1
|
Bian KJ, Bao X, Li XD, Bonne D, Zou LW. Recent progress of proline endopeptidase ligands and their effects on protein-protein interactions. Chem Biol Interact 2025:111557. [PMID: 40374138 DOI: 10.1016/j.cbi.2025.111557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 05/02/2025] [Accepted: 05/12/2025] [Indexed: 05/17/2025]
Abstract
Proline endopeptidase (PREP), as a serine protease, plays a crucial role in human physiology and pathology, and is intricately linked to the genesis and progression of a spectrum of illnesses. The fluorescent substrates currently used for PREP lack ideal specificity and are unable to specifically detect PREP activity under physiological conditions. This limitation, to some extent, hinders the in-depth investigation of its physiological and pathophysiological functions. Beyond its enzymatic capabilities, PREP's physiological functions extend to the modulation of protein-protein interactions (PPIs), a dimension whose significance is only beginning to be recognized, and investigations into how PREP inhibitors might influence these PPIs remain sparse. Therefore, based on the outline of the distribution and structural characteristics of PREP, this review systematically summarized the structure-activity relationship (SAR) of PREP ligands concerning their potency and specificity, the associated recognition mechanisms, as well as the regulatory impact of PREP ligands on PPIs. Finally, the obstacles and future prospects of PREP ligands were emphasized, in order to provide suggestions and help for the design and development of PREP specific substrates and inhibitors.
Collapse
Affiliation(s)
- Kun-Jie Bian
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
| | - Xiaoze Bao
- College of Pharmaceutical Science and Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, 310014, Hangzhou, China; CNRS, Centrale Med, ISM2, Aix Marseille Univ, 13013, Marseille, France.
| | - Xiao-Dong Li
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
| | - Damien Bonne
- CNRS, Centrale Med, ISM2, Aix Marseille Univ, 13013, Marseille, France
| | - Li-Wei Zou
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China.
| |
Collapse
|
2
|
Kon T, Forrest SL, Lee S, Li J, Chasiotis H, Nassir N, Uddin MJ, Lang AE, Kovacs GG. SNCA and TPPP transcripts increase in oligodendroglial cytoplasmic inclusions in multiple system atrophy. Neurobiol Dis 2024; 198:106551. [PMID: 38839023 DOI: 10.1016/j.nbd.2024.106551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/16/2024] [Accepted: 06/01/2024] [Indexed: 06/07/2024] Open
Abstract
Multiple system atrophy (MSA) is characterized by glial cytoplasmic inclusions (GCIs) containing aggregated α-synuclein (α-syn) in oligodendrocytes. The origin of α-syn accumulation in GCIs is unclear, in particular whether abnormal α-syn aggregates result from the abnormal elevation of endogenous α-syn expression in MSA or ingested from the neuronal source. Tubulin polymerization promoting protein (TPPP) has been reported to play a crucial role in developing GCI pathology. Here, the total cell body, nucleus, and cytoplasmic area density of SNCA and TPPP transcripts in neurons and oligodendrocytes with and without various α-syn pathologies in the pontine base in autopsy cases of MSA (n = 4) and controls (n = 2) were evaluated using RNAscope with immunofluorescence. Single-nucleus RNA-sequencing data for TPPP was evaluated using control frontal cortex (n = 3). SNCA and TPPP transcripts were present in the nucleus and cytoplasm of oligodendrocytes in both controls and diseased, with higher area density in GCIs and glial nuclear inclusions in MSA. Area densities of SNCA and TPPP transcripts were lower in neurons showing cytoplasmic inclusions in MSA. Indeed, TPPP transcripts were unexpectedly found in neurons, while the anti-TPPP antibody failed to detect immunoreactivity. Single-nucleus RNA-sequencing revealed significant TPPP transcript expression predominantly in oligodendrocytes, but also in excitatory and inhibitory neurons. This study addressed the unclear origin of accumulated α-syn in GCIs, proposing that the elevation of SNCA transcripts may supply templates for misfolded α-syn. In addition, the parallel behavior of TPPP and SNCA transcripts in GCI development highlights their potential synergistic contribution to inclusion formation. In conclusion, this study advances our understanding of MSA pathogenesis, offers insights into the dynamics of SNCA and TPPP transcripts in inclusion formation, and proposes regulating their transcripts for future molecular therapy to MSA.
