1
|
Xia J, Peng Z, Zhang M, Liao Q, Liu C, Deng X. MicroRNA-429 overexpression overcomes imatinib resistance of glioma cells by negatively regulating lysophosphatidic acid receptor 1. Neurol Res 2024; 46:1149-1159. [PMID: 39531542 DOI: 10.1080/01616412.2024.2423586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Glioma is one of the most aggressive and lethal malignancies in central nervous system. It has been reported that miR-429 is declined in glioma and functions as a tumor suppressor. Nonetheless, the potential role of miR-429 in drug resistance of glioma is still ambiguous. METHODS Stable imatinib-resistant lines U251-AR and T98G-AR were established using glioma cell lines U251 and T98G. Cell apoptosis and cycle were analyzed by flow cytometry, and CCK-8 assay was utilized to measure cell viability. Protein and RNA levels were tested with western blot and RT-qPCR. The predicted binding site was confirmed by dual luciferase reporter assay. RESULTS Imatinib-resistant U251-AR and T98G-AR cells presented lower level of miR-429 and higher level of LPAR1. MiR-429 overexpression obviously promoted imatinib sensitivity in glioma cells, indicated by the reduced IC50 value, facilitated cell apoptosis and cell cycle arrest at G0/G1 phase, and downregulated multidrug resistance-related proteins. LPAR1 was verified as a direct target of miR-429 and its expression was negatively regulated by miR-429. Additionally, overexpression of LPAR1 restrained the biological function of miR-429 on imatinib chemoresistance. CONCLUSION MiR-429 partly sensitized glioma cells to imatinib via downregulation LPAR1, which might provide an approach to overcome imatinib chemoresistance during glioma treatment.
Collapse
Affiliation(s)
- Jieyao Xia
- Department of Neurosurgery, The First Affiliated Hospital of Shaoyang University, Shaoyang, Hunan, P.R. China
| | - Zhengyang Peng
- Department of Neurosurgery, The First Affiliated Hospital of Shaoyang University, Shaoyang, Hunan, P.R. China
| | - Meina Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Shaoyang University, Shaoyang, Hunan, P.R. China
| | - Qiongqiong Liao
- Department of Neurosurgery, The First Affiliated Hospital of Shaoyang University, Shaoyang, Hunan, P.R. China
| | - Chubao Liu
- Department of Neurosurgery, The First Affiliated Hospital of Shaoyang University, Shaoyang, Hunan, P.R. China
| | - Xiong Deng
- Department of Neurosurgery, The First Affiliated Hospital of Shaoyang University, Shaoyang, Hunan, P.R. China
| |
Collapse
|
2
|
Nasimi Shad A, Akhlaghipour I, Alshakarchi HI, Saburi E, Moghbeli M. Role of microRNA-363 during tumor progression and invasion. J Physiol Biochem 2024; 80:481-499. [PMID: 38691273 DOI: 10.1007/s13105-024-01022-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/05/2024] [Indexed: 05/03/2024]
Abstract
Recent progresses in diagnostic and therapeutic methods have significantly improved prognosis in cancer patients. However, cancer is still considered as one of the main causes of human deaths in the world. Late diagnosis in advanced tumor stages can reduce the effectiveness of treatment methods and increase mortality rate of cancer patients. Therefore, investigating the molecular mechanisms of tumor progression can help to introduce the early diagnostic markers in these patients. MicroRNA (miRNAs) has an important role in regulation of pathophysiological cellular processes. Due to their high stability in body fluids, they are always used as the non-invasive markers in cancer patients. Since, miR-363 deregulation has been reported in a wide range of cancers, we discussed the role of miR-363 during tumor progression and metastasis. It has been reported that miR-363 has mainly a tumor suppressor function through the regulation of transcription factors, apoptosis, cell cycle, and structural proteins. MiR-363 also affected the tumor progression via regulation of various signaling pathways such as WNT, MAPK, TGF-β, NOTCH, and PI3K/AKT. Therefore, miR-363 can be introduced as a probable therapeutic target as well as a non-invasive diagnostic marker in cancer patients.
