Center of Motor System Disease of Zhejiang Province, Zhejiang Province, Hangzhou City, People's Republic of China
| | - Jianfei Ma
- Key Laboratory of Image Information Processing and Intelligent Control, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Kai Hang
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, People's Republic of China. .,Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, People's Republic of China. .,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, People's Republic of China. .,Clinical Research Center of Motor System Disease of Zhejiang Province, Zhejiang Province, Hangzhou City, People's Republic of China.
| | - Zhijun Pan
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, People's Republic of China. .,Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, People's Republic of China. .,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, People's Republic of China. .,Clinical Research Center of Motor System Disease of Zhejiang Province, Zhejiang Province, Hangzhou City, People's Republic of China.
| |
Collapse
|
12
|
Feng Z, Su X, Wang T, Guo S. Identification of Biomarkers That Modulate Osteogenic Differentiation in Mesenchymal Stem Cells Related to Inflammation and Immunity: A Bioinformatics-Based Comprehensive Study. Pharmaceuticals (Basel) 2022; 15:ph15091094. [PMID: 36145314 PMCID: PMC9504288 DOI: 10.3390/ph15091094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/23/2022] [Accepted: 08/27/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Inducing mesenchymal stem cells (MSCs) osteogenesis may be beneficial in a number of clinical applications. The aim of this study is to identify key novel biomarkers of this process and to analyze the possible regulatory effects on inflammation and immunity. Results: Seven datasets (GSE159137, GSE159138, GSE114117, GSE88865, GSE153829, GSE63754, GSE73087) were obtained from the Gene Expression Omnibus database and were assigned to either the training or the validation dataset. The least absolute shrinkage and selection operator (LASSO) logistic regression model was applied to the training data to select biomarkers of osteogenesis, which were then confirmed using the validation dataset. FK506 binding protein 5 (FKBP5), insulin-like growth factor binding protein (IGFBP2), prostaglandin E receptor 2 (PTGER2), SAM domain and HD domain-containing protein 1 (SAMHD1), and transmembrane tetratricopeptide 1 (TMTC1) were highlighted as potential biomarkers. In addition, the differential expressions of immunity and inflammation-related genes were examined and their correlations with the five identified biomarkers were analyzed. The results from performing RT-qPCR and Western blots confirmed that the levels of each of these biomarkers were all significantly increased following osteogenic differentiation of MSCs. Conclusions: Our results identify five biomarkers related to MSCs osteogenesis and allow us to identify their potential roles in immunoregulation and inflammation. Each biomarker was verified by in vitro experiments.
Collapse
|
13
|
Xu Y, Wang Z, Wang Y, Huang Q, Ren C, Sun L, Wang Q, Li M, Liu H, Li Z, Zhang K, Ma T, Lu Y. Identification of differentially expressed autophagy genes associated with osteogenic differentiation in human bone marrow mesenchymal stem cells. Am J Transl Res 2022; 14:5326-5342. [PMID: 36105058 PMCID: PMC9452348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Mesenchymal stem cells derived from human tissues have been widely used for tissue regeneration because of their strong self-renewal capacity and multi-potential properties. Autophagy plays a vital role in maintaining bone homeostasis. However, the mechanism underlying this role for autophagy in the osteogenic differentiation of mesenchymal stem cells remains to be elucidated. METHODS Two microarray datasets were downloaded from the GEO database. Fourteen bone marrow mesenchymal stem cell samples comprising control and induction groups were selected to identify differentially expressed autophagy-related genes via multiple bioinformatics approaches, followed by functional analysis. Interactions among differentially expressed autophagy genes, miRNAs, and transcription factors were analyzed and visualized using Cytoscape software. The association between hub differentially expressed genes and autophagy was validated by qRT-PCR. RESULTS Ten autophagy-related genes (including VPS8, NDRG4, and CYBB) were identified as osteogenic hub genes. Correlation analysis revealed that CYBB was highly correlated with the sensitivity to multiple drugs, such as imexon, megestrol acetate, and isotretinoin. The regulatory network displayed a complex connection among miRNAs, transcription factors, and differentially expressed autophagy genes. Friends' analysis showed that NDRG4 was highly closely related to other hub genes (P < 0.05). Furthermore, NDRG4 expression was downregulated in the induction group (P < 0.01). NDRG4 was significantly correlated with infiltrating immune cells, including monocytes, eosinophils, type 17 T helper cells, neutrophils, activated CD8 T cells, and immature B cells. Levels of the 10 autophagy-related genes (including VPS8, NDRG4, and CYBB) were successfully validated based on in vitro experiments. CONCLUSION We identified candidate molecules to further investigate their functions in osteogenesis, providing novel insights into the role of autophagy in mesenchymal stem cell differentiation.