Collapse
Affiliation(s)
- Tomoya Kon
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON, Canada; Department of Neurology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan.
| | - Shelley L Forrest
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON, Canada; Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia; Laboratory Medicine Program and Krembil Brain Institute, University Health Network, Toronto, ON, Canada.
| | - Seojin Lee
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
| | - Jun Li
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON, Canada.
| | - Helen Chasiotis
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON, Canada.
| | - Nasna Nassir
- Centre for Applied and Translational Genomics, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates.
| | - Mohammed J Uddin
- Centre for Applied and Translational Genomics, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates; GenomeArc Inc, Toronto, ON, Canada.
| | - Anthony E Lang
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON, Canada; Edmund J Safra Program in Parkinson's Disease and Rossy Progressive Supranuclear Palsy Centre, Toronto Western Hospital, Toronto, ON, Canada; Department of Medicine, Division of Neurology, University of Toronto, Toronto, ON, Canada.
| | - Gabor G Kovacs
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON, Canada; Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia; Laboratory Medicine Program and Krembil Brain Institute, University Health Network, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Edmund J Safra Program in Parkinson's Disease and Rossy Progressive Supranuclear Palsy Centre, Toronto Western Hospital, Toronto, ON, Canada; Department of Medicine, Division of Neurology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
3
|
Oláh J, Norris V, Lehotzky A, Ovádi J. Perspective Strategies for Interventions in Parkinsonism: Remedying the Neglected Role of TPPP. Cells 2024; 13:338. [PMID: 38391951 PMCID: PMC10886726 DOI: 10.3390/cells13040338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/31/2024] [Accepted: 02/12/2024] [Indexed: 02/24/2024] Open
Abstract
Neurological disorders such as Parkinsonism cause serious socio-economic problems as there are, at present, only therapies that treat their symptoms. The well-established hallmark alpha-synuclein (SYN) is enriched in the inclusion bodies characteristic of Parkinsonism. We discovered a prominent partner of SYN, termed Tubulin Polymerization Promoting Protein (TPPP), which has important physiological and pathological activities such as the regulation of the microtubule network and the promotion of SYN aggregation. The role of TPPP in Parkinsonism is often neglected in research, which we here attempt to remedy. In the normal brain, SYN and TPPP are expressed endogenously in neurons and oligodendrocytes, respectively, whilst, at an early stage of Parkinsonism, soluble hetero-associations of these proteins are found in both cell types. The cell-to-cell transmission of these proteins, which is central to disease progression, provides a unique situation for specific drug targeting. Different strategies for intervention and for the discovery of biomarkers include (i) interface targeting of the SYN-TPPP hetero-complex; (ii) proteolytic degradation of SYN and/or TPPP using the PROTAC technology; and (iii) depletion of the proteins by miRNA technology. We also discuss the potential roles of SYN and TPPP in the phenotype stabilization of neurons and oligodendrocytes.
Collapse
Affiliation(s)
- Judit Oláh
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (A.L.); (J.O.)
| | - Vic Norris
- Laboratory of Bacterial Communication and Anti-Infection Strategies, EA 4312, University of Rouen, 76821 Mont Saint Aignan, France;
| | - Attila Lehotzky
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (A.L.); (J.O.)
| | - Judit Ovádi
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (A.L.); (J.O.)
