1
|
Li Z, Deng X, Cao Y, Xu H, Wang J, Yuan L, Deng H. Different GJA8 missense variants reveal distinct pathogenic mechanisms in congenital cataract. Life Sci 2025; 371:123596. [PMID: 40158616 DOI: 10.1016/j.lfs.2025.123596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 03/27/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025]
Abstract
AIM Congenital cataract, a lenticular opacity diagnosed at birth or early in the postnatal period, often causes visual impairment. The pathogenic mechanisms of various cataract-associated variants are complex and diverse, and current knowledge is insufficient. This study aimed to determine the molecular etiology of congenital nuclear cataract in a Han-Chinese family and to reveal the pathogenic mechanisms of common cataract-associated variants with unclear mechanisms. METHODS Genetic analysis including whole exome sequencing and bioinformatics analysis were conducted in the family. Functional analysis was performed to elucidate the changes in protein cellular distribution, degradation, and function induced by the variants. RESULTS A heterozygous c.773C>T transition (p.S258F) in the gap junction protein alpha 8 gene (GJA8), encoding connexin 50 (Cx50), was identified in a family with congenital nuclear cataract. Functional analysis of this variant and two other GJA8 variants with unclear pathogenic mechanisms showed that the Cx50V44M mutant correctly trafficked to the plasma membrane, whereas the Cx50R76C mutant and Cx50S258F mutant exhibited trafficking defects resulting from delayed degradation and accelerated degradation, respectively. All three mutants exhibited increased autophagic activity, while only the Cx50V44M mutant and Cx50S258F mutant underwent autophagy-mediated Cx50 degradation. All mutants failed to form functional hemichannels and gap junction channels. SIGNIFICANCE This study identified a heterozygous GJA8 missense variant c.773C>T (p.S258F) responsible for congenital nuclear cataract, and revealed three distinct pathogenic mechanisms of three cataract-associated GJA8 variants, particularly emphasizing dysregulated autophagy involving in aberrant Cx50 degradation.
Collapse
Affiliation(s)
- Zexuan Li
- Health Management Center, the Third Xiangya Hospital, Central South University, Changsha, China; Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Xinyue Deng
- Health Management Center, the Third Xiangya Hospital, Central South University, Changsha, China; Xiangya School of Medicine, Central South University, Changsha, China
| | - Yanna Cao
- Department of Ophthalmology, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Hongbo Xu
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Jiangang Wang
- Health Management Center, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Lamei Yuan
- Health Management Center, the Third Xiangya Hospital, Central South University, Changsha, China; Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China; Disease Genome Research Center, Central South University, Changsha, China.
| | - Hao Deng
- Health Management Center, the Third Xiangya Hospital, Central South University, Changsha, China; Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China; Disease Genome Research Center, Central South University, Changsha, China; Research Center of Medical Experimental Technology, the Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
2
|
Sun H, Xu X, Chen B, Wang Y, Lyu J, Guo L, Yuan Y, Ren D. A novel intronic TCOF1 pathogenic variant in a Chinese family with Treacher Collins syndrome. BMC Med Genomics 2024; 17:75. [PMID: 38500116 PMCID: PMC10946134 DOI: 10.1186/s12920-024-01828-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 02/08/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND Treacher Collins syndrome (TCS; OMIM 154500) is a craniofacial developmental disorder. METHODS To investigate the genetic features of a four-generation Chinese family with TCS, clinical examinations, hearing tests, computed tomography, whole-exome sequencing (WES), Sanger sequencing, reverse transcription (RT)-PCR, and the Minigene assay were performed. RESULTS The probands, an 11-year-old male and his cousin exhibited typical clinical manifestations of TCS including conductive hearing loss, downward slanting palpebral fissures, and mandibular hypoplasia. Computed tomography revealed bilateral fusion of the anterior and posterior stapedial crura and malformation of the long crura of the incus. WES of both patients revealed a novel heterozygous intronic variant, i.e., c.4342 + 5_4342 + 8delGTGA (NM_001371623.1) in TCOF1. Minigene expression analysis revealed that the c.4342 + 5_4342 + 8delGTGA variant in TCOF1 caused a partial deletion of exon 24 (c.4115_4342del: p.Gly1373_Arg1448del), which was predicted to yield a truncated protein. The deletion was further confirmed via RT-PCR and sequencing of DNA from proband blood cells. A heterozygous variant in the POLR1C gene (NM_203290; exon6; c.525delG) was found almost co-segregated with the TCOF1 pathogenic variant. CONCLUSIONS In conclusion, we identified a heterozygous TCOF1 splicing variant c.4342 + 5_4342 + 8delGTGA (splicing) in a Chinese TSC family with ossicular chain malformations and facial anomalies. Our findings broadened the spectrum of TCS variants and will facilitate diagnostics and prognostic predictions.