Collapse
Affiliation(s)
- Arya Nasimi Shad
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Iman Akhlaghipour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hawraa Ibrahim Alshakarchi
- Al-Zahra Center for Medical and Pharmaceutical Research Sciences (ZCMRS), Al-Zahraa University for Women, Karbala, Iraq
| | - Ehsan Saburi
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Lu E, Zhao B, Yuan C, Liang Y, Wang X, Yang G. Novel cancer-fighting role of ticagrelor inhibits GTSE1-induced EMT by regulating PI3K/Akt/NF-κB signaling pathway in malignant glioma. Heliyon 2024; 10:e30833. [PMID: 38774096 PMCID: PMC11107102 DOI: 10.1016/j.heliyon.2024.e30833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/21/2024] [Accepted: 05/06/2024] [Indexed: 05/24/2024] Open
Abstract
Background Glioma is the most common malignant brain tumor of the central nervous system. Despite of the improvement of therapeutic strategy, the prognosis of malignant glioma patients underwent by STUPP strategy is still unexpected. Previous studies have suggested that ticagrelor exerted chemotherapeutic effects by inhibition of epithelial-mesenchymal transition (EMT) in various diseases including tumors. However, whether ticagrelor can exhibit the antitumor efficiency in glioma by affecting the EMT process is still unclear. In this study, we investigated the cancer-fighting role of ticagrelor and demonstrated its chemotherapeutic mechanism in glioma. Materials and methods The MTT assay was performed to detect the cytotoxicity of ticagrelor in glioma cells. We evaluated the expression of Ki67 in glioma cells by immunofluorescence assay after ticagrelor treatment. We conducted wound healing assay and transwell assay to determine the effects of ticagrelor on the migration and invasion of glioma cells. RNA-seq analysis was conducted to examine potential target genes and alternative signaling pathways for ticagrelor treatment. The expression levels of key EMT -related proteins were examined by Western blot experiment. Results Ticagrelor inhibited the proliferation, migration and invasion of glioma cells with a favorable toxicity profile in vitro. Ticagrelor downregulated the expression of GTSE1 in glioma cells. RNA-seq analysis explored that GTSE1 acted as the potential target gene for ticagrelor treatment. Upregulation of GTSE1 antagonized the inhibitory effect of ticagrelor on the invasion of glioma and EMT progression by regulation of PI3K/Akt/NF-κB signaling pathway. And ticagrelor also exhibited the similar chemotherapeutic effect of glioma in vivo. Conclusions Ticagrelor as a potential chemotherapeutic option induced the inhibition of the GTSE1-induced EMT progression by regulation of PI3K/AKT/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Enzhou Lu
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, China
- Heilongjiang Province Neuroscience Institute, Harbin, China
| | - Boxian Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, China
- Heilongjiang Province Neuroscience Institute, Harbin, China
| | - Chao Yuan
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, China
- Heilongjiang Province Neuroscience Institute, Harbin, China
| | - Yanchao Liang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, China
- Heilongjiang Province Neuroscience Institute, Harbin, China
| | - Xiaoxiong Wang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, China
- Heilongjiang Province Neuroscience Institute, Harbin, China
| | - Guang Yang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, China
- Heilongjiang Province Neuroscience Institute, Harbin, China
| |
Collapse
|
4
|
Erhart F, Widhalm G, Kiesel B, Hackl M, Diendorfer A, Preusser M, Rössler K, Thaler J, Pabinger I, Ay C, Riedl J. The plasma miRNome and venous thromboembolism in high-grade glioma: miRNA Sequencing of a nested case-control cohort. J Cell Mol Med 2024; 28:e18149. [PMID: 38613361 PMCID: PMC11015389 DOI: 10.1111/jcmm.18149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/31/2023] [Accepted: 01/05/2024] [Indexed: 04/14/2024] Open
Abstract
Patients with high-grade gliomas are at high risk of venous thromboembolism (VTE). MicroRNAs (miRNAs) are small non-coding RNAs with multiple roles in tumour biology, haemostasis and platelet function. Their association with VTE risk in high-grade glioma has not been comprehensively mapped so far. We thus conducted a nested case-control study within 152 patients with WHO grade IV glioma that had been part of a prospective cohort study on VTE risk factors. At inclusion a single blood draw was taken, and patients were thereafter followed for a maximum of 2 years. During that time, 24 patients (16%) developed VTE. Of the other 128 patients, we randomly selected 24 age- and sex-matched controls. After quality control, the final group size was 21 patients with VTE during follow-up and 23 without VTE. Small RNA next-generation sequencing of plasma was performed. We observed that hsa-miR-451a was globally the most abundant miRNA. Notably, 51% of all miRNAs showed a correlation with platelet count. The analysis of miRNAs differentially regulated in VTE patients-with and without platelet adjustment-identified potential VTE biomarker candidates such as has-miR-221-3p. Therewith, we here provide one of the largest and deepest peripheral blood miRNA datasets of high-grade glioma patients so far, in which we identified first VTE biomarker candidates that can serve as the starting point for future research.