| |
Collapse
|
4
|
Han S, Wang S, Fan X, Chen M, Wang X, Huang Y, Zhang H, Ma Y, Wang J, Zhang C. Abnormal Expression of Prolyl Oligopeptidase (POP) and Its Catalytic Products Ac-SDKP Contributes to the Ovarian Fibrosis Change in Polycystic Ovary Syndrome (PCOS) Mice. Biomedicines 2023; 11:1927. [PMID: 37509566 PMCID: PMC10377061 DOI: 10.3390/biomedicines11071927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/28/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is an endocrine disorder and metabolic syndrome. Ovarian fibrosis pathological change in PCOS has gradually attracted people's attention. In this study, we constructed a PCOS mouse model through the use of dehydroepiandrosterone. Sirius red staining showed that the ovarian tissues in PCOS mice had obvious fibrosis. Prolyl oligopeptidase (POP) is a serine protease and N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) is its catalytic product. Studies show that abnormal expression and activity of POP and Ac-SDKP are closely related to tissue fibrosis. It was found that the expression of POP and Ac-SDKP was decreased in the ovaries of PCOS mice. Further studies showed that POP and Ac-SDKP promoted the expression of matrix metalloproteinases 2 (MMP-2) expression and decreased the expression of transforming growth factor beta 1 (TGF-β1) in granulosa cells. Hyperandrogenemia is a typical symptom of PCOS. We found that testosterone induced the low expression of POP and MMP2 and high expression of TGF-β1 in granulosa cells. POP overexpression and Ac-SDKP treatment inhibited the effect of testosterone on TGF-β1 and MMP2 in vitro and inhibited ovarian fibrosis in the PCOS mouse model. In conclusion, PCOS ovarian tissue showed obvious fibrosis. Low expression of POP and Ac-SDKP and changes in fibrotic factors contribute to the ovarian pathological fibrosis induced by androgen.
Collapse
Affiliation(s)
- Suo Han
- Department of Cell Biology, College of Medicine, Nanchang University, Nanchang 330006, China
- Center for Drug Inspection of Guizhou Medical Products Administration, Guizhou Medical Products Administration, Guiyang 550081, China
| | - Shimeng Wang
- Department of Cell Biology, College of Medicine, Nanchang University, Nanchang 330006, China
| | - Xiang Fan
- Department of Cell Biology, College of Medicine, Nanchang University, Nanchang 330006, China
| | - Mengchi Chen
- Department of Cell Biology, College of Medicine, Nanchang University, Nanchang 330006, China
| | - Xiaojie Wang
- Department of Cell Biology, College of Medicine, Nanchang University, Nanchang 330006, China
| | - Yingtong Huang
- Department of Cell Biology, College of Medicine, Nanchang University, Nanchang 330006, China
| | - Hongdan Zhang
- Department of Cell Biology, College of Medicine, Nanchang University, Nanchang 330006, China
| | - Yinyin Ma
- Department of Cell Biology, College of Medicine, Nanchang University, Nanchang 330006, China
| | - Jing Wang
- Department of Microbiology, College of Medicine, Nanchang University, Nanchang 330006, China
| | - Chunping Zhang
- Department of Cell Biology, College of Medicine, Nanchang University, Nanchang 330006, China
| |
Collapse
|
5
|
The Potential of Flavonoids and Flavonoid Metabolites in the Treatment of Neurodegenerative Pathology in Disorders of Cognitive Decline. Antioxidants (Basel) 2023; 12:antiox12030663. [PMID: 36978911 PMCID: PMC10045397 DOI: 10.3390/antiox12030663] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 03/11/2023] Open
Abstract
Flavonoids are a biodiverse family of dietary compounds that have antioxidant, anti-inflammatory, antiviral, and antibacterial cell protective profiles. They have received considerable attention as potential therapeutic agents in biomedicine and have been widely used in traditional complimentary medicine for generations. Such complimentary medical herbal formulations are extremely complex mixtures of many pharmacologically active compounds that provide a therapeutic outcome through a network pharmacological effects of considerable complexity. Methods are emerging to determine the active components used in complimentary medicine and their therapeutic targets and to decipher the complexities of how network pharmacology provides such therapeutic effects. The gut microbiome has important roles to play in the generation of bioactive flavonoid metabolites retaining or exceeding the antioxidative and anti-inflammatory properties of the intact flavonoid and, in some cases, new antitumor and antineurodegenerative bioactivities. Certain food items have been