Collapse
Affiliation(s)
- Haojie Sun
- Department of Otorhinolaryngology, ENT Institute, Eye and ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
- Shanghai Auditory Medical Center, Shanghai, China
| | - Xinda Xu
- Department of Otorhinolaryngology, ENT Institute, Eye and ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
- Shanghai Auditory Medical Center, Shanghai, China
| | - Binjun Chen
- Department of Otorhinolaryngology, ENT Institute, Eye and ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
- Shanghai Auditory Medical Center, Shanghai, China
| | - Yanmei Wang
- Department of Otorhinolaryngology, ENT Institute, Eye and ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
- Shanghai Auditory Medical Center, Shanghai, China
| | - Jihan Lyu
- Department of Otorhinolaryngology, ENT Institute, Eye and ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
- Shanghai Auditory Medical Center, Shanghai, China
| | - Luo Guo
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China.
- Department of the Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, ENT Institute and Otorhinolaryngology, Fudan University, No. 83, Fenyang Road, Shanghai, 200031, China.
| | - Yasheng Yuan
- Department of Otorhinolaryngology, ENT Institute, Eye and ENT Hospital, Fudan University, Shanghai, China.
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China.
- Shanghai Auditory Medical Center, Shanghai, China.
| | - Dongdong Ren
- Department of Otorhinolaryngology, ENT Institute, Eye and ENT Hospital, Fudan University, Shanghai, China.
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China.
- Shanghai Auditory Medical Center, Shanghai, China.
| |
Collapse
|
3
|
Khowal S, Zhang D, Yong WH, Heaney AP. Whole-exome sequencing reveals genetic variants that may play a role in neurocytomas. J Neurooncol 2024; 166:471-483. [PMID: 38319496 DOI: 10.1007/s11060-024-04567-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 01/09/2024] [Indexed: 02/07/2024]
Abstract
OBJECTIVES Neurocytomas (NCs) are rare intracranial tumors that can often be surgically resected. However, disease course is unpredictable in many patients and medical therapies are lacking. We have used whole exome sequencing to explore the molecular etiology for neurocytoma and assist in target identification to develop novel therapeutic interventions. METHODS We used whole exome sequencing (WES) to compare the molecular landscape of 21 primary & recurrent NCs to five normal cerebellar control samples. WES data was analyzed using the Qiagen Clinical Insight program, variants of interest (VOI) were interrogated using ConSurf, ScoreCons, & Ingenuity Pathway Analysis Software to predict their potential functional effects, and Copy number variations (CNVs) in the genes of interest were analyzed by Genewiz (Azenta Life Sciences). RESULTS Of 40 VOI involving thirty-six genes, 7 were pathogenic, 17 likely-pathogenic, and 16 of uncertain-significance. Of seven pathogenic NC associated variants, Glucosylceramidase beta 1 [GBA1 c.703T > C (p.S235P)] was mutated in 5/21 (24%), Coagulation factor VIII [F8 c.3637dupA (p.I1213fs*28)] in 4/21 (19%), Phenylalanine hydroxylase [PAH c.975C > A (p.Y325*)] in 3/21 (14%), and Fanconi anemia complementation group C [FANCC c.1162G > T (p.G388*)], Chromodomain helicase DNA binding protein 7 [CHD7 c.2839C > T (p.R947*)], Myosin VIIA [MYO7A c.940G > T (p.E314*)] and Dynein axonemal heavy chain 11 [DNAH11 c.3544C > T (p.R1182*)] in 2/21 (9.5%) NCs respectively. CNVs were noted in 85% of these latter 7 genes. Interestingly, a Carboxy-terminal domain RNA polymerase II polypeptide A small phosphatase 2 [CTDSP2 c.472G > A (p.E158K)] of uncertain significance was also found in > 70% of NC cases. INTERPRETATION The variants of interest we identified in the NCs regulate a variety of neurological processes including cilia motility, cell metabolism, immune responses, and DNA damage repair and provide novel insights into the molecular pathogenesis of these extremely rare tumors.
