1
|
Rai M, Li H, Policastro RA, Pepin R, Zentner GE, Nemkov T, D’Alessandro A, Tennessen JM. Glycolytic disruption restricts Drosophila melanogaster larval growth via the cytokine Upd3. PLoS Genet 2025; 21:e1011690. [PMID: 40315265 PMCID: PMC12068724 DOI: 10.1371/journal.pgen.1011690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 05/12/2025] [Accepted: 04/15/2025] [Indexed: 05/04/2025] Open
Abstract
Drosophila larval growth requires efficient conversion of dietary nutrients into biomass. Lactate dehydrogenase (Ldh) and glycerol-3-phosphate dehydrogenase (Gpdh1) support this larval metabolic program by cooperatively promoting glycolytic flux. Consistent with their cooperative functions, the loss of both enzymes, but not either single enzyme alone, induces a developmental arrest. However, Ldh and Gpdh1 exhibit complex and often mutually exclusive expression patterns, suggesting that the lethal phenotypes exhibited by Gpdh1; Ldh double mutants could be mediated non-autonomously. Supporting this possibility, we find that the developmental arrest displayed by double mutants extends beyond simple metabolic disruption and instead stems, in part, from changes in systemic growth factor signaling. Specifically, we demonstrate that the simultaneous loss of Gpdh1 and Ldh results in elevated expression of Upd3, a cytokine involved in Jak/Stat signaling. Furthermore, we show that upd3 loss-of-function mutations suppress the Gpdh1; Ldh larval arrest phenotype, indicating that Upd3 signaling restricts larval development in response to decreased glycolytic flux. Together, our findings reveal a mechanism by which metabolic disruptions can modulate systemic growth factor signaling.
Collapse
Affiliation(s)
- Madhulika Rai
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Hongde Li
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Robert A. Policastro
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Robert Pepin
- Department of Chemistry, Indiana University, Bloomington, Indiana, United States of America
| | - Gabriel E. Zentner
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Jason M. Tennessen
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
- Member, Melvin and Bren Simon Cancer Center, Indianapolis, Indiana, United States of America
| |
Collapse
|
2
|
Sammut MJ, Thorne BR, Melling CWJ. Skeletal muscle growth to combat diabetes and obesity: the potential role of muscle-secreted factors. Obesity (Silver Spring) 2025; 33:435-451. [PMID: 39948829 PMCID: PMC11897867 DOI: 10.1002/oby.24223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 03/14/2025]
Abstract
As the prevalence of obesity and metabolic disease continues to climb, the need for effective therapeutic interventions remains high. The growth of skeletal muscle (SkM) greatly influences systemic metabolism across the whole body, making this tissue an important therapeutic target to combat the rise of metabolic dysfunction. Transgenic rodent models of targeted SkM growth exhibit profound improvements in various remote tissues, including adipose tissue and the liver. It is currently unclear how selective stimulation of SkM growth alters the metabolism of distant tissues; however, evidence suggests that muscle-secreted factors may be involved. Here, we aim to provide basic biomedical researchers with a summary of the current knowledge regarding various muscle-secreted factors regulated by anabolic pathways and proteins in SkM, as well as their systemic metabolic effects, to implicate them in the whole-body metabolic effects of SkM growth. In this review, we also identify several knowledge gaps in this field, future directions of investigation, and implications for therapeutic interventions such as resistance exercise and pharmacology.