Collapse
Affiliation(s)
- Friedrich Erhart
- Department of NeurosurgeryMedical University of ViennaViennaAustria
| | - Georg Widhalm
- Department of NeurosurgeryMedical University of ViennaViennaAustria
| | - Barbara Kiesel
- Department of NeurosurgeryMedical University of ViennaViennaAustria
| | | | | | - Matthias Preusser
- Clinical Division of OncologyDepartment of Medicine IMedical University of ViennaViennaAustria
| | - Karl Rössler
- Department of NeurosurgeryMedical University of ViennaViennaAustria
| | - Johannes Thaler
- Clinical Division of Haematology and HaemostaseologyDepartment of Medicine IMedical University of ViennaViennaAustria
| | - Ingrid Pabinger
- Clinical Division of Haematology and HaemostaseologyDepartment of Medicine IMedical University of ViennaViennaAustria
| | - Cihan Ay
- Clinical Division of Haematology and HaemostaseologyDepartment of Medicine IMedical University of ViennaViennaAustria
| | - Julia Riedl
- Clinical Division of Haematology and HaemostaseologyDepartment of Medicine IMedical University of ViennaViennaAustria
| |
Collapse
|
5
|
Zhang J, Ren G, Huang T, Sang Y, Zhong Y, Yi Y. miRNA-363-3p Hinders Proliferation, Migration, Invasion and Autophagy of Thyroid Cancer Cells by Controlling SYT1 Transcription to affect NF-κB. Endocr Metab Immune Disord Drug Targets 2024; 24:153-162. [PMID: 37150983 DOI: 10.2174/1871530323666230504112553] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/28/2023] [Accepted: 03/10/2023] [Indexed: 05/09/2023]
Abstract
BACKGROUND Thyroid cancer (TC) is a frequent endocrine malignant tumor with various pathologic types. miRNA-363-3p plays a pivotal part in the occurrence, development, prognosis, and treatment of cancer. OBJECTIVE To explore the mechanism of miRNA-363-3p in TC and provide a new idea for targeted therapy of TC. METHODS Differential miRNAs and downstream target mRNAs in TC tissues were predicted with bioinformatics analysis. Expression levels of miRNA-363-3p and Synaptotagmin I (SYT1) in TC cells were ascertained by qRT-PCR. Cell migration, invasion, and proliferation were detected by wound healing assay, transwell assay, colony formation assay, CCK-8, and BrdU fluorescence experiment, respectively. Flow cytometry was utilized to detect the levels of apoptosis and necrosis. Immunofluorescence assay was used for detecting autophagosome formation in cells, and the expression levels of autophagy-related proteins, as well as NF-κB related proteins, were measured by western blot. Dual-luciferase reporter gene assay was applied for detecting the interaction between miRNA-363-3p and SYT1. RESULTS miRNA-363-3p was prominently down-regulated in TC cells. miRNA-363-3p overexpression suppressed migration, invasion, and proliferation, promoting apoptosis and necrosis of TC cells. As the downstream target of miRNA-363-3p, SYT1 was up-regulated in TC cells. SYT1 overexpression reversed the inhibition of TC cell proliferation, invasion, migration, and autophagy mediated by miRNA-363-3p overexpression. In addition, miRNA-363-3p overexpression inhibited the activation of the NF-κB pathway in cells, while further overexpression of SYT1 weakened the inhibition of miRNA-363-3p overexpression on the NF-κB pathway. CONCLUSION miRNA-363-3p affected the NF-κB signaling pathway by down-regulating SYT1 expression to inhibit the malignant progression of TC cells, providing theoretical support for the treatment of TC.
