1
|
Khayatan D, Razavi SM, Arab ZN, Nasoori H, Fouladi A, Pasha AVK, Butler AE, Karav S, Momtaz S, Abdolghaffari AH, Sahebkar A. Targeting mTOR with curcumin: therapeutic implications for complex diseases. Inflammopharmacology 2025; 33:1583-1616. [PMID: 39955697 DOI: 10.1007/s10787-025-01643-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/16/2024] [Indexed: 02/17/2025]
Abstract
The mammalian target of rapamycin (mTOR) is a crucial enzyme in regulating multiple signaling pathways in the body, including autophagy, proliferation and apoptosis. Disruption of these mTOR signaling pathways can lead to an array of abnormalities and trigger disease processes, examples being neurodegenerative conditions, cancer, obesity and diabetes. Under conditions of oxidative stress, mTOR can regulate apoptosis and autophagy, with tissue repair being favored under such circumstances. Moreover, the correlation between mTOR and other signaling pathways could play a pivotal role in the pathophysiology of numerous disorders. mTOR has a tight connection with NF-κB, Akt, PI3K, MAPK, GSK-3β, Nrf2/HO-1, JAK/STAT, CREB/BDNF, and ERK1/2 pathways, which together could play significant roles in the regulation of inflammation, apoptosis, cell survival, and oxidative stress in different body organs. Research suggests that inhibiting mTOR could be beneficial in treating metabolic, neurological and cardiovascular conditions, as well as potentially extending life expectancy. Therefore, identifying new chemicals and agents that can modulate the mTOR signaling pathway holds promise for treating and preventing these disorders. Curcumin is one such agent that has demonstrated regulatory effects on the mTOR pathway, making it an exciting alternative for reducing complications associated with complex diseases by targeting mTOR. This review aims to examine the potential of curcumin in modulating the mTOR signaling pathway and its therapeutic implications.
Collapse
Affiliation(s)
- Danial Khayatan
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Seyed Mehrad Razavi
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Zahra Najafi Arab
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hadis Nasoori
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Abtin Fouladi
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aytak Vahdat Khajeh Pasha
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Alexandra E Butler
- Research Department, Royal College of Surgeons in Ireland, Bahrain, Adliya, Bahrain
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Canakkale Onsekiz Mart University, Canakkale, 17100, Turkey
| | - Saeideh Momtaz
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
- Department of Toxicology and Pharmacology, School of Pharmacy, and Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Abdolghaffari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Liu K, Zhu J, Bao Y, Fang J, Zhou S, Fan J. Proliferation and migration inhibition of adenoid cystic carcinoma cells through autophagy suppression via GLUT1 knockdown. Heliyon 2025; 11:e42894. [PMID: 40070961 PMCID: PMC11894374 DOI: 10.1016/j.heliyon.2025.e42894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025] Open
Abstract
Multiple studies have demonstrated a significant association between glucose transporter-1 (GLUT1) and the development and recurrence of adenoid cystic carcinoma (ACC). In this study, we investigated the impact of GLUT1 knockdown on adenoid cystic carcinoma. Our findings revealed that hypoxic conditions promoted the progression and autophagy of SACC83 and SACC-LM cell lines, an effect that was mitigated by GLUT1 knockdown. In vivo experiments showed that the combination of lentivirus-delivered GLUT1 shRNA and autophagy inhibitor chloroquine (CQ) produced the most substantial reduction in tumor volume, weight, Ki67 expression, and autophagy in tumor tissues. In conclusion, hypoxia facilitates ACC progression by upregulating GLUT1 expression. The suppression of GLUT1 expression and autophagy effectively inhibited ACC cell proliferation both in vitro and in vivo.