Collapse
Affiliation(s)
- Mitchell J. Sammut
- School of Kinesiology, Faculty of Health SciencesWestern UniversityLondonOntarioCanada
| | - Benjamin R. Thorne
- School of Kinesiology, Faculty of Health SciencesWestern UniversityLondonOntarioCanada
| | - C. W. James Melling
- School of Kinesiology, Faculty of Health SciencesWestern UniversityLondonOntarioCanada
- Department of Physiology & Pharmacology, Schulich School of Medicine & DentistryWestern UniversityLondonOntarioCanada
| |
Collapse
|
3
|
Tutas J, Tolve M, Özer-Yildiz E, Ickert L, Klein I, Silverman Q, Liebsch F, Dethloff F, Giavalisco P, Endepols H, Georgomanolis T, Neumaier B, Drzezga A, Schwarz G, Thorens B, Gatto G, Frezza C, Kononenko NL. Autophagy regulator ATG5 preserves cerebellar function by safeguarding its glycolytic activity. Nat Metab 2025; 7:297-320. [PMID: 39815080 PMCID: PMC11860254 DOI: 10.1038/s42255-024-01196-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 11/29/2024] [Indexed: 01/18/2025]
Abstract
Dysfunctions in autophagy, a cellular mechanism for breaking down components within lysosomes, often lead to neurodegeneration. The specific mechanisms underlying neuronal vulnerability due to autophagy dysfunction remain elusive. Here we show that autophagy contributes to cerebellar Purkinje cell (PC) survival by safeguarding their glycolytic activity. Outside the conventional housekeeping role, autophagy is also involved in the ATG5-mediated regulation of glucose transporter 2 (GLUT2) levels during cerebellar maturation. Autophagy-deficient PCs exhibit GLUT2 accumulation on the plasma membrane, along with increased glucose uptake and alterations in glycolysis. We identify lysophosphatidic acid and serine as glycolytic intermediates that trigger PC death and demonstrate that the deletion of GLUT2 in ATG5-deficient mice mitigates PC neurodegeneration and rescues their ataxic gait. Taken together, this work reveals a mechanism for regulating GLUT2 levels in neurons and provides insights into the neuroprotective role of autophagy by controlling glucose homeostasis in the brain.
Collapse
Affiliation(s)
- Janine Tutas
- CECAD Excellence Center, University of Cologne, Cologne, Germany
- Center for Physiology and Pathophysiology, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Marianna Tolve
- CECAD Excellence Center, University of Cologne, Cologne, Germany
- Center for Physiology and Pathophysiology, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Ebru Özer-Yildiz
- CECAD Excellence Center, University of Cologne, Cologne, Germany
- Center for Physiology and Pathophysiology, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Lotte Ickert
- CECAD Excellence Center, University of Cologne, Cologne, Germany
- Center for Physiology and Pathophysiology, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Ines Klein
- Department of Neurology, University Hospital of Cologne, Cologne, Germany
| | - Quinn Silverman
- Department of Neurology, University Hospital of Cologne, Cologne, Germany
| | - Filip Liebsch
- Institute of Biochemistry, Department of Chemistry, University of Cologne, Cologne, Germany
| | | | | | - Heike Endepols
- Department of Nuclear Medicine, Faculty of Medicine, University Hospital Cologne, Cologne, Germany
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), Jülich, Germany
| | | | - Bernd Neumaier
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), Jülich, Germany
| | - Alexander Drzezga
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Molecular Organization of the Brain (INM-2), Jülich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn-Cologne, Germany
| | - Guenter Schwarz
- Institute of Biochemistry, Department of Chemistry, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Bernard Thorens
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Graziana Gatto
- Department of Neurology, University Hospital of Cologne, Cologne, Germany
| | - Christian Frezza
- CECAD Excellence Center, University of Cologne, Cologne, Germany
- Institute for Genetics, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
| | - Natalia L Kononenko
- CECAD Excellence Center, University of Cologne, Cologne, Germany.
- Center for Physiology and Pathophysiology, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
- Institute for Genetics, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany.
| |
Collapse
|
4
|
Souza Matos M, Sil A, Riedel G, Platt B, Delibegovic M. Effects of age and dietary methionine restriction on cognitive and behavioural phenotypes in the rTg4510 mouse model of frontotemporal dementia. Neurobiol Aging 2025; 146:24-37. [PMID: 39577250 DOI: 10.1016/j.neurobiolaging.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 10/11/2024] [Accepted: 11/07/2024] [Indexed: 11/24/2024]
Abstract
Metabolic disorders such as diabetes and obesity are linked to neurodegenerative diseases, with evidence of lower brain glucose metabolism and insulin resistance in dementia patients. Dietary methionine restriction (MR) is a nutritional intervention that enhances insulin sensitivity and delays ageing-associated metabolic alterations, however, its impact on neurodegenerative diseases is not fully understood. Here, we examined the behavioural and metabolic phenotypes of a murine tauopathy model (rTg4510), which overexpresses human P301L mutated tau, at 6 and 12 months of age, assessing the impact of an 8-week dietary MR in the older group. While rTg4510 mice displayed progressive behavioural and motor impairments at both ages, MR led to significant benefits in the 12-month-old cohort, improving motor coordination, short-term memory, and social recognition. These effects were accompanied by increased glycolysis markers and FGF21R1 levels in the hippocampus, alongside unaltered glucose metabolism/adiposity. Overall, our results reveal the impact of MR on an FTD-mouse model, suggesting this as a potential therapeutic intervention to delay and/or improve the progression of tau-related disease.