Collapse
Affiliation(s)
- Jizong Zhang
- Department of General Surgery, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing City, Jiangsu Province, 210009, China
| | - Guanghui Ren
- Department of General Surgery, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing City, Jiangsu Province, 210009, China
| | - Tao Huang
- Department of General Surgery, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing City, Jiangsu Province, 210009, China
| | - Yiming Sang
- Department of General Surgery, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing City, Jiangsu Province, 210009, China
| | - Yan Zhong
- Department of General Surgery, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing City, Jiangsu Province, 210009, China
| | - Yongxiang Yi
- Department of General Surgery, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing City, Jiangsu Province, 210009, China
| |
Collapse
|
6
|
Turchi L, Sakakini N, Saviane G, Polo B, Saurty-Seerunghen MS, Gabut M, Gouillou CA, Guerlais V, Pasquier C, Vignais ML, Almairac F, Chneiweiss H, Junier MP, Burel-Vandenbos F, Virolle T. CELF2 Sustains a Proliferating/OLIG2+ Glioblastoma Cell Phenotype via the Epigenetic Repression of SOX3. Cancers (Basel) 2023; 15:5038. [PMID: 37894405 PMCID: PMC10605641 DOI: 10.3390/cancers15205038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/23/2023] [Accepted: 08/10/2023] [Indexed: 10/29/2023] Open
Abstract
Glioblastomas (GBs) are incurable brain tumors. The persistence of aggressive stem-like tumor cells after cytotoxic treatments compromises therapeutic efficacy, leading to GBM recurrence. Forcing the GBM cells to irreversibly abandon their aggressive stem-like phenotype may offer an alternative to conventional cytotoxic treatments. Here, we show that the RNA binding protein CELF2 is strongly expressed in mitotic and OLIG2-positive GBM cells, while it is downregulated in differentiated and non-mitotic cells by miR-199a-3p, exemplifying GBM intra-tumor heterogeneity. Using patient-derived cells and human GBM samples, we demonstrate that CELF2 plays a key role in maintaining the proliferative/OLIG2 cell phenotype with clonal and tumorigenic properties. Indeed, we show that CELF2 deficiency in patient-derived GSCs drastically reduced tumor growth in the brains of nude mice. We further show that CELF2 promotes TRIM28 and G9a expression, which drive a H3K9me3 epigenetic profile responsible for the silencing of the SOX3 gene. Thus, CELF2, which is positively correlated with OLIG2 and Ki67 expression in human GBM samples, is inversely correlated with SOX3 and miR-199a-3p. Accordingly, the invalidation of SOX3 in CELF2-deficient patient-derived cells rescued proliferation and OLIG2 expression. Finally, patients expressing SOX3 above the median level of expression tend to have a longer life expectancy. CELF2 is therefore a crucial target for the malignant potential of GBM and warrants attention when developing novel anticancer strategies.
Collapse
Affiliation(s)
- Laurent Turchi
- CNRS, INSERM, Institut de Biologie Valrose, Team INSERM “Cancer Stem Cell Plasticity and Functional Intra-tumor Heterogeneity”, Université Côte D’Azur, 06107 Nice, France; (L.T.); (N.S.); (G.S.); (B.P.); (F.A.); (F.B.-V.)
- DRCI, CHU de Nice, 06107 Nice, France
| | - Nathalie Sakakini
- CNRS, INSERM, Institut de Biologie Valrose, Team INSERM “Cancer Stem Cell Plasticity and Functional Intra-tumor Heterogeneity”, Université Côte D’Azur, 06107 Nice, France; (L.T.); (N.S.); (G.S.); (B.P.); (F.A.); (F.B.-V.)
| | - Gaelle Saviane
- CNRS, INSERM, Institut de Biologie Valrose, Team INSERM “Cancer Stem Cell Plasticity and Functional Intra-tumor Heterogeneity”, Université Côte D’Azur, 06107 Nice, France; (L.T.); (N.S.); (G.S.); (B.P.); (F.A.); (F.B.-V.)
| | - Béatrice Polo
- CNRS, INSERM, Institut de Biologie Valrose, Team INSERM “Cancer Stem Cell Plasticity and Functional Intra-tumor Heterogeneity”, Université Côte D’Azur, 06107 Nice, France; (L.T.); (N.S.); (G.S.); (B.P.); (F.A.); (F.B.-V.)
| | - Mirca Saras Saurty-Seerunghen
- CNRS UMR8246, INSERM U1130, Neuroscience Paris Seine-IBPS Laboratory, Team Glial Plasticity and NeuroOncology, Sorbonne Université, 75252 Paris, France; (M.S.S.-S.); (H.C.); (M.-P.J.)
| | - Mathieu Gabut
- Stemness in Gliomas Laboratory, Cancer Initiation and Tumoral Cell Identity (CITI) Department, INSERM 1052, CNRS 5286, Centre Léon Bérard, 69008 Lyon, France;
- Cancer Research Center of Lyon 1, Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
| | | | - Vincent Guerlais
- CNRS, I3S, Université Côte d’Azur, 06560 Valbonne, France; (V.G.); (C.P.)
| | - Claude Pasquier
- CNRS, I3S, Université Côte d’Azur, 06560 Valbonne, France; (V.G.); (C.P.)
| | - Marie Luce Vignais
- CNRS, INSERM, Institut de Génomique Fonctionnelle, IGF, Université de Montpellier, 34090 Montpellier, France;
| | - Fabien Almairac
- CNRS, INSERM, Institut de Biologie Valrose, Team INSERM “Cancer Stem Cell Plasticity and Functional Intra-tumor Heterogeneity”, Université Côte D’Azur, 06107 Nice, France; (L.T.); (N.S.); (G.S.); (B.P.); (F.A.); (F.B.-V.)