Collapse
Affiliation(s)
- Kan Liu
- Department of Otolaryngology, Zhejiang Sian International Hospital of Jiaxing City, Jiaxing City, Zhejiang Province, China
| | - Jinlong Zhu
- Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yangyang Bao
- Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jin Fang
- Department of Otolaryngology, Zhejiang Sian International Hospital of Jiaxing City, Jiaxing City, Zhejiang Province, China
| | - Shuihong Zhou
- Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jun Fan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Chen Z, Zhang JY, Jiang Q, Bao YY, Li ZM, Zhou SH, Zhong JT, Fu ZM, Cao ZZ, Fan J, Yao HT. Pepsin Increases the Proliferation of Vocal Cord Leukoplakia Epithelial Cells by Inducing Autophagy. Otolaryngol Head Neck Surg 2023; 169:1247-1258. [PMID: 37264983 DOI: 10.1002/ohn.390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/22/2023] [Accepted: 05/04/2023] [Indexed: 06/03/2023]
Abstract
OBJECTIVE To investigate the role of H+ /K+ ATPase in the proliferation of pepsin-induced vocal cord leukoplakia (VCL) cells. STUDY DESIGN Translation research. SETTING Affiliated Hospital of University. METHODS Immunohistochemistry was used to detect pepsin, H+ /K+ ATPase (ATP4A and ATP4B subunits) in VCL cells with varying degrees of dysplasia. After primary cultures of VCL cells had been established, the effects of acidified pepsin on the proliferation, autophagy, and H+ /K+ -ATPase distribution of VCL cells were investigated. RESULTS The levels of pepsin, ATP4A, and ATP4B were significantly higher in VCL tissue with moderate-to-severe dysplasia than in normal tissue (p < .05); these levels gradually increased according to dysplasia severity. The expression levels of ATP4A and ATP4B were significantly correlated with the amount of pepsin in VCL cells (p < .01). Acidified pepsin enhanced the levels of proliferation and autophagy in human VCL epithelial cells. The cloning- and autophagy-promoting effects of acidified pepsin on VCL cells were partially reversed by pantoprazole; these effects were completely blocked by the autophagy inhibitor chloroquine. Finally, acidified pepsin promoted the colocalization of H+ /K+ -ATPase and lysosomes in VCL cells; it also mediated lysosome acidification. CONCLUSION Pepsin and H+ /K+ -ATPase may contribute to the progression of VCL. Specifically, acidified pepsin may regulate lysosome acidification by promoting lysosomal localization of H+ /K+ -ATPase.
Collapse
Affiliation(s)
- Zhe Chen
- Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Jia-Yu Zhang
- Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Qian Jiang
- Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Yang-Yang Bao
- Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Zhi-Mei Li
- Department of Otolaryngology, The Zhoushan Hospital of Zhejiang University, Zhoushan, Zhejiang, China
| | - Shui-Hong Zhou
- Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Jiang-Tao Zhong
- Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Zi-Ming Fu
- Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Zai-Zai Cao
- Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Jun Fan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Hong-Tian Yao
- Department of Pathology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| |
Collapse
|
4
|
Sanati M, Afshari AR, Kesharwani P, Sahebkar A. Recent advances in codelivery of curcumin and siRNA as anticancer therapeutics. Eur Polym J 2023; 198:112444. [DOI: 10.1016/j.eurpolymj.2023.112444] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
|
5
|
Yao J, Tang S, Shi C, Lin Y, Ge L, Chen Q, Ou B, Liu D, Miao Y, Xie Q, Tang X, Fei J, Yang G, Tian J, Zeng X. Isoginkgetin, a potential CDK6 inhibitor, suppresses SLC2A1/GLUT1 enhancer activity to induce AMPK-ULK1-mediated cytotoxic autophagy in hepatocellular carcinoma. Autophagy 2023; 19:1221-1238. [PMID: 36048765 PMCID: PMC10012924 DOI: 10.1080/15548627.2022.2119353] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/02/2022] Open
Abstract
Isoginkgetin (ISO), a natural biflavonoid, exhibited cytotoxic activity against several types of cancer cells. However, its effects on hepatocellular carcinoma (HCC) cells and mechanism remain unclear. Here, we revealed that ISO effectively inhibited HCC cell proliferation and migration in vitro. LC3-II expression and autophagosomes were increased under ISO treatment. In addition, ISO-induced cell death was attenuated by treatment with chloroquine or knockdown of autophagy-related genes (ATG5 or ULK1). ISO significantly suppressed SLC2A1/GLUT1 (solute carrier family 2 member 1) expression and glucose uptake, leading to activation of the AMPK-ULK1 axis in HepG2 cells. Overexpression of SLC2A1/GLUT1 abrogated ISO-induced autophagy. Combining molecular docking with thermal shift analysis, we confirmed that ISO directly bound to the N terminus of CDK6 (cyclin-dependent kinase 6) and promoted its degradation. Overexpression of CDK6 abrogated ISO-induced inhibition of SLC2A1/GLUT1 transcription and induction of autophagy. Furthermore, ISO treatment significantly decreased the H3K27ac, H4K8ac and H3K4me1 levels on the SLC2A1/GLUT1 enhancer in HepG2 cells. Finally, ISO suppressed the hepatocarcinogenesis in the HepG2 xenograft mice and the diethylnitrosamine+carbon tetrachloride (DEN+CCl4)-induced primary HCC mice and we confirmed SLC2A1/GLUT1 and CDK6 as promising oncogenes in HCC by analysis of TCGA data and human HCC tissues. Our results provide a new molecular mechanism by which ISO treatment or CDK6 deletion promotes autophagy; that is, ISO targeting the N terminus of CDK6 for degradation inhibits the expression of SLC2A1/GLUT1 by decreasing the enhancer activity of SLC2A1/GLUT1, resulting in decreased glucose levels and inducing the AMPK-ULK1 pathway.