Collapse
Affiliation(s)
- Marina Souza Matos
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom; Aberdeen Cardiovascular and Diabetes Centre, Aberdeen, United Kingdom.
| | - Annesha Sil
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Gernot Riedel
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Bettina Platt
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom.
| | - Mirela Delibegovic
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom; Aberdeen Cardiovascular and Diabetes Centre, Aberdeen, United Kingdom.
| |
Collapse
|
5
|
Ludwig-Słomczyńska AH, Seweryn MT, Wiater J, Borys A, Ledwoń A, Druszczyńska M, Łabieniec-Watała M, Lis GJ, Wołkow PP. Cytosolic nucleic acid sensing and mitochondrial transcriptomic changes as early triggers of metabolic disease in db/db mice. Mamm Genome 2024; 35:68-76. [PMID: 37979047 PMCID: PMC10884043 DOI: 10.1007/s00335-023-10026-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/08/2023] [Indexed: 11/19/2023]
Abstract
Animal models of diabetes, such as db/db mice, are a useful tool for deciphering the genetic background of molecular changes at the initial stages of disease development. Our goal was to find early transcriptomic changes in three tissues involved in metabolism regulation in db/db mice: adipose tissue, muscle tissue and liver tissue. Nine animals (three per time point) were studied. Tissues were collected at 8, 12 and 16 weeks of age. Transcriptome-wide analysis was performed using mRNA-seq. Libraries were sequenced on NextSeq (Illumina). Differential expression (DE) analysis was performed with edgeR. The analysis of the gene expression profile shared by all three tissues revealed eight upregulated genes (Irf7, Sp100, Neb, Stat2, Oas2, Rtp4, H2-T24 and Oasl2) as early as between 8 and 12 weeks of age. The most pronounced differences were found in liver tissue: nine DE genes between 8 and 12 weeks of age (Irf7, Ly6a, Ly6g6d, H2-Dma, Pld4, Ly86, Fcer1g, Ly6e and Idi1) and five between 12 and 16 weeks of age (Irf7, Plac8, Ifi44, Xaf1 and Ly6a) (adj. p-value < 0.05). The mitochondrial transcriptomic profile also changed with time: we found two downregulated genes in mice between 8 and 12 weeks old (Ckmt2 and Cox6a2) and five DE genes between 12 and 16 weeks of age (Mavs, Tomm40L, Mtfp1, Ckmt2 and Cox6a2). The KEGG pathway analysis showed significant enrichment in pathways related to the autoimmune response and cytosolic DNA sensing. Our results suggest an important involvement of the immunological response, mainly cytosolic nucleic acid sensing, and mitochondrial signalling in the early stages of diabetes and obesity.
Collapse
Affiliation(s)
| | - Michał T Seweryn
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Kraków, Poland
- Biobank Lab, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Jerzy Wiater
- Department of Histology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Agnieszka Borys
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Kraków, Poland
| | - Anna Ledwoń
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Kraków, Poland
| | - Magdalena Druszczyńska
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Magdalena Łabieniec-Watała
- Department of Medical Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Grzegorz J Lis
- Department of Histology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Paweł P Wołkow
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Kraków, Poland.
| |
Collapse
|
6
|
Yang X, A M, Gegen T, Daoerji B, Zheng Y, Wang A. PHLPP1 inhibits the growth and aerobic glycolysis activity of human ovarian granular cells through inactivating AKT pathway. BMC Womens Health 2024; 24:25. [PMID: 38184561 PMCID: PMC10771674 DOI: 10.1186/s12905-023-02872-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 12/28/2023] [Indexed: 01/08/2024] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a disorder characterized by hyperandrogenism, ovulatory dysfunction, and polycystic ovarian morphologic features, and PCOS is associated with infertility. PH domain Leucine-rich repeat Protein Phosphatase 1 (PHLPP1) has been shown to regulate AKT. The aim of present study is to investigate the role of PHLPP1 in PCOS. METHODS The expression levels of PHLPP1 in dihydrotestosterone (DHT)-treated human ovarian granular KGN cells were determined by qRT-PCR and Western blot. PHLPP1 was silenced or overexpressed using lentivirus. Cell proliferation was detected by CCK-8. Apoptosis and ROS generation were analyzed by flow cytometry. Glycolysis was analyzed by measuring extracellular acidification rate (ECAR). RESULTS DHT treatment suppressed proliferation, promoted apoptosis, enhanced ROS, and inhibited glycolysis in KGN cells. PHLPP1 silencing alleviated the DHT-induced suppression of proliferation and glycolysis, and promotion of apoptosis and ROS in KGN cells. PHLPP1 regulated cell proliferation and glycolysis in human KGN cells via the AKT signaling pathway. CONCLUSIONS Our results showed that PHLPP1 mediates the proliferation and aerobic glycolysis activity of human ovarian granular cells through regulating AKT signaling.