- Service de Neurochirurgie, Hôpital Pasteur, CHU de Nice, 06107 Nice, France
| | - Hervé Chneiweiss
- CNRS UMR8246, INSERM U1130, Neuroscience Paris Seine-IBPS Laboratory, Team Glial Plasticity and NeuroOncology, Sorbonne Université, 75252 Paris, France; (M.S.S.-S.); (H.C.); (M.-P.J.)
| | - Marie-Pierre Junier
- CNRS UMR8246, INSERM U1130, Neuroscience Paris Seine-IBPS Laboratory, Team Glial Plasticity and NeuroOncology, Sorbonne Université, 75252 Paris, France; (M.S.S.-S.); (H.C.); (M.-P.J.)
| | - Fanny Burel-Vandenbos
- CNRS, INSERM, Institut de Biologie Valrose, Team INSERM “Cancer Stem Cell Plasticity and Functional Intra-tumor Heterogeneity”, Université Côte D’Azur, 06107 Nice, France; (L.T.); (N.S.); (G.S.); (B.P.); (F.A.); (F.B.-V.)
- Service d’Anatomopathologie, Hôpital Pasteur, CHU de Nice, 06107 Nice, France
| | - Thierry Virolle
- CNRS, INSERM, Institut de Biologie Valrose, Team INSERM “Cancer Stem Cell Plasticity and Functional Intra-tumor Heterogeneity”, Université Côte D’Azur, 06107 Nice, France; (L.T.); (N.S.); (G.S.); (B.P.); (F.A.); (F.B.-V.)
| |
Collapse
|
7
|
Li J, Xian L, Zhu Z, Wang Y, Zhang W, Zheng R, Xue W, Li J. Role of CELF2 in ferroptosis: Potential targets for cancer therapy (Review). Int J Mol Med 2023; 52:88. [PMID: 37594127 PMCID: PMC10500222 DOI: 10.3892/ijmm.2023.5291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/19/2023] [Indexed: 08/19/2023] Open
Abstract
Ferroptosis is a novel form of regulated cellular necrosis that plays a critical role in promoting cancer progression and developing drug resistance. The main characteristic of ferroptosis is iron‑dependent lipid peroxidation caused by excess intracellular levels of reactive oxygen species. CUGBP ELAV‑like family number 2 (CELF2) is an RNA‑binding protein that is downregulated in various types of cancer and is associated with poor patient prognoses. CELF2 can directly bind mRNA to a variety of ferroptosis control factors; however, direct evidence of the regulatory role of CELF2 in ferroptosis is currently limited. The aim of the present review was to summarise the findings of previous studies on CELF2 and its role in regulating cellular redox homeostasis. The present review may provide insight into the possible mechanisms through which CELF2 affects ferroptosis and to provide recommendations for future studies.
Collapse
Affiliation(s)
- Jiahao Li
- Department of Interventional Therapy, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Lei Xian
- Department of Interventional Therapy, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Zifeng Zhu
- Department of Interventional Therapy, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yang Wang
- Department of Interventional Therapy, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Wenlei Zhang
- Department of Interventional Therapy, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Ruipeng Zheng
- Department of Interventional Therapy, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Wang Xue
- Department of Interventional Therapy, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jiarui Li
- Department of Interventional Therapy, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
8
|
Rezaee A, Tehrany PM, Tirabadi FJ, Sanadgol N, Karimi AS, Ajdari A, Eydivandi S, Etemad S, Rajabi R, Rahmanian P, Khorrami R, Nabavi N, Aref AR, Fan X, Zou R, Rashidi M, Zandieh MA, Hushmandi K. Epigenetic regulation of temozolomide resistance in human cancers with an emphasis on brain tumors: Function of non-coding RNAs. Biomed Pharmacother 2023; 165:115187. [PMID: 37499452 DOI: 10.1016/j.biopha.2023.115187] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/16/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023] Open
Abstract
Brain tumors, which are highly malignant, pose a significant threat to health and often result in substantial rates of mortality and morbidity worldwide. The brain cancer therapy has been challenging due to obstacles such as the BBB, which hinders effective delivery of therapeutic agents. Additionally, the emergence of drug resistance further complicates the management of brain tumors. TMZ is utilized in brain cancer removal, but resistance is a drawback. ncRNAs are implicated in various diseases, and their involvement in the cancer is particularly noteworthy. The focus of the current manuscript is to explore the involvement of ncRNAs in controlling drug resistance, specifically in the context of resistance to the chemotherapy drug TMZ. The review emphasizes the function of ncRNAs, particularly miRNAs, in modulating the growth and invasion of brain tumors, which significantly influences their response to TMZ treatment. Through their interactions with various molecular pathways, miRNAs are modulators of TMZ response. Similarly, lncRNAs also associate with molecular pathways and miRNAs, affecting the efficacy of TMZ chemotherapy. Given their functional properties, lncRNAs can either induce or suppress TMZ resistance in brain tumors. Furthermore, circRNAs, which are cancer controllers, regulate miRNAs by acting as sponges, thereby impacting the response to TMZ chemotherapy. The review explores the correlation between ncRNAs and TMZ chemotherapy, shedding light on the underlying molecular pathways involved in this process.