Collapse
Affiliation(s)
- Yibo Xu
- Department of Orthopaedic Surgery, Honghui Hospital, Xi’an Jiaotong UniversityXi’an 710054, Shaan’xi Province, China
- Bioinspired Engineering and Biomechanics Center (BEBC), School of Life Science and Technology, Xi′an Jiaotong UniversityXi’an 710049, Shaan’xi Province, China
| | - Zhimeng Wang
- Department of Orthopaedic Surgery, Honghui Hospital, Xi’an Jiaotong UniversityXi’an 710054, Shaan’xi Province, China
| | - Yakang Wang
- Department of Orthopaedic Surgery, Honghui Hospital, Xi’an Jiaotong UniversityXi’an 710054, Shaan’xi Province, China
| | - Qiang Huang
- Department of Orthopaedic Surgery, Honghui Hospital, Xi’an Jiaotong UniversityXi’an 710054, Shaan’xi Province, China
| | - Cheng Ren
- Department of Orthopaedic Surgery, Honghui Hospital, Xi’an Jiaotong UniversityXi’an 710054, Shaan’xi Province, China
- Bioinspired Engineering and Biomechanics Center (BEBC), School of Life Science and Technology, Xi′an Jiaotong UniversityXi’an 710049, Shaan’xi Province, China
| | - Liang Sun
- Department of Orthopaedic Surgery, Honghui Hospital, Xi’an Jiaotong UniversityXi’an 710054, Shaan’xi Province, China
| | - Qian Wang
- Department of Orthopaedic Surgery, Honghui Hospital, Xi’an Jiaotong UniversityXi’an 710054, Shaan’xi Province, China
| | - Ming Li
- Department of Orthopaedic Surgery, Honghui Hospital, Xi’an Jiaotong UniversityXi’an 710054, Shaan’xi Province, China
| | - Hongliang Liu
- Department of Orthopaedic Surgery, Honghui Hospital, Xi’an Jiaotong UniversityXi’an 710054, Shaan’xi Province, China
| | - Zhong Li
- Department of Orthopaedic Surgery, Honghui Hospital, Xi’an Jiaotong UniversityXi’an 710054, Shaan’xi Province, China
| | - Kun Zhang
- Department of Orthopaedic Surgery, Honghui Hospital, Xi’an Jiaotong UniversityXi’an 710054, Shaan’xi Province, China
| | - Teng Ma
- Department of Orthopaedic Surgery, Honghui Hospital, Xi’an Jiaotong UniversityXi’an 710054, Shaan’xi Province, China
- Bioinspired Engineering and Biomechanics Center (BEBC), School of Life Science and Technology, Xi′an Jiaotong UniversityXi’an 710049, Shaan’xi Province, China
| | - Yao Lu
- Department of Orthopaedic Surgery, Honghui Hospital, Xi’an Jiaotong UniversityXi’an 710054, Shaan’xi Province, China
- Bioinspired Engineering and Biomechanics Center (BEBC), School of Life Science and Technology, Xi′an Jiaotong UniversityXi’an 710049, Shaan’xi Province, China
| |
Collapse
|
14
|
Zhang M, Gao Y, Li Q, Cao H, Yang J, Cai X, Xiao J. Downregulation of DNA methyltransferase-3a ameliorates the osteogenic differentiation ability of adipose-derived stem cells in diabetic osteoporosis via Wnt/β-catenin signaling pathway. Stem Cell Res Ther 2022; 13:397. [PMID: 35927735 PMCID: PMC9351106 DOI: 10.1186/s13287-022-03088-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 07/23/2022] [Indexed: 02/06/2023] Open
Abstract
Background Diabetes-related osteoporosis (DOP) is a chronic disease caused by the high glucose environment that induces a metabolic disorder of osteocytes and osteoblast-associated mesenchymal stem cells. The processes of bone defect repair and regeneration become extremely difficult with DOP. Adipose-derived stem cells (ASCs), as seed cells in bone tissue engineering technology, provide a promising therapeutic approach for bone regeneration in DOP patients. The osteogenic ability of ASCs is lower in a DOP model than that of control ASCs. DNA methylation, as a mechanism of epigenetic regulation, may be involved in DNA methylation of various genes, thereby participating in biological behaviors of various cells. Emerging evidence suggests that increased DNA methylation levels are associated with activation of Wnt/β-catenin signaling pathway. The purpose of this study was to investigate the influence of the diabetic environment on the osteogenic potential of ASCs, to explore the role of DNA methylation on osteogenic differentiation of DOP-ASCs via Wnt/β-catenin signaling pathway, and to improve the osteogenic differentiation ability of ASCs with DOP. Methods DOP-ASCs and control ASCs were isolated from DOP C57BL/6 and control mice, respectively. The multipotency of DOP-ASCs was confirmed by Alizarin Red-S, Oil Red-O, and Alcian blue staining. Real-time polymerase chain reaction (RT-PCR), immunofluorescence, and western blotting were used to analyze changes in markers of osteogenic differentiation, DNA methylation, and