identified with high prebiotic profiles suggesting that neutraceutical supplementation may be beneficially employed to preserve a healthy population of bacterial symbiont species and minimize the establishment of harmful pathogenic organisms. Gut health is an important consideration effecting the overall health and wellbeing of linked organ systems. Bioconversion of dietary flavonoid components in the gut generates therapeutic metabolites that can also be transported by the vagus nerve and systemic circulation to brain cell populations to exert a beneficial effect. This is particularly important in a number of neurological disorders (autism, bipolar disorder, AD, PD) characterized by effects on moods, resulting in depression and anxiety, impaired motor function, and long-term cognitive decline. Native flavonoids have many beneficial properties in the alleviation of inflammation in tissues, however, concerns have been raised that therapeutic levels of flavonoids may not be achieved, thus allowing them to display optimal therapeutic effects. Dietary manipulation and vagal stimulation have both yielded beneficial responses in the treatment of autism spectrum disorders, depression, and anxiety, establishing the vagal nerve as a route of communication in the gut-brain axis with established roles in disease intervention. While a number of native flavonoids are beneficial in the treatment of neurological disorders and are known to penetrate the blood–brain barrier, microbiome-generated flavonoid metabolites (e.g., protocatechuic acid, urolithins, γ-valerolactones), which retain the antioxidant and anti-inflammatory potency of the native flavonoid in addition to bioactive properties that promote mitochondrial health and cerebrovascular microcapillary function, should also be considered as potential biotherapeutic agents. Studies are warranted to experimentally examine the efficacy of flavonoid metabolites directly, as they emerge as novel therapeutic options.
Collapse
|
6
|
Pathogenic Aspects and Therapeutic Avenues of Autophagy in Parkinson's Disease. Cells 2023; 12:cells12040621. [PMID: 36831288 PMCID: PMC9954720 DOI: 10.3390/cells12040621] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/07/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023] Open
Abstract
The progressive aging of the population and the fact that Parkinson's disease currently does not have any curative treatment turn out to be essential issues in the following years, where research has to play a critical role in developing therapy. Understanding this neurodegenerative disorder keeps advancing, proving the discovery of new pathogenesis-related genes through genome-wide association analysis. Furthermore, the understanding of its close link with the disruption of autophagy mechanisms in the last few years permits the elaboration of new animal models mimicking, through multiple pathways, different aspects of autophagic dysregulation, with the presence of pathological hallmarks, in brain regions affected by Parkinson's disease. The synergic advances in these fields permit the elaboration of multiple therapeutic strategies for restoring autophagy activity. This review discusses the features of Parkinson's disease, the autophagy mechanisms and their involvement in pathogenesis, and the current methods to correct this cellular pathway, from the development of animal models to the potentially curative treatments in the preclinical and clinical phase studies, which are the hope for patients who do not currently have any curative treatment.
Collapse
|
7
|
Casili G, Ardizzone A, Basilotta R, Lanza M, Filippone A, Paterniti I, Esposito E, Campolo M. The Protective Role of Prolyl Oligopeptidase (POP) Inhibition in Kidney Injury Induced by Renal Ischemia-Reperfusion. Int J Mol Sci 2021; 22:11886. [PMID: 34769337 PMCID: PMC8584363 DOI: 10.3390/ijms222111886] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/28/2021] [Accepted: 10/28/2021] [Indexed: 12/18/2022] Open
Abstract