Collapse
Affiliation(s)
- Aryan Rezaee
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | | | - Farimah Jafari Tirabadi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Negin Sanadgol
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Asal Sadat Karimi
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Atra Ajdari
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Sepideh Eydivandi
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Sara Etemad
- Faculty of Veterinary Medicine, Islamic Azad University, Garmsar Branch, Semnan, Iran.
| | - Romina Rajabi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Parham Rahmanian
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H3Z6, Canada.
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Translational Sciences, Xsphera Biosciences Inc. 6, Tide Street, Boston, MA 02210, USA.
| | - Xiaoping Fan
- Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China; The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China.
| | - Rongjun Zou
- Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China; The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China.
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| |
Collapse
|
9
|
Taheriazam A, Bayanzadeh SD, Heydari Farahani M, Mojtabavi S, Zandieh MA, Gholami S, Heydargoy MH, Jamali Hondori M, Kangarloo Z, Behroozaghdam M, Khorrami R, Sheikh Beig Goharrizi MA, Salimimoghadam S, Rashidi M, Hushmandi K, Entezari M, Hashemi M. Non-coding RNA-based therapeutics in cancer therapy: An emphasis on Wnt/β-catenin control. Eur J Pharmacol 2023; 951:175781. [PMID: 37179043 DOI: 10.1016/j.ejphar.2023.175781] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/22/2023] [Accepted: 05/10/2023] [Indexed: 05/15/2023]
Abstract
Non-coding RNA transcripts are RNA molecules that have mainly regulatory functions and they do not encode proteins. microRNAs (miRNAs), lncRNAs and circRNAs are major types of this family and these epigenetic factors participate in disease pathogenesis, especially cancer that their abnormal expression may lead to cancer progression. miRNAs and lncRNAs possess a linear structure, whereas circRNAs possess ring structures and high stability. Wnt/β-catenin is an important factor in cancer with oncogenic function and it can increase growth, invasion and therapy resistance in tumors. Wnt upregulation occurs upon transfer of β-catenin to nucleus. Interaction of ncRNAs with Wnt/β-catenin signaling can determine tumorigenesis. Wnt upregulation is observed in cancers and miRNAs are able to bind to 3'-UTR of Wnt to reduce its level. LncRNAs can directly/indirectly regulate Wnt and in indirect manner, lncRNAs sponge miRNAs. CircRNAs are new emerging regulators of Wnt and by its stimulation, they increase tumor progression. CircRNA/miRNA axis can affect Wnt and carcinogenesis. Overall, interaction of ncRNAs with Wnt can determine proliferation rate, migration ability and therapy response of cancers. Furthermore, ncRNA/Wnt/β-catenin axis can be utilized as biomarker in cancer and for prognostic applications in patients.