Wnt/β-catenin signaling. Alizarin Red-S staining was also used to confirm changes in the osteogenic ability. DNMT small interfering RNA (siRNA), shRNA-Dnmt3a, and LVRNA-Dnmt3a were used to assess the role of Dnmt3a in osteogenic differentiation of control ASCs and DOP-ASCs. Micro-computed tomography, hematoxylin and eosin staining, and Masson staining were used to analyze changes in the osteogenic capability while downregulating Dnmt3a with lentivirus in DOP mice in vivo. Results The proliferative ability of DOP-ASCs was lower than that of control ASCs. DOP-ASCs showed a decrease in osteogenic differentiation capacity, lower Wnt/β-catenin signaling pathway activity, and a higher level of Dnmt3a than control ASCs. When Dnmt3a was downregulated by siRNA and shRNA, osteogenic-related factors Runt-related transcription factor 2 and osteopontin, and activity of Wnt/β-catenin signaling pathway were increased, which rescued the poor osteogenic potential of DOP-ASCs. When Dnmt3a was upregulated by LVRNA-Dnmt3a, the osteogenic ability was inhibited. The same results were obtained in vivo. Conclusions Dnmt3a silencing rescues the negative effects of DOP on ASCs and provides a possible approach for bone tissue regeneration in patients with diabetic osteoporosis.
Collapse
Affiliation(s)
- Maorui Zhang
- Department of Oral Implantology, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yujin Gao
- Department of Oral Implantology, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China.,Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Qing Li
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Huayue Cao
- Department of Oral Implantology, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Jianghua Yang
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Xiaoxiao Cai
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Jingang Xiao
- Department of Oral Implantology, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China. .,Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China. .,Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
15
|
Sun L, Ma J, Chen J, Pan Z, Li L. Bioinformatics-Guided Analysis Uncovers AOX1 as an Osteogenic Differentiation-Relevant Gene of Human Mesenchymal Stem Cells. Front Mol Biosci 2022; 9:800288. [PMID: 35295843 PMCID: PMC8920545 DOI: 10.3389/fmolb.2022.800288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/04/2022] [Indexed: 01/05/2023] Open
Abstract
Background: The available therapeutic options of bone defects, fracture nonunion, and osteoporosis remain limited, which are closely related to the osteogenic differentiation of bone marrow–derived mesenchymal stem cells (BMSCs). Thus, there remains an urgent demand to develop a prediction method to infer osteogenic differentiation–related genes in BMSCs. Method: We performed differential expression analysis between hBMSCs and osteogenically induced samples. Association analysis, co-expression analysis, and PPI analysis are then carried out to identify potential osteogenesis-related regulators. GO enrichment analysis and GSEA are performed to identify significantly enriched pathways associated with AOX1. qRT-PCR and Western blotting were employed to investigate the expression of genes on osteogenic differentiation, and plasmid transfection was used to overexpress the gene AOX1 in hBMSCs. Result: We identified 25 upregulated genes and 17 downregulated genes. Association analysis and PPI network analysis among these differentially expressed genes show that AOX1 is a potential regulator of osteogenic differentiation. GO enrichment analysis and GSEA show that AOX1 is significantly associated with osteoblast-related pathways. The experiments revealed that AOX1 level was higher and increased gradually in differentiated BMSCs compared with undifferentiated BMSCs, and AOX1 overexpression significantly increased the expression of osteo-specific genes, thereby clearly indicating that AOX1 plays an important role in osteogenic differentiation. Moreover, our method has ability in discriminating genes with osteogenic differentiation properties and can facilitate the process of discovery of new osteogenic differentiation–related genes. Conclusion: These findings collectively demonstrate that AOX1 is an osteogenic differentiation-relevant gene and provide a novel method established with a good performance for osteogenic differentiation-relevant genes prediction.