Collapse
Affiliation(s)
- Xiaoyan Yang
- Reproductive Medicine Center, Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, Inner Mongolia, 028000, China
- Clinical Medical (Mongolian Medical) College of Inner Mongolia Minzu University, Tongliao, Inner Mongolia, 028000, China
| | - Min A
- Clinical Medical (Mongolian Medical) College of Inner Mongolia Minzu University, Tongliao, Inner Mongolia, 028000, China
- Department of Urology, Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, Inner Mongolia, 028000, China
| | - Tana Gegen
- Reproductive Medicine Center, Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, Inner Mongolia, 028000, China
- Clinical Medical (Mongolian Medical) College of Inner Mongolia Minzu University, Tongliao, Inner Mongolia, 028000, China
| | - Badema Daoerji
- Reproductive Medicine Center, Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, Inner Mongolia, 028000, China
- Clinical Medical (Mongolian Medical) College of Inner Mongolia Minzu University, Tongliao, Inner Mongolia, 028000, China
| | - Yue Zheng
- Reproductive Medicine Center, Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, Inner Mongolia, 028000, China
- Clinical Medical (Mongolian Medical) College of Inner Mongolia Minzu University, Tongliao, Inner Mongolia, 028000, China
| | - Aiming Wang
- Department of Obstetrics and Gynaecology, Sixth Medical Center, Chinese PLA General Hospital, No.6 Fucheng Road, Haidian District, Beijing, 100048, China.
| |
Collapse
|
7
|
Hu X, Sun M, Chen Q, Zhao Y, Liang N, Wang S, Yin P, Yang Y, Lam SM, Zhang Q, Tudiyusufu A, Gu Y, Wan X, Chen M, Li H, Zhang X, Shui G, Fu S, Zhang L, Tang P, Wong CCL, Zhang Y, Zhu D. Skeletal muscle-secreted DLPC orchestrates systemic energy homeostasis by enhancing adipose browning. Nat Commun 2023; 14:7916. [PMID: 38036537 PMCID: PMC10689447 DOI: 10.1038/s41467-023-43402-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 11/08/2023] [Indexed: 12/02/2023] Open
Abstract
MyoD is a skeletal muscle-specifically expressed transcription factor and plays a critical role in regulating myogenesis during muscle development and regeneration. However, whether myofibers-expressed MyoD exerts its metabolic function in regulating whole body energy homeostasis in vivo remains largely unknown. Here, we report that genetic deletion of Myod in male mice enhances the oxidative metabolism of muscle and, intriguingly, renders the male mice resistant to high fat diet-induced obesity. By performing lipidomic analysis in muscle-conditioned medium and serum, we identify 1,2-dilinoleoyl-sn-glycero-3-phosphocholine (DLPC) as a muscle-released lipid that is responsible for MyoD-orchestrated body energy homeostasis in male Myod KO mice. Functionally, the administration of DLPC significantly ameliorates HFD-induced obesity in male mice. Mechanistically, DLPC is found to induce white adipose browning via lipid peroxidation-mediated p38 signaling in male mice. Collectively, our findings not only uncover a novel function of MyoD in controlling systemic energy homeostasis through the muscle-derived lipokine DLPC but also suggest that the DLPC might have clinical potential for treating obesity in humans.