Collapse
Affiliation(s)
- Jie Yao
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, Guangzhou, Guangdong, China
| | - Shuming Tang
- Department of Clinical Laboratory, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Chenyan Shi
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Yunzhi Lin
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Lanlan Ge
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
- Department of pathology(Longhua Branch), Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Qinghua Chen
- Department of Pharmacy, Shenzhen Baoan Authentic TCM Therapy Hospital, Shenzhen, Guangdong, China
| | - Baoru Ou
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Dongyu Liu
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Yuyang Miao
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Qiujie Xie
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Xudong Tang
- Key Lab for New Drug Research of TCM and Guangdong Innovative Chinese Medicine and Natural Medicine Engineering Technology Research Center, Research Institute of Tsinghua University, Shenzhen, Guangdong, China
| | - Jia Fei
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, Guangzhou, Guangdong, China
| | - Guangyi Yang
- Department of Pharmacy, Shenzhen Baoan Authentic TCM Therapy Hospital, Shenzhen, Guangdong, China
| | - Jun Tian
- College of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Xiaobin Zeng
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
- Department of Clinical Laboratory, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Medicine School of Shenzhen University, Shenzhen, Guangdong, China
| |
Collapse
|
6
|
Zhang X, Lu JJ, Abudukeyoumu A, Hou DY, Dong J, Wu JN, Liu LB, Li MQ, Xie F. Glucose transporters: Important regulators of endometrial cancer therapy sensitivity. Front Oncol 2022; 12:933827. [PMID: 35992779 PMCID: PMC9389465 DOI: 10.3389/fonc.2022.933827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 06/28/2022] [Indexed: 12/24/2022] Open
Abstract
Glucose is of great importance in cancer cellular metabolism. Working together with several glucose transporters (GLUTs), it provides enough energy for biological growth. The main glucose transporters in endometrial cancer (EC) are Class 1 (GLUTs 1-4) and Class 3 (GLUTs 6 and 8), and the overexpression of these GLUTs has been observed. Apart from providing abundant glucose uptake, these highly expressed GLUTs also participate in the activation of many crucial signaling pathways concerning the proliferation, angiogenesis, and metastasis of EC. In addition, overexpressed GLUTs may also cause endometrial cancer cells (ECCs) to be insensitive to hormone therapy or even resistant to radiotherapy and chemoradiotherapy. Therefore, GLUT inhibitors may hopefully become a sensitizer for EC precision-targeted therapies. This review aims to summarize the expression regulation, function, and therapy sensitivity of GLUTs in ECCs, aiming to provide a new clue for better diagnosis and treatment of EC.
Collapse
Affiliation(s)
- Xing Zhang
- Medical Center of Diagnosis and Treatment for Cervical and Intrauterine Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, China
| | - Jia-Jing Lu
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, China
| | - Ayitila Abudukeyoumu
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, China
| | - Ding-Yu Hou
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, China
| | - Jing Dong
- Medical Center of Diagnosis and Treatment for Cervical and Intrauterine Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Jiang-Nan Wu
- Clinical Epidemiology, Clinical Research Center, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Li-Bing Liu
- Department of Gynecology, Changzhou No. 2 People’s Hospital, affiliated with Nanjing Medical University, Changzhou, China
| | - Ming-Qing Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, China
- National Health Commission (NHC) Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Feng Xie
- Medical Center of Diagnosis and Treatment for Cervical and Intrauterine Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| |
Collapse
|
7
|
Bao Y, Zhong J, Shen L, Dai L, Zhou S, Fan J, Yao H, Lu Z. Effect of Glut-1 and HIF-1α double knockout by CRISPR/CAS9 on radiosensitivity in laryngeal carcinoma via the PI3K/Akt/mTOR pathway. J Cell Mol Med 2022; 26:2881-2894. [PMID: 35415942 PMCID: PMC9907005 DOI: 10.1111/jcmm.17303] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 03/13/2022] [Accepted: 03/16/2022] [Indexed: 12/16/2022] Open
Abstract
Hypoxic resistance is the main obstacle to radiotherapy for laryngeal carcinoma. Our previous study indicated that hypoxia-inducible factor 1α (HIF-1α) and glucose transporter 1 (Glut-1) double knockout reduced tumour biological behaviour in laryngeal carcinoma cells. However, their radioresistance mechanism remains unclear. In this study, cell viability was determined by CCK8 assay. Glucose uptake capability was evaluated by measurement of 18 F-fluorodeoxyglucose radioactivity. A tumour xenograft model was established by subcutaneous injection of Tu212 cells. Tumour histopathology was determined by haematoxylin and eosin staining, immunohistochemical staining, and TUNEL assays. Signalling transduction was evaluated by Western blotting. We found that hypoxia induced radioresistance in Tu212 cells accompanied by increased glucose uptake capability and activation of the PI3K/Akt/mTOR pathway. Inhibition of PI3K/Akt/mTOR activity abolished hypoxia-induced radioresistance and glucose absorption. Mechanistic analysis revealed that hypoxia promoted higher expressions of HIF-1α and Glut-1. Moreover, the PI3K/Akt/mTOR pathway was a positive mediator of HIF-1α and/or Glut-1 in the presence of irradiation. HIF-1α and/or Glut-1 knockout significantly reduced cell viability, glucose uptake and PI3K/Akt/mTOR activity, all of which were induced by hypoxia in the presence of irradiation. In vivo analysis showed that knockout of HIF-1α and/or Glut-1 also inhibited tumour growth by promoting cell apoptosis, more robustly compared with the PI3K inhibitor wortmannin, particularly in tumours with knockout of both HIF-1α and Glut-1. HIF-1α and/or Glut-1 knockout also abrogated PI3K/Akt/mTOR signalling transduction in tumour tissues, in a manner similar to wortmannin. HIF-1α and/or Glut-1 knockout facilitated radiosensitivity in laryngeal carcinoma Tu212 cells by regulation of the PI3K/Akt/mTOR pathway.