Collapse
Affiliation(s)
- Sapna Khowal
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Dongyun Zhang
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - William H Yong
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA, 92868, USA
| | - Anthony P Heaney
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA.
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
4
|
Vazzana KM, Musolf AM, Bailey-Wilson JE, Hiraki LT, Silverman ED, Scott C, Dalgard CL, Hasni S, Deng Z, Kaplan MJ, Lewandowski LB. Transmission disequilibrium analysis of whole genome data in childhood-onset systemic lupus erythematosus. Genes Immun 2023; 24:200-206. [PMID: 37488248 PMCID: PMC10529982 DOI: 10.1038/s41435-023-00214-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/23/2023] [Accepted: 07/06/2023] [Indexed: 07/26/2023]
Abstract
Childhood-onset systemic lupus erythematosus (cSLE) patients are unique, with hallmarks of Mendelian disorders (early-onset and severe disease) and thus are an ideal population for genetic investigation of SLE. In this study, we use the transmission disequilibrium test (TDT), a family-based genetic association analysis that employs robust methodology, to analyze whole genome sequencing data. We aim to identify novel genetic associations in an ancestrally diverse, international cSLE cohort. Forty-two cSLE patients and 84 unaffected parents from 3 countries underwent whole genome sequencing. First, we performed TDT with single nucleotide variant (SNV)-based (common variants) using PLINK 1.9, and gene-based (rare variants) analyses using Efficient and Parallelizable Association Container Toolbox (EPACTS) and rare variant TDT (rvTDT), which applies multiple gene-based burden tests adapted for TDT, including the burden of rare variants test. Applying the GWAS standard threshold (5.0 × 10-8) to common variants, our SNV-based analysis did not return any genome-wide significant SNVs. The rare variant gene-based TDT analysis identified many novel genes significantly enriched in cSLE patients, including HNRNPUL2, a DNA repair protein, and DNAH11, a ciliary movement protein, among others. Our approach identifies several novel SLE susceptibility genes in an ancestrally diverse childhood-onset lupus cohort.
Collapse
Affiliation(s)
- Kathleen M Vazzana
- Lupus Genomics and Global Health Disparities Unit, Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
- Arnold Palmer Hospital for Children, Orlando, FL, USA
| | - Anthony M Musolf
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Baltimore, MD, 22124, USA
| | - Joan E Bailey-Wilson
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Baltimore, MD, 22124, USA
| | - Linda T Hiraki
- Division of Rheumatology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Earl D Silverman
- Division of Rheumatology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Christiaan Scott
- Paediatric Rheumatology, Red Cross War Memorial Children's Hospital and University of Cape Town, Cape Town, South Africa
| | - Clifton L Dalgard
- The American Genome Center, Department of Anatomy, Physiology & Genetics, Uniformed Services University, Bethesda, MD, USA
| | - Sarfaraz Hasni
- Clinical Program, Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Zuoming Deng
- Biodata Mining and Discovery Section, Office of Science and Technology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mariana J Kaplan
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Laura B Lewandowski
- Lupus Genomics and Global Health Disparities Unit, Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
5
|
Yuan L, Yu X, Xiao H, Deng S, Xia H, Xu H, Yang Y, Deng H. Identification of novel compound heterozygous variants in the DNAH1 gene of a Chinese family with left-right asymmetry disorder. Front Mol Biosci 2023; 10:1190162. [PMID: 37457836 PMCID: PMC10345202 DOI: 10.3389/fmolb.2023.1190162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023] Open
Abstract