Collapse
Affiliation(s)
- Xiaodi Hu
- State Key Laboratory for Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Mingwei Sun
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Qian Chen
- State Key Laboratory for Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Yixia Zhao
- State Key Laboratory for Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Na Liang
- State Key Laboratory for Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Siyuan Wang
- Clinical Research Institute, State Key Laboratory for Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China
| | - Pengbin Yin
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, 100853, China
| | - Yuanping Yang
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Sin Man Lam
- LipidALL Technologies Company Limited, Changzhou, 213022, China
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qianying Zhang
- State Key Laboratory for Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Alimujiang Tudiyusufu
- State Key Laboratory for Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Yingying Gu
- State Key Laboratory for Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Xin Wan
- State Key Laboratory for Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Meihong Chen
- State Key Laboratory for Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Hu Li
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Xiaofei Zhang
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Guanghou Shui
- LipidALL Technologies Company Limited, Changzhou, 213022, China
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Suneng Fu
- Guangzhou Laboratory, Guangzhou, 510005, China
| | - Licheng Zhang
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, 100853, China
| | - Peifu Tang
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, 100853, China
| | - Catherine C L Wong
- Clinical Research Institute, State Key Laboratory for Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China
| | - Yong Zhang
- State Key Laboratory for Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.
| | - Dahai Zhu
- State Key Laboratory for Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.
| |
Collapse
|
8
|
Li S, Chen J, Wei P, Zou T, You J. Fibroblast Growth Factor 21: A Fascinating Perspective on the Regulation of Muscle Metabolism. Int J Mol Sci 2023; 24:16951. [PMID: 38069273 PMCID: PMC10707024 DOI: 10.3390/ijms242316951] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Fibroblast growth factor 21 (FGF21) plays a vital role in normal eukaryotic organism development and homeostatic metabolism under the influence of internal and external factors such as endogenous hormone changes and exogenous stimuli. Over the last few decades, comprehensive studies have revealed the key role of FGF21 in regulating many fundamental metabolic pathways, including the muscle stress response, insulin signaling transmission, and muscle development. By coordinating these metabolic pathways, FGF21 is thought to contribute to acclimating to a stressful environment and the subsequent recovery of cell and tissue homeostasis. With the emphasis on FGF21, we extensively reviewed the research findings on the production and regulation of FGF21 and its role in muscle metabolism. We also emphasize how the FGF21 metabolic networks mediate mitochondrial dysfunction, glycogen consumption, and myogenic development and investigate prospective directions for the functional exploitation of FGF21 and its downstream effectors, such as the mammalian target of rapamycin (mTOR).
Collapse
Affiliation(s)
| | | | | | - Tiande Zou
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang 330045, China; (S.L.); (J.C.); (P.W.)
| | - Jinming You
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang 330045, China; (S.L.); (J.C.); (P.W.)
| |
Collapse
|
9
|
Zhang Y, Zheng F, Wang F, Liu X, Xiang C, Fu S, Shen K, Liu G. The Expression of Two Distinct Sets of Glycolytic Enzymes Reveals Differential Effects of Glycolytic Reprogramming on Pancreatic Ductal Tumorigenesis in Mice. Biomedicines 2023; 11:2962. [PMID: 38001963 PMCID: PMC10669313 DOI: 10.3390/biomedicines11112962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/17/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is associated with enhanced aerobic glycolysis through elevated glucose uptake and the upregulated expression of genes encoding rate-limiting glycolytic enzymes. However, the direct impact of altered glycolytic pathways on pancreatic tumor progression has not been thoroughly investigated. Here, we utilized two strains of BAC transgenic mice with pancreatic expression of two distinct sets of glycolytic genes each arranged in a polycistronic fashion (PFKFB3-HK2-GLUT1 and LDHA-PDK1, respectively) to investigate the role of altered glycolysis on the development of pancreatic ductal tumor development in the Pdx1-Cre; LSL-KrasG12D mice. The overexpression of the two sets of glycolytic genes exhibited no significant effects on tumor development in the 4-5-month-old mice (the PanIN2 lesions stage). In the 9-10-month-old mice, the overexpression of PFKFB3-HK2-GLUT1 significantly accelerated PanIN3 progression, exhibiting elevated levels of ductal cell marker CK19 and tumor fibrosis. Surprisingly, the overexpression of LDHA-PDK1 significantly attenuated the progression of PanIN3 in the 9-10-month-old mice with significantly downregulated levels of CK19 and fibrosis. Therefore, distinct set of glycolytic enzymes that are involved in different glycolytic routes exhibited contrasting effects on pancreatic ductal tumor development depending on the tumor stages, providing novel insights into the complexity of the glycolytic pathway in the perspective of PDAC development and therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Geng Liu
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animals for Disease Study, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, School of Medicine, Nanjing University, 12 Xuefu Road, Pukou High-Tech District, Nanjing 210061, China; (Y.Z.); (F.Z.); (F.W.); (X.L.); (C.X.); (S.F.); (K.S.)