Collapse
Affiliation(s)
- Lingtong Sun
- Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianfei Ma
- Key Laboratory of Image Information Processing and Intelligent Control, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, China
| | - Juan Chen
- Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhijun Pan
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
- *Correspondence: Zhijun Pan, ; Lijun Li,
| | - Lijun Li
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
- *Correspondence: Zhijun Pan, ; Lijun Li,
| |
Collapse
|
16
|
Poh PS, Lingner T, Kalkhof S, Märdian S, Baumbach J, Dondl P, Duda GN, Checa S. Enabling technologies towards personalization of scaffolds for large bone defect regeneration. Curr Opin Biotechnol 2022; 74:263-270. [PMID: 35007988 DOI: 10.1016/j.copbio.2021.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/05/2021] [Accepted: 12/07/2021] [Indexed: 12/12/2022]
Abstract
Additive manufacturing (AM) can deliver personalized scaffolds to support large volume defect tissue regeneration - a major clinical challenge in many medical disciplines. The freedom in scaffold design and composition (biomaterials and biologics) offered by AM yields a plethora of possibilities but is confronted with a heterogenous biological regeneration potential across individuals. A key challenge is to make the right choice for individualized scaffolds that match biology, anatomy, and mechanics of patients. This review provides an overview of state-of-the-art technologies, that is, in silico modelling for scaffold design, omics and bioinformatics to capture patient biology and information technology for data management, that, when combined in a synergistic way with AM, have great potential to make personalized tissue regeneration strategies available to all patients, empowering precision medicine.
Collapse
Affiliation(s)
- Patrina Sp Poh
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Julius Wolff Institute, Germany.
| | | | - Stefan Kalkhof
- Fraunhofer Institute for Cell Therapy and Immunology, Department of Therapy Validation, 04103 Leipzig, Germany; Institute for Bioanalysis, University of Applied Sciences Coburg, Friedrich-Streib-Straße 2, 96450 Coburg, Germany
| | - Sven Märdian
- Center for Muskuloskeletal Surgery, Charité - Universitätsmedizin Berlin, Germany
| | - Jan Baumbach
- Chair of Computational Systems Biology, Universität Hamburg, Germany
| | - Patrick Dondl
- Department of Applied Mathematics, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Str. 10, 79111 Freiburg i. Br., Germany
| | - Georg N Duda
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Julius Wolff Institute, Germany
| | - Sara Checa
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Julius Wolff Institute, Germany
| |
Collapse
|
17
|
Du G, Cheng X, Zhang Z, Han L, Wu K, Li Y, Lin X. TGF-Beta Induced Key Genes of Osteogenic and Adipogenic Differentiation in Human Mesenchymal Stem Cells and MiRNA-mRNA Regulatory Networks. Front Genet 2021; 12:759596. [PMID: 34899844 PMCID: PMC8656281 DOI: 10.3389/fgene.2021.759596] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/28/2021] [Indexed: 12/21/2022] Open
Abstract
Background: The clinical efficacy of osteoporosis therapy is unsatisfactory. However, there is currently no gold standard for the treatment of osteoporosis. Recent studies have indicated that a switch from osteogenic to adipogenic differentiation in human bone marrow mesenchymal stem cells (hMSCs) induces osteoporosis. This study aimed to provide a more comprehensive understanding of the biological mechanisms involved in this process and to identify key genes involved in osteogenic and adipogenic differentiation in hMSCs to provide new insights for the prevention and treatment of osteoporosis. Methods: Microarray and bioinformatics approaches were used to identify the differentially expressed genes (DEGs) involved in osteogenic and adipogenic differentiation, and the biological functions and pathways of these genes were analyzed. Hub genes were identified, and the miRNA–mRNA interaction networks of these hub genes were constructed. Results: In an optimized microenvironment, transforming growth factor-beta (TGF-beta) could promote osteogenic differentiation and inhibit adipogenic differentiation of hMSCs. According to our study, 98 upregulated genes involved in osteogenic differentiation and 66 downregulated genes involved in adipogenic differentiation were identified, and associated biological functions and pathways were analyzed. Based on the protein–protein interaction (PPI) networks, the hub genes of the upregulated genes (CTGF, IGF1, BMP2, MMP13, TGFB3, MMP3, and SERPINE1) and the hub genes of the downregulated genes (PPARG, TIMP3, ANXA1, ADAMTS5, AGTR1, CXCL12, and CEBPA) were identified, and statistical analysis revealed significant differences. In addition, 36 miRNAs derived from the upregulated hub genes were screened, as were 17 miRNAs derived from the downregulated hub genes. Hub miRNAs (hsa-miR-27a/b-3p, hsa-miR-128-3p, hsa-miR-1-3p, hsa-miR-98-5p, and hsa-miR-130b-3p) coregulated both osteogenic and adipogenic differentiation factors. Conclusion: The upregulated hub genes identified are potential targets for osteogenic differentiation in hMSCs, whereas the downregulated hub genes are potential targets for adipogenic differentiation. These hub genes and miRNAs play important roles in adipogenesis and osteogenesis of hMSCs. They may be related to the prevention and treatment not only of osteoporosis but also of obesity.