Collapse
Affiliation(s)
- Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Melika Heydari Farahani
- Faculty of Veterinary Medicine, Islamic Azad University, Shahr-e Kord Branch, Chaharmahal and Bakhtiari, Iran
| | - Sarah Mojtabavi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Sadaf Gholami
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Hossein Heydargoy
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Microbiology, Shahr-e Ghods Branch, Azad Islamic University, Tehran, Iran
| | - Maryam Jamali Hondori
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Zahra Kangarloo
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mitra Behroozaghdam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | | | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, 4815733971, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, 4815733971, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
10
|
Circ_0002111 modulates the growth process of papillary thyroid carcinoma cells by targeting the miR-363-3p/HMGB1 axis. Anticancer Drugs 2022; 33:923-934. [PMID: 36136992 DOI: 10.1097/cad.0000000000001382] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Previous studies have suggested that circular RNAs (circRNAs) are engaged in the progression of papillary thyroid carcinoma (PTC). However, the mechanism of circ_0002111 in PTC is still unclear. In this study, quantitative real-time PCR was carried out to measure the expressions of circ_0002111, microRNAs (miRNAs) and high-mobility group box 1 (HMGB1). Immunohistochemistry assay and western blot were applied for the determination of protein levels. The assays of 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide and thymidine analog 5-ethynyl-2'-deoxyuridine were deployed to assess PTC cell viability and proliferation, respectively. Besides, the capacities of cell apoptosis, invasion and angiogenesis were determined by flow cytometry, transwell and tube formation assays, respectively. Moreover, the interaction between miR-363-3p and circ_0002111 or HMGB1 was confirmed using a dual-luciferase reporter assay. Lastly, we established a xenograft model for the examination of the function of circ_0002111 in vivo. It was found that the expression of circ_0002111 was enhanced in PTC tissues and cells. Silencing circ_0002111 apparently retarded the viability, proliferation, invasion and tube formation, as well as expedited the apoptosis of PTC cells. Besides, circ_0002111 knockdown impeded the growth of the tumor in vivo. For mechanism analysis, circ_0002111 adjusted the expression of HMGB1 by sponge adsorption of miR-363-3p. Moreover, miR-363-3p inhibitor regained the influence of cellular malignant phenotype caused by circ_0002111 knockdown. Additionally, miR-363-3p overexpression impacted the cell functions by targeting HMGB1 in PTC. Thus, silencing circ_0002111 constrained the progression of PTC by the miR-363-3p/HMGB1 axis, which perhaps provided a novel idea of the therapeutic in PTC.
Collapse
|
11
|
Fan H, Xie X, Kuang X, Du J, Peng F. MicroRNAs, Key Regulators in Glioma Progression as Potential Therapeutic Targets for Chinese Medicine. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:1799-1825. [PMID: 36121713 DOI: 10.1142/s0192415x22500768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Gliomas are tumors of the primary central nervous system associated with poor prognosis and high mortality. The 5-year survival rate of patients with gliomas received surgery combined with chemotherapy or radiotherapy does not exceed 5%. Although temozolomide is commonly used in the treatment of gliomas, the development of resistance limits its use. MicroRNAs are non-coding RNAs involved in numerous processes of glioma cells, such as proliferation, migration and apoptosis. MicroRNAs regulate cell cycle, PI3K/AKT signal pathway, and target apoptosis-related genes (e.g., BCL6), angiogenesis-related genes (e.g., VEGF) and other related genes to suppress gliomas. Evidence illustrates that microRNAs can regulate the sensitivity of gliomas to temozolomide, cisplatin, and carmustine, thereby enhancing the efficacy of these agents. Moreover, traditional Chinese medicine (e.g., tanshinone IIA, xanthohumol, and curcumin) exert antiglioma effects by regulating the expression of microRNAs, and then microRNAs inhibit gliomas through influencing the process of tumors by targeting certain genes. In this paper, the mechanisms through which microRNAs regulate the sensitivity of gliomas to therapeutic drugs are described, and traditional Chinese medicine that can suppress gliomas through microRNAs are discussed. This review aims to provide new insights into the traditional Chinese medicine treatment of gliomas.
Collapse
Affiliation(s)
- Huali Fan
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. China
| | - Xiaofang Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Xi Kuang
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. China
| | - Junrong Du
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. China
| | - Fu Peng
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. China
| |
Collapse
|
12
|
Han Z, Mou Z, Jing Y, Jiang R, Sun T. EMX1 functions as a tumor inhibitor in spinal cord glioma through transcriptional suppression of WASF2 and inactivation of the Wnt/β-catenin axis. Brain Behav 2022; 12:e2684. [PMID: 35849030 PMCID: PMC9392518 DOI: 10.1002/brb3.2684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Gliomas are the most frequent and aggressive cancers in the central nervous system, and spinal cord glioma (SCG) is a rare class of the gliomas. Empty spiracles homobox genes (EMXs) have shown potential tumor suppressing roles in glioma, but the biological function of EMX1 in SCG is unclear. METHODS The EMX1 expression in clinical tissues of patients with SCG was examined. SCG cells were extracted from the tissues, and altered expression of EMX1 was then introduced to examine the role of EMX1 in cell growth and invasiveness in vitro. Xenograft tumors were induced in nude mice for in vivo validation. The targets of EXM1 were predicted via bioinformatic analysis and validated by luciferase and ChIP-qPCR assays. Rescue experiments were conducted to validate the involvements of the downstream molecules. RESULTS EMX1 was poorly expressed in glioma, which was linked to decreased survival rate of patients according to the bioinformatics prediction. In clinical tissues, EMX1 was poorly expressed in SCG, especially in the high-grade tissues. EMX1 upregulation significantly suppressed growth and metastasis of SCG cells in vitro and in vivo. EMX1 bound to the promoter of WASP family member 2 (WASF2) to suppress its transcription. Restoration of WASF2 blocked the tumor-suppressing effect of EMX1. EMX1 suppressed Wnt/β-catenin signaling activity by inhibiting WASF2. Coronaridine, a Wnt/β-catenin-specific antagonist, blocked SCG cell growth and metastasis induced by WASF2. CONCLUSION This study elucidates that EMX1 functions as a tumor inhibitor in SCG by suppressing WASF2-dependent activation of the Wnt/β-catenin axis.