| |
Collapse
|
10
|
Saud Gany SL, Tan JK, Chin KY, Hakimi NH, Ab Rani N, Ihsan N, Makpol S. Untargeted muscle tissue metabolites profiling in young, adult, and old rats supplemented with tocotrienol-rich fraction. Front Mol Biosci 2022; 9:1008908. [PMID: 36310588 PMCID: PMC9616602 DOI: 10.3389/fmolb.2022.1008908] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/15/2022] [Indexed: 01/10/2023] Open
Abstract
The greatest significant influence on human life span and health is inevitable ageing. One of the distinguishing characteristics of ageing is the gradual decrease of muscle mass and physical function. There has been growing evidence that tocotrienol can guard against age-associated chronic diseases and metabolic disorders. This study aimed to elucidate the effects of tocotrienol-rich fraction (TRF) on muscle metabolomes and metabolic pathways in ageing Sprague Dawley (SD) rats. Three months, 9 months, and 21 months old male SD rats were divided into control and treated groups with 10 rats per group. Rats in control and treated groups were given 60 mg/kg body weight/day of palm olein and 60 mg/kg body weight/day of TRF, respectively, via oral gavage for 3 months. Muscle performance was assessed at 0 and 3 months of treatment by measuring muscle strength and function. Our results showed that TRF treatment caused a significant increase in the swimming time of the young rats. Comparison in the control groups showed that metabolites involved in lipid metabolisms such as L-palmitoyl carnitine and decanoyl carnitine were increased in ageing. In contrast, several metabolites, such as 3-phosphoglyceric acid, aspartic acid and aspartyl phenylalanine were decreased. These findings indicated that muscle metabolomes involved in lipid metabolism were upregulated in aged rats. In contrast, the metabolites involved in energy and amino acid metabolism were significantly downregulated. Comparison in the TRF-supplemented groups showed an upregulation of metabolites involved in energy and amino acid metabolism. Metabolites such as N6-methyl adenosine, spermine, phenylalanine, tryptophan, aspartic acid, histidine, and N-acetyl neuraminic acid were up-regulated, indicating promotion of amino acid synthesis and muscle regeneration. Energy metabolism was also improved in adult and old rats with TRF supplementation as indicated by the upregulation of nicotinamide adenine dinucleotide and glycerol 3-phosphate compared to the control group. In conclusion, the mechanism underlying the changes in skeletal muscle mass and functions in ageing was related to carbohydrate, lipid and amino acid metabolism. Tocotrienol supplementation showed beneficial effects in alleviating energy and amino acid synthesis that may promote the regeneration and renewal of skeletal muscle in ageing rats.
Collapse
Affiliation(s)
- Siti Liyana Saud Gany
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Jen Kit Tan
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Kok Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Nur Haleeda Hakimi
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Nazirah Ab Rani
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | | | - Suzana Makpol
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia,*Correspondence: Suzana Makpol,
| |
Collapse
|
11
|
Nguyen HP, Villivalam SD, Jung BC, You D, Lin F, Yi D, Pi A, Ma K, Jung S, Park SH, Jang C, Sul HS, Kang S. AIFM2 Is Required for High-Intensity Aerobic Exercise in Promoting Glucose Utilization. Diabetes 2022; 71:2084-2093. [PMID: 35772021 PMCID: PMC9501658 DOI: 10.2337/db21-1114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 06/06/2022] [Indexed: 01/07/2023]
Abstract
Skeletal muscle is a major regulator of glycemic control at rest, and glucose utilization increases drastically during exercise. Sustaining a high glucose utilization via glycolysis requires efficient replenishment of NAD+ in the cytosol. Apoptosis-inducing mitochondrion-associated factor 2 (AIFM2) was previously shown to be a NADH oxidoreductase domain-containing flavoprotein that promotes glycolysis for diet and cold-induced thermogenesis. Here, we find that AIFM2 is selectively and highly induced in glycolytic extensor digitorum longus (EDL) muscle during exercise. Overexpression (OE) of AIFM2 in myotubes is sufficient to elevate the NAD+-to-NADH ratio, increasing the glycolytic rate. Thus, OE of AIFM2 in skeletal muscle greatly increases exercise capacity, with increased glucose utilization. Conversely, muscle-specific Aifm2 depletion via in vivo transfection of hairpins against Aifm2 or tamoxifen-inducible haploinsufficiency of Aifm2 in muscles decreases exercise capacity and glucose utilization in mice. Moreover, muscle-specific introduction of NDE1, Saccharomyces cerevisiae external NADH dehydrogenase (NDE), ameliorates impairment in glucose utilization and exercise intolerance of the muscle-specific Aifm2 haploinsufficient mice. Together, we show a novel role for AIFM2 as a critical metabolic regulator for efficient utilization of glucose in glycolytic EDL muscles.