Collapse
Affiliation(s)
- Genfa Du
- Department of Orthopedics, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Xinyuan Cheng
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Zhen Zhang
- Department of Orthopedics, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Linjing Han
- Department of Orthopedics, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Keliang Wu
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yongjun Li
- Department of Orthopedics, Shunde Hospital Guangzhou University of Chinese Medicine, Foshan, China
| | - Xiaosheng Lin
- Department of Orthopedics, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
18
|
Wang C, Dong L, Wang Y, Jiang Z, Zhang J, Yang G. Bioinformatics Analysis Identified miR-584-5p and Key miRNA-mRNA Networks Involved in the Osteogenic Differentiation of Human Periodontal Ligament Stem Cells. Front Genet 2021; 12:750827. [PMID: 34646313 PMCID: PMC8503254 DOI: 10.3389/fgene.2021.750827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 08/30/2021] [Indexed: 12/29/2022] Open
Abstract
Human periodontal ligament cells (PDLCs) play an important role in periodontal tissue stabilization and function. In the process of osteogenic differentiation of PDLSCs, the regulation of molecular signal pathways are complicated. In this study, the sequencing results of three datasets on GEO were used to comprehensively analyze the miRNA-mRNA network during the osteogenic differentiation of PDLSCs. Using the GSE99958 and GSE159507, a total of 114 common differentially expressed genes (DEGs) were identified, including 62 up-regulated genes and 52 down-regulated genes. GO enrichment analysis was performed. The up-regulated 10 hub genes and down-regulated 10 hub genes were screened out by protein-protein interaction network (PPI) analysis and STRING in Cytoscape. Similarly, differentially expressed miRNAs (DEMs) were selected by limma package from GSE159508. Then, using the miRwalk website, we further selected 11 miRNAs from 16 DEMs that may have a negative regulatory relationship with hub genes. In vitro RT-PCR verification revealed that nine DEMs and 18 hub genes showed the same trend as the RNA-seq results during the osteogenic differentiation of PDLSCs. Finally, using miR-584-5p inhibitor and mimics, it was found that miR-584-5p negatively regulates the osteogenic differentiation of PDLSCs in vitro. In summary, the present results found several potential osteogenic-related genes and identified candidate miRNA-mRNA networks for the further study of osteogenic differentiation of PDLSCs.
Collapse
Affiliation(s)
| | | | | | | | | | - Guoli Yang
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
19
|
Zhang Z, Gong L, Li M, Wei G, Liu Y. The osteogenic differentiation of human bone marrow stromal cells induced by nanofiber scaffolds using bioinformatics. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166245. [PMID: 34391896 DOI: 10.1016/j.bbadis.2021.166245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/26/2021] [Accepted: 08/09/2021] [Indexed: 11/16/2022]
Abstract
This article aims to investigate the mechanism of behaviors of human bone marrow stromal cells (hBMSCs) affected by scaffold structure combining Monte Carlo feature selection (MFCS), incremental feature selection (IFS) and support vector machine (SVM). The specific differentially expressed genes (DEGs) of hBMSCs cultured on nanofiber (NF) scaffolds and freeform fabrication (FFF) scaffolds were obtained. Key genes were screened from common genes between osteogenic DEGs and NF specific DEGs with MFCS, IFS and SVM. The results demonstrated that NF scaffolds induced hBMSCs to express more genes related to osteogenic differentiation. Finally, 16 key genes were identified among the common genes. The common genes were significantly enriched in Rap1 signaling pathway, extracellular matrix and ossification. The results in this study suggested that the gene expression of hBMSCs was sensitive to NF scaffolds and FFF scaffolds, and the osteogenic differentiation of hBMSCs could be enhanced by NF scaffolds.