Most internal organs in humans and other vertebrates exhibit striking left-right asymmetry in position and structure. Variation of normal organ positioning results in left-right asymmetry disorders and presents as internal organ reversal or randomization. Up to date, at least 82 genes have been identified as the causative genetic factors of left-right asymmetry disorders. This study sought to discover potential pathogenic variants responsible for left-right asymmetry disorder present in a Han-Chinese family using whole exome sequencing combined with Sanger sequencing. Novel compound heterozygous variants, c.5690A>G (p.Asn1897Ser) and c.7759G>A (p.Val2587Met), in the dynein axonemal heavy chain 1 gene (DNAH1), were found in the proband and absent in unaffected family members. Conservation analysis has shown that the variants affect evolutionarily conserved residues, which may impact the tertiary structure of the DNAH1 protein. The novel compound heterozygous variants may potentially bear responsibility for left-right asymmetry disorder, which results from a perturbation of left-right axis coordination at the earliest embryonic development stages. This study broadens the variant spectrum of left-right asymmetry disorders and may be helpful for genetic counseling and healthcare management for the diagnosed individual, and promotes a greater understanding of the pathophysiology.
Collapse
Affiliation(s)
- Lamei Yuan
- Health Management Center, The Third Xiangya Hospital, Central South University, Changsha, China
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
- Disease Genome Research Center, Central South University, Changsha, China
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xuehui Yu
- Health Management Center, The Third Xiangya Hospital, Central South University, Changsha, China
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Heng Xiao
- Health Management Center, The Third Xiangya Hospital, Central South University, Changsha, China
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Sheng Deng
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Hong Xia
- Department of Emergency, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Hongbo Xu
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yan Yang
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Hao Deng
- Health Management Center, The Third Xiangya Hospital, Central South University, Changsha, China
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
- Disease Genome Research Center, Central South University, Changsha, China
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
6
|
Gao Y, Yuan L, Yuan J, Yang Y, Wang J, Chen Y, Zhang H, Ai Y, Deng H. Identification of COL4A4 variants in Chinese patients with familial hematuria. Front Genet 2023; 13:1064491. [PMID: 36699462 PMCID: PMC9868811 DOI: 10.3389/fgene.2022.1064491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 12/15/2022] [Indexed: 01/11/2023] Open
Abstract
Background: Benign familial hematuria and Alport syndrome are common causes of familial hematuria among children and young adults, which are attributable to variants in the collagen type IV alpha chain genes, COL4A3, COL4A4, or COL4A5. The study was conducted to identify the underlying genetic causes in patients with familial hematuria. Methods: Two unrelated Han-Chinese pedigrees with familial hematuria were recruited for this study. Whole exome sequencing was combined with in silico analysis to identify potential genetic variants, followed by variant confirmation by Sanger sequencing. Reverse transcription, PCR, and Sanger sequencing were performed to evaluate the effect of the detected splicing variant on mRNA splicing. Results: A novel heterozygous splicing c.595-1G>A variant and a known heterozygous c.1715G>C variant in the collagen type IV alpha 4 chain gene (COL4A4) were identified and confirmed in patients of pedigree 1 and pedigree 2, respectively. Complementary DNA analysis indicated this splicing variant could abolish the canonical splice acceptor site and cause a single nucleotide deletion of exon 10, which was predicted to produce a truncated protein. Conclusions: The two COL4A4 variants, c.595-1G>A variant and c.1715G>C (p.Gly572Ala) variant, were identified as the genetic etiologies of two families with familial hematuria, respectively. Our study broadened the variant spectrum of the COL4A4 gene and explained the possible pathogenesis, which will benefit clinical management and genetic counseling.