Collapse
Affiliation(s)
- Ziyin Han
- Department of Traumatic Orthopedics, Yantaishan Hospital of Yantai, Yantai, Shandong, P.R. China
| | - Zufang Mou
- Administration Department of Nosocomial Infection, Yantaishan Hospital of Yantai, Yantai, Shandong, P.R. China
| | - Yulong Jing
- Department of Traumatic Orthopedics, Yantaishan Hospital of Yantai, Yantai, Shandong, P.R. China
| | - Rong Jiang
- Department of Physiology, Binzhou Medical University, Yantai Campus, Yantai, Shandong, P.R. China
| | - Tao Sun
- Department of Traumatic Orthopedics, Yantaishan Hospital of Yantai, Yantai, Shandong, P.R. China
| |
Collapse
|
13
|
Fan B, Su B, Song G, Liu X, Yan Z, Wang S, Hu F, Yang J. miR-363-3p induces EMT via the Wnt/β-catenin pathway in glioma cells by targeting CELF2. J Cell Mol Med 2021; 25:10418-10429. [PMID: 34636136 PMCID: PMC8581338 DOI: 10.1111/jcmm.16970] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/17/2021] [Accepted: 09/23/2021] [Indexed: 01/05/2023] Open
Abstract
In our previous study, we reported that CELF2 has a tumour‐suppressive function in glioma. Here, we performed additional experiments to elucidate better its role in cancer. The expression profile of CELF2 was analysed by the GEPIA database, and Kaplan–Meier curves were used to evaluate the overall survival rates. Four different online databases were used to predict miRNAs targeting CELF2, and the luciferase assay was performed to identify the binding site. The biological effects of miR‐363‐3p and CELF2 were also investigated in vitro using MTT, Transwell, and flow cytometry assays. Western blotting, qPCR, and TOP/FOP flash dual‐luciferase assays were performed to investigate the impact of miR‐363‐3p and CELF2 on epithelial‐to‐mesenchymal transition (EMT) and the Wnt/β‐catenin pathway. The effect of miR‐363‐3p was also tested in vivo using a xenograft mouse model. We observed an abnormal expression pattern of CELF2 in glioma cells, and higher CELF2 expression correlated with better prognosis. We identified miR‐363‐3p as an upstream regulator of CELF2 and confirmed its direct binding to the 3′‐untranslated region of CELF2. Cell function experiments showed that miR‐363‐3p affected multiple aspects of glioma cells. Suppressing miR‐363‐3p expression inhibited glioma cell proliferation and invasion, as well as promoted cell death via attenuating EMT and blocking the Wnt/β‐catenin pathway. These effects could be abolished by the downregulation of CELF2. Treatment with ASO‐miR‐363‐3p decreased tumour size and weight in nude mice. In conclusion, miR‐363‐3p induced the EMT, which resulted in increased migration and invasion and reduced apoptosis in glioma cell lines, via the Wnt/β‐catenin pathway by targeting CELF2.
Collapse
Affiliation(s)
- Bo Fan
- Department of neurosurgery, The Second Affiliated Hospital, Hebei Medical University, Hebei, China
| | - Bolun Su
- Department of urology, The Second Hospital of Baoding, Hebei, China
| | - Guoqiang Song
- Department of neurosurgery, The Second Affiliated Hospital, Hebei Medical University, Hebei, China
| | - Xin Liu
- Department of neurosurgery, The Second Affiliated Hospital, Hebei Medical University, Hebei, China
| | - Zhongjie Yan
- Department of neurosurgery, The Second Affiliated Hospital, Hebei Medical University, Hebei, China
| | - Shuai Wang
- Department of neurosurgery, The Second Affiliated Hospital, Hebei Medical University, Hebei, China
| | - Fuguang Hu
- Department of neurosurgery, The Second Affiliated Hospital, Hebei Medical University, Hebei, China
| | - Jiankai Yang
- Department of neurosurgery, The Second Affiliated Hospital, Hebei Medical University, Hebei, China
| |
Collapse
|