Collapse
Affiliation(s)
- Zhenghai Zhang
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Lulu Gong
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| | - Min Li
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Guoshuai Wei
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yan Liu
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| |
Collapse
|
20
|
Gao B, Zhang X, Xue D, Zhang W. Effects of Egr1 on pancreatic acinar intracellular trypsinogen activation and the associated ceRNA network. Mol Med Rep 2020; 22:2496-2506. [PMID: 32705196 PMCID: PMC7411386 DOI: 10.3892/mmr.2020.11316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 06/08/2020] [Indexed: 12/13/2022] Open
Abstract
Acute pancreatitis (AP) is a common digestive disorder with high morbidity and mortality. The present study aimed to investigate the expression of early growth response protein 1 (Egr1), and the effect of competing endogenous (ce)RNA network on trypsinogen activation. Pancreatic acinar intracellular trypsinogen activation (PAITA) is an important event in the early stage of AP; however, the underlying mechanisms remain unclear. The present study used taurolithocholic acid 3-sulfate (TLC-S)-treated AR42J cells (pancreatic cell line) to establish a PAITA model. A gene microarray and bioinformatics analysis was performed to identify the potential key targets in PAITA. The results demonstrated that Egr1, an important transcription factor, was significantly overexpressed in PAITA. In Egr1 small interfering (si)RNA-transfected cells, Egr1 expression was decreased and trypsinogen activation was significantly decreased compared with negative control siRNA-transfected cells, indicating that in TLC-S-induced PAITA, overexpression of Egr1 enhanced trypsinogen activation. A ceRNA network [mRNA-microRNA (miRNA/miR)-long non-coding (lnc)RNA] generated using the PAITA model revealed that the effects of Egr1 on PAITA may be regulated by multiple ceRNA pairs, and the lncRNAs (including NONRATT022624 and NONRATT031002) and miRNAs [including Rattus norvegicus (rno)-miR-214-3p and rno-miR-764-5p] included in the ceRNA pairs may serve roles in PAITA by regulating the expression of Egr1. The results of the present study may provide novel targets for researching the underlying mechanisms of, and developing treatments for AP.
Collapse
Affiliation(s)
- Bo Gao
- Department of General Surgery, Peking University People's Hospital, Beijing 100044, P.R. China
| | - Xueming Zhang
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 100086, P.R. China
| | - Dongbo Xue
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 100086, P.R. China
| | - Weihui Zhang
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 100086, P.R. China
| |
Collapse
|
21
|
Fan T, Qu R, Yu Q, Sun B, Jiang X, Yang Y, Huang X, Zhou Z, Ouyang J, Zhong S, Dai J. Bioinformatics analysis of the biological changes involved in the osteogenic differentiation of human mesenchymal stem cells. J Cell Mol Med 2020; 24:7968-7978. [PMID: 32463168 PMCID: PMC7348183 DOI: 10.1111/jcmm.15429] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/30/2020] [Accepted: 05/07/2020] [Indexed: 12/17/2022] Open
Abstract
The mechanisms underlying the osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs) remain unclear. In the present study, we aimed to identify the key biological processes during osteogenic differentiation. To this end, we downloaded three microarray data sets from the Gene Expression Omnibus (GEO) database: GSE12266, GSE18043 and GSE37558. Differentially expressed genes (DEGs) were screened using the limma package, and enrichment analysis was performed. Protein-protein interaction network (PPI) analysis and visualization analysis were performed with STRING and Cytoscape. A total of 240 DEGs were identified, including 147 up-regulated genes and 93 down-regulated genes. Functional enrichment and pathways of the present DEGs include extracellular matrix organization, ossification, cell division, spindle and microtubule. Functional enrichment analysis of 10 hub genes showed that these genes are mainly enriched in microtubule-related biological changes, that is sister chromatid segregation, microtubule cytoskeleton organization involved in mitosis, and spindle microtubule. Moreover, immunofluorescence and Western blotting revealed dramatic quantitative and morphological changes in the microtubules during the osteogenic differentiation of human adipose-derived stem cells. In summary, the present results provide novel insights into the microtubule- and cytoskeleton-related biological process changes, identifying candidates for the further study of osteogenic differentiation of the mesenchymal stem cells.
Collapse
Affiliation(s)
- Tingyu Fan
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Rongmei Qu
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Qinghe Yu
- Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Bing Sun
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Xin Jiang
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Yuchao Yang
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Xiaolan Huang
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Zhitao Zhou
- Central Laboratory, Southern Medical University, Guangzhou, China
| | - Jun Ouyang
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Shizhen Zhong
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Jingxing Dai
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| |
Collapse
|