Collapse
Affiliation(s)
- Yanan Gao
- Health Management Center, The Third Xiangya Hospital, Central South University, Changsha, China,Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Lamei Yuan
- Health Management Center, The Third Xiangya Hospital, Central South University, Changsha, China,Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China,Disease Genome Research Center, Central South University, Changsha, China
| | - Jinzhong Yuan
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yan Yang
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jiangang Wang
- Health Management Center, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yong Chen
- National Health Committee Key Laboratory of Birth Defects for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Hao Zhang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yinze Ai
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Hao Deng
- Health Management Center, The Third Xiangya Hospital, Central South University, Changsha, China,Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China,Disease Genome Research Center, Central South University, Changsha, China,*Correspondence: Hao Deng,
| |
Collapse
|
7
|
Huang Y, Yuan L, He G, Cao Y, Deng X, Deng H. Novel compound heterozygous variants in the USH2A gene associated with autosomal recessive retinitis pigmentosa without hearing loss. Front Cell Dev Biol 2023; 11:1129862. [PMID: 36875754 PMCID: PMC9974670 DOI: 10.3389/fcell.2023.1129862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/25/2023] [Indexed: 02/17/2023] Open
Abstract
Background: Retinitis pigmentosa (RP) is a group of progressive inherited retinal dystrophies characterized by the primary degeneration of rod photoreceptors and the subsequent loss of cone photoreceptors because of cell death. It is caused by different mechanisms, including inflammation, apoptosis, necroptosis, pyroptosis, and autophagy. Variants in the usherin gene (USH2A) have been reported in autosomal recessive RP with or without hearing loss. In the present study, we aimed to identify causative variants in a Han-Chinese pedigree with autosomal recessive RP. Methods: A six-member, three-generation Han-Chinese family with autosomal recessive RP was recruited. A full clinical examination, whole exome sequencing, and Sanger sequencing, as well as co-segregation analysis were performed. Results: Three heterozygous variants in the USH2A gene, c.3304C>T (p.Q1102*), c.4745T>C (p.L1582P), and c.14740G>A (p.E4914K), were identified in the proband, which were inherited from parents and transmitted to the daughters. Bioinformatics analysis supported the pathogenicity of the c.3304C>T (p.Q1102*) and c.4745T>C (p.L1582P) variants. Conclusions: Novel compound heterozygous variants in the USH2A gene, c.3304C>T (p.Q1102*) and c.4745T>C (p.L1582P), were identified as the genetic causes of autosomal recessive RP. The findings may enhance the current knowledge of the pathogenesis of USH2A-associated phenotypes, expand the spectrum of the USH2A gene variants, and contribute to improved genetic counseling, prenatal diagnosis, and disease management.
Collapse
Affiliation(s)
- Yanxia Huang
- Health Management Center, The Third Xiangya Hospital, Central South University, Changsha, China.,Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China.,Disease Genome Research Center, Central South University, Changsha, China
| | - Lamei Yuan
- Health Management Center, The Third Xiangya Hospital, Central South University, Changsha, China.,Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China.,Disease Genome Research Center, Central South University, Changsha, China
| | - Guiyun He
- Department of Ophthalmology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Yanna Cao
- Department of Ophthalmology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiong Deng
- Health Management Center, The Third Xiangya Hospital, Central South University, Changsha, China.,Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China.,Disease Genome Research Center, Central South University, Changsha, China
| | - Hao Deng
- Health Management Center, The Third Xiangya Hospital, Central South University, Changsha, China.,Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China.,Disease Genome Research Center, Central South University, Changsha, China.,Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
8
|
Hu K, Wan Y, Lee FT, Chen J, Wang H, Qu H, Chen T, Lu W, Jiang Z, Gao L, Ji X, Sun L, Xiang D. Functional Analysis of an Intronic FBN1 Pathogenic Gene Variant in a Family With Marfan Syndrome. Front Genet 2022; 13:857095. [PMID: 35547258 PMCID: PMC9081721 DOI: 10.3389/fgene.2022.857095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/07/2022] [Indexed: 01/16/2023] Open
Abstract