Ischemia/reperfusion injury (IRI) is a complex pathophysiological process characterized by blood circulation disorder caused by various factors, such as traumatic shock, surgery, organ transplantation, and thrombus. Severe metabolic dysregulation and tissue structure destruction are observed upon restoration of blood flow to the ischemic tissue. The kidney is a highly perfused organ, sensitive to ischemia and reperfusion injury, and the incidence of renal IRI has high morbidity and mortality. Several studies showed that infiltration of inflammatory cells, apoptosis, and angiogenesis are important mechanisms involved in renal IRI. Despite advances in research, effective therapies for renal IRI are lacking. Recently it has been demonstrated the role of KYP2047, a selective inhibitor of prolyl oligopeptidase (POP), in the regulation of inflammation, apoptosis, and angiogenesis. Thus, this research focused on the role of POP in kidney ischemia/reperfusion (KI/R). An in vivo model of KI/R was performed and mice were subjected to KYP2047 treatment (intraperitoneal, 0.5, 1 and 5 mg/kg). Histological analysis, Masson's trichrome and periodic acid shift (PAS) staining, immunohistochemical and Western blots analysis, real-time PCR (RT-PCR) and ELISA were performed on kidney samples. Moreover, serum creatinine and blood urea nitrogen (BUN) were quantified. POP-inhibition by KYP2047 treatment, only at the doses of 1 and 5 mg/kg, significantly reduced renal injury and collagen amount, regulated inflammation through canonical and non-canonical NF-κB pathway, and restored renal function. Moreover, KYP2047 modulated angiogenesis markers, such as TGF-β and VEGF, also slowing down apoptosis. Interestingly, treatment with KYP2047 modulated PP2A activity. Thus, these findings clarified the role of POP inhibition in AKI, also offering novel therapeutic target for renal injury after KI/R.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 31-98166 Messina, Italy; (G.C.); (A.A.); (R.B.); (M.L.); (A.F.); (I.P.); (M.C.)
| | | |
Collapse
|
8
|
Cui H, Kilpeläinen T, Zouzoula L, Auno S, Trontti K, Kurvonen S, Norrbacka S, Hovatta I, Jensen PH, Myöhänen TT. Prolyl oligopeptidase inhibition reduces alpha-synuclein aggregation in a cellular model of multiple system atrophy. J Cell Mol Med 2021; 25:9634-9646. [PMID: 34486218 PMCID: PMC8505845 DOI: 10.1111/jcmm.16910] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 12/16/2022] Open
Abstract
Multiple system atrophy (MSA) is a fatal neurodegenerative disease where the histopathological hallmark is glial cytoplasmic inclusions in oligodendrocytes, rich of aggregated alpha‐synuclein (aSyn). Therefore, therapies targeting aSyn aggregation and toxicity have been studied as a possible disease‐modifying therapy for MSA. Our earlier studies show that inhibition of prolyl oligopeptidase (PREP) with KYP‐2047 reduces aSyn aggregates in several models. Here, we tested the effects of KYP‐2047 on a MSA cellular models, using rat OLN‐AS7 and human MO3.13 oligodendrocyte cells. As translocation of p25α to cell cytosol has been identified as an inducer of aSyn aggregation in MSA models, the cells were transiently transfected with p25α. Similar to earlier studies, p25α increased aSyn phosphorylation and aggregation, and caused tubulin retraction and impaired autophagy in OLN‐AS7 cells. In both cellular models, p25α transfection increased significantly aSyn mRNA levels and also increased the levels of inactive protein phosphatase 2A (PP2A). However, aSyn or p25α did not cause any cellular death in MO3.13 cells, questioning their use as a MSA model. Simultaneous administration of 10 µM KYP‐2047 improved cell viability, decreased insoluble phosphorylated aSyn and normalized autophagy in OLN‐AS7 cells but similar impact was not seen in MO3.13 cells.
Collapse
Affiliation(s)
- Hengjing Cui
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, University of Helsinki, Helsinki, Finland
| | - Tommi Kilpeläinen
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, University of Helsinki, Helsinki, Finland
| | - Lydia Zouzoula
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, University of Helsinki, Helsinki, Finland
| | - Samuli Auno
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, University of Helsinki, Helsinki, Finland
| | - Kalevi Trontti
- SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland.,Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Sampo Kurvonen
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, University of Helsinki, Helsinki, Finland
| | - Susanna Norrbacka
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, University of Helsinki, Helsinki, Finland
| | - Iiris Hovatta
- SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland.,Neuroscience Center, University of Helsinki, Helsinki, Finland
| | | | - Timo T Myöhänen
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, University of Helsinki, Helsinki, Finland.,Integrative Physiology and Pharmacology Unit, Institute of Biomedicine, University of Turku, Turku, Finland.,School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|