Collapse
Affiliation(s)
- Yang‐Yang Bao
- Department of OtolaryngologyThe First Affiliated HospitalZhejiang University School of MedicineHangzhou CityChina
| | - Jiang‐Tao Zhong
- Department of OtolaryngologyThe First Affiliated HospitalZhejiang University School of MedicineHangzhou CityChina
| | - Li‐Fang Shen
- Department of OtolaryngologyThe First Affiliated HospitalZhejiang University School of MedicineHangzhou CityChina
| | - Li‐Bo Dai
- Department of OtolaryngologyThe First Affiliated HospitalZhejiang University School of MedicineHangzhou CityChina
| | - Shui‐Hong Zhou
- Department of OtolaryngologyThe First Affiliated HospitalZhejiang University School of MedicineHangzhou CityChina
| | - Jun Fan
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhou CityChina
| | - Hong‐Tian Yao
- Department of PathologyThe First Affiliated HospitalZhejiang University School of MedicineHangzhou CityChina
| | - Zhong‐Jie Lu
- Department of RadiotherapyThe First Affiliated HospitalZhejiang University School of MedicineHangzhou CityChina
| |
Collapse
|
8
|
Miao J, Zhang L, Gao P, Zhao H, Xie X, Wang J. Chitosan-Based Glycolipid Conjugated siRNA Delivery System for Improving Radiosensitivity of Laryngocarcinoma. Polymers (Basel) 2021; 13:2929. [PMID: 34502969 PMCID: PMC8434167 DOI: 10.3390/polym13172929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/23/2021] [Accepted: 08/27/2021] [Indexed: 11/16/2022] Open
Abstract
Glucose Transporter-1 (GLUT-1) is considered to be a possible intrinsic marker of hypoxia in malignant tumors, which is an important factor in radioresistance of laryngocarcinoma. We speculated that the inhibition of GLUT-1 expression might improve the radiosensitivity of laryngocarcinoma. GLUT-1 siRNA was designed to inhibit the GLUT-1 expression, but the high molecular weight and difficult drug delivery limited the application. Herein, we constructed a glycolipid polymer chitosan oligosaccharide grafted stearic acid (CSSA) to conjugate siRNA via electrostatic interaction. The characteristics of CSSA and CSSA/siRNA were studied, as well as the radiosensitization effect of siRNA on human laryngocarcinoma epithelial (Hep-2) cells. Compared with the traditional commercial vector LipofectamineTM2000 (Lipo), CSSA exhibited lower cytotoxicity, more efficiently cellular uptake. Incubating with CSSA/siRNA, the survival rates of Hep-2 cells were significantly decreased comparing with either the group before transfection or Lipo/siRNA. CSSA is a promising carrier for efficient siRNA delivery and radiosensitization of laryngocarcinoma.
Collapse
Affiliation(s)
- Jing Miao
- Department of Pharmacy, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China; (J.M.); (L.Z.); (P.G.); (H.Z.)
| | - Liwen Zhang
- Department of Pharmacy, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China; (J.M.); (L.Z.); (P.G.); (H.Z.)
| | - Peng Gao
- Department of Pharmacy, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China; (J.M.); (L.Z.); (P.G.); (H.Z.)
| | - Huawei Zhao
- Department of Pharmacy, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China; (J.M.); (L.Z.); (P.G.); (H.Z.)
| | - Xianji Xie
- Department of Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Junyan Wang
- Department of Pharmacy, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China; (J.M.); (L.Z.); (P.G.); (H.Z.)
| |
Collapse
|