Collapse
Affiliation(s)
- Hai P. Nguyen
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA
| | - Sneha Damal Villivalam
- Nutritional Sciences and Toxicology Department, University of California, Berkeley, Berkeley, CA
| | - Byung Chul Jung
- Nutritional Sciences and Toxicology Department, University of California, Berkeley, Berkeley, CA
| | - Dongjoo You
- Nutritional Sciences and Toxicology Department, University of California, Berkeley, Berkeley, CA
| | - Frances Lin
- Nutritional Sciences and Toxicology Department, University of California, Berkeley, Berkeley, CA
| | - Danielle Yi
- Nutritional Sciences and Toxicology Department, University of California, Berkeley, Berkeley, CA
| | - Anna Pi
- Nutritional Sciences and Toxicology Department, University of California, Berkeley, Berkeley, CA
| | - Katherine Ma
- Nutritional Sciences and Toxicology Department, University of California, Berkeley, Berkeley, CA
| | - Sunhee Jung
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA
| | - Sang-Hee Park
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA
| | - Cholsoon Jang
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA
| | - Hei Sook Sul
- Nutritional Sciences and Toxicology Department, University of California, Berkeley, Berkeley, CA
| | - Sona Kang
- Nutritional Sciences and Toxicology Department, University of California, Berkeley, Berkeley, CA
| |
Collapse
|
12
|
Lee A, Koh E, Kim D, Lee N, Cho SM, Lee YJ, Cho IH, Yang HJ. Dendropanax trifidus Sap-Mediated Suppression of Obese Mouse Body Weight and the Metabolic Changes Related with Estrogen Receptor Alpha and AMPK-ACC Pathways in Muscle Cells. Nutrients 2022; 14:nu14051098. [PMID: 35268079 PMCID: PMC8912501 DOI: 10.3390/nu14051098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/02/2022] [Indexed: 12/23/2022] Open
Abstract
Dendropanax trifidus (DT) is a medicinal herb native to East Asia, which has been used extensively for its therapeutic properties in traditional medicine. In this study, we examined the effects of DT sap on the regulation of body weight and muscle metabolism in mice. Obese model db/db mice were administered daily with DT sap or vehicle control over a 6-week period. The effects of DT sap on muscle metabolism were studied in C2C12 muscle cells, where glycolytic and mitochondrial respiration rates were monitored. As AMP-activated protein kinase (AMPK) is a master regulator of metabolism and plays an important function as an energy sensor in muscle tissue, signaling pathways related with AMPK were also examined. We found that DT sap inhibited body weight increase in db/db, db/+, and +/+ mice over a 6-week period, while DT sap-treated muscle cells showed increased muscle metabolism and also increased phosphorylation of AMPK and Acetyl-CoA Carboxylase (ACC). Finally, we found that DT sap, which is enriched in estrogen in our previous study, significantly activates estrogen alpha receptor in a concentration-dependent manner, which can drive the activation of AMPK signaling and may be related to the muscle metabolism and weight changes observed here.
Collapse
Affiliation(s)
- Ahreum Lee
- Korea Institute of Brain Science, Seoul 06022, Korea; (A.L.); (D.K.)
| | - Eugene Koh
- Temasek Life Sciences Laboratories, Singapore 117604, Singapore;
| | - Dalnim Kim
- Korea Institute of Brain Science, Seoul 06022, Korea; (A.L.); (D.K.)
| | - Namkyu Lee
- Department of Integrated Bioscience and Biotechnology, College of Life Science, Sejong University, Seoul 05006, Korea; (N.L.); (Y.J.L.)
| | | | - Young Joo Lee
- Department of Integrated Bioscience and Biotechnology, College of Life Science, Sejong University, Seoul 05006, Korea; (N.L.); (Y.J.L.)
| | - Ik-Hyun Cho
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea;
| | - Hyun-Jeong Yang
- Korea Institute of Brain Science, Seoul 06022, Korea; (A.L.); (D.K.)