Marfan syndrome (MFS) is an autosomal dominant connective tissue disorder that canonically affects the ocular, skeletal, and cardiovascular system, in which aortic tear and rupture is the leading cause of death for MFS patients. Genetically, MFS is primarily associated with fibrillin-1 (FBN1) pathogenic variants. However, the disease-causing variant in approximately 10% of patients cannot be identified, partly due to some cryptic mutations that may be missed using routine exonic sequencing, such as non-coding intronic variants that affects the RNA splicing process. We present a 32-year female with typical MFS systemic presentation that reached to a clinical diagnosis according to the revised Ghent nosology. We performed whole-exome sequencing (WES) but the report failed to identify known causal variants when analyzing the exonic sequence. However, further investigation on the exon/intron boundaries of the WES report revealed a candidate intronic variant of the fibrillin 1 (FBN1) gene (c.248-3 C>G) that predicted to affect the RNA splicing process. We conducted minigene splicing analyses and demonstrated that the c.248-3 C>G variant abolished the canonical splicing site of intron 3, leading to activation of two cryptic splicing sites and causing insertion (c.248-1_248-2insAG and c.248-1_248-282ins). Our study not only characterizes an intronic variant to the mutational spectrum of the FBN1 gene in MFS and its aberrant effect on splicing, but highlights the importance to not neglect the exon/intron boundaries when reporting and assessing WES results. We point out the need of conducting functional analysis to verify the pathogenicity of intronic mutation, and the opportunity to re-consider the standard diagnostic approaches in cases of clinically diagnosed MFS with normal or variant of unknown significance genetic results.
Collapse
Affiliation(s)
- Kui Hu
- Department of Cardiovascular Surgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Yun Wan
- Department of Endocrinology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Fu-Tsuen Lee
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Jinmiao Chen
- Department of Cardiovascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hao Wang
- Institute of Precision Medicine, The Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haonan Qu
- Department of Thoracic and Cardiovascular Surgery, The Third People's Hospital of Mianyang City, Mianyang, China
| | - Tao Chen
- Department of Cardiovascular Surgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Wang Lu
- Department of Cardiovascular Surgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Zhenwei Jiang
- Department of Cardiovascular Surgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Lufang Gao
- Department of Cardiovascular Surgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Xiaojuan Ji
- Department of Ultrasound, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Liqun Sun
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Daokang Xiang
- Department of Cardiovascular Surgery, Guizhou Provincial People's Hospital, Guiyang, China
| |
Collapse
|
9
|
Xiong Y, Xia H, Yuan L, Deng S, Ding Z, Deng H. Identification of compound heterozygous DNAH11 variants in a Han-Chinese family with primary ciliary dyskinesia. J Cell Mol Med 2021; 25:9028-9037. [PMID: 34405951 PMCID: PMC8435457 DOI: 10.1111/jcmm.16866] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 07/24/2021] [Accepted: 08/04/2021] [Indexed: 12/13/2022] Open
Abstract
Primary ciliary dyskinesia (PCD) is a group of genetically and clinically heterogeneous disorders with motile cilia dysfunction. It is clinically characterized by oto‐sino‐pulmonary diseases and subfertility, and half of the patients have situs inversus (Kartagener syndrome). To identify the genetic cause in a Han‐Chinese pedigree, whole‐exome sequencing was conducted in the 37‐year‐old proband, and then, Sanger sequencing was performed on available family members. Minigene splicing assay was applied to verify the impact of the splice‐site variant. Compound heterozygous variants including a splice‐site variant (c.1974‐1G>C, rs1359107415) and a missense variant (c.7787G>A, p.(Arg2596Gln), rs780492669), in the dynein axonemal heavy chain 11 gene (DNAH11) were identified and confirmed as the disease‐associated variants of this lineage. The minigene expression in vitro revealed that the c.1974‐1G>C variant could cause skipping over exon 12, predicted to result in a truncated protein. This discovery may enlarge the DNAH11 variant spectrum of PCD, promote accurate genetic counselling and contribute to PCD diagnosis.
Collapse
Affiliation(s)
- Ying Xiong
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Hong Xia
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China.,Department of Emergency, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Lamei Yuan
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China.,Disease Genome Research Center, Central South University, Changsha, China
| | - Sheng Deng
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China.,Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Zerui Ding
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Hao Deng
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China.,Disease Genome Research Center, Central South University, Changsha, China.,Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|