- Department of Integrative Health Care, University of Brain Education, Cheonan 31228, Korea
- Department of Integrative Biosciences, University of Brain Education, Cheonan 31228, Korea
- Correspondence:
| |
Collapse
|
13
|
Systems-level analysis of insulin action in mouse strains provides insight into tissue- and pathway-specific interactions that drive insulin resistance. Cell Metab 2022; 34:227-239.e6. [PMID: 35021042 DOI: 10.1016/j.cmet.2021.12.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/13/2021] [Accepted: 12/10/2021] [Indexed: 02/08/2023]
Abstract
Skeletal muscle and adipose tissue insulin resistance are major drivers of metabolic disease. To uncover pathways involved in insulin resistance, specifically in these tissues, we leveraged the metabolic diversity of different dietary exposures and discrete inbred mouse strains. This revealed that muscle insulin resistance was driven by gene-by-environment interactions and was strongly correlated with hyperinsulinemia and decreased levels of ten key glycolytic enzymes. Remarkably, there was no relationship between muscle and adipose tissue insulin action. Adipocyte size profoundly varied across strains and diets, and this was strongly correlated with adipose tissue insulin resistance. The A/J strain, in particular, exhibited marked adipocyte insulin resistance and hypertrophy despite robust muscle insulin responsiveness, challenging the role of adipocyte hypertrophy per se in systemic insulin resistance. These data demonstrate that muscle and adipose tissue insulin resistance can occur independently and underscore the need for tissue-specific interrogation to understand metabolic disease.
Collapse
|
14
|
Xiang C, Zhang Y, Chen Q, Sun A, Peng Y, Zhang G, Zhou D, Xie Y, Hou X, Zheng F, Wang F, Gan Z, Chen S, Liu G. Increased glycolysis in skeletal muscle coordinates with adipose tissue in systemic metabolic homeostasis. J Cell Mol Med 2021; 25:7840-7854. [PMID: 34227742 PMCID: PMC8358859 DOI: 10.1111/jcmm.16698] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 02/06/2023] Open
Abstract
Insulin‐independent glucose metabolism, including anaerobic glycolysis that is promoted in resistance training, plays critical roles in glucose disposal and systemic metabolic regulation. However, the underlying mechanisms are not completely understood. In this study, through genetically manipulating the glycolytic process by overexpressing human glucose transporter 1 (GLUT1), hexokinase 2 (HK2) and 6‐phosphofructo‐2‐kinase‐fructose‐2,6‐biphosphatase 3 (PFKFB3) in mouse skeletal muscle, we examined the impact of enhanced glycolysis in metabolic homeostasis. Enhanced glycolysis in skeletal muscle promoted accelerated glucose disposal, a lean phenotype and a high metabolic rate in mice despite attenuated lipid metabolism in muscle, even under High‐Fat diet (HFD). Further study revealed that the glucose metabolite sensor carbohydrate‐response element‐binding protein (ChREBP) was activated in the highly glycolytic muscle and stimulated the elevation of plasma fibroblast growth factor 21 (FGF21), possibly mediating enhanced lipid oxidation in adipose tissue and contributing to a systemic effect. PFKFB3 was critically involved in promoting the glucose‐sensing mechanism in myocytes. Thus, a high level of glycolysis in skeletal muscle may be intrinsically coupled to distal lipid metabolism through intracellular glucose sensing. This study provides novel insights for the benefit of resistance training and for manipulating insulin‐independent glucose metabolism.
Collapse
Affiliation(s)
- Cong Xiang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China
| | - Yannan Zhang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China
| | - Qiaoli Chen
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China
| | - Aina Sun
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China
| | - Yamei Peng
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China
| | - Guoxin Zhang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China
| | - Danxia Zhou
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China
| | - Yinyin Xie
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China
| | - Xiaoshuang Hou
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China
| | - Fangfang Zheng
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China
| | - Fan Wang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China
| | - Zhenji Gan
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China
| | - Shuai Chen
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China
| | - Geng Liu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China
| |
Collapse
|