1
|
Li X, Yang X, Lin S, Cong H, Liu Y, Wang Y, Fu J. Perineural invasion in cervical cancer. Cancer Lett 2025; 616:217561. [PMID: 39956383 DOI: 10.1016/j.canlet.2025.217561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/04/2025] [Accepted: 02/13/2025] [Indexed: 02/18/2025]
Abstract
Perineural invasion (PNI), the neoplastic infiltration of peripheral nerves, is recognized as the fourth mode of tumor metastasis and invasion. PNI is defined as a critical pathological feature observed across various cancers and is associated with poor prognosis. Recent studies have demonstrated that PNI also occurs in cervical cancer. Nerve-sparing radical hysterectomy (NSRH) has been promoted as the preferred approach for radical surgical resection of cervical cancer, as it reduces postoperative complications such as bladder, rectal, and sexual dysfunction. However, the presence of PNI has become a contraindication for NSRH. Despite the increasing volume of studies on PNI, the underlying mechanisms of its pathogenesis remain largely unclear. In this review, we discuss the innervation, characteristics, preoperative prediction and diagnosis of PNI in cervical cancer, along with its underlying mechanism, paving the way for advancements in treatment strategies and improving the prognosis for cervical cancer patients.
Collapse
Affiliation(s)
- Xiayi Li
- Department of Radiation Oncology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Xiaojing Yang
- Department of Radiation Oncology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Shuchen Lin
- Department of Radiation Oncology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Hui Cong
- Department of Radiation Oncology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yawen Liu
- Department of Radiation Oncology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yudong Wang
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Jie Fu
- Department of Radiation Oncology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| |
Collapse
|
2
|
Zu Z, Zhang C, Shi J, Chen K, Tang H, Hu K, Liu E, Ji C, Feng R, Shi X, Zhai W. Single-cell analysis reveals that GFAP + dedifferentiated Schwann cells promote tumor progress in PNI-positive distal cholangiocarcinoma via lactate/HMGB1 axis. Cell Death Dis 2025; 16:215. [PMID: 40148311 PMCID: PMC11950304 DOI: 10.1038/s41419-025-07543-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 02/08/2025] [Accepted: 03/17/2025] [Indexed: 03/29/2025]
Abstract
Distal cholangiocarcinoma (dCCA) is a highly lethal malignancy that accounts for approximately 40% of patients with primary cholangiocarcinoma. Remarkable cellular heterogeneity and perineural invasion (PNI) are two typical features of dCCA. Deciphering the complex interplay between neoplastic and neural cells is crucial for understanding the mechanisms propelling PNI-positive dCCA progression. Herein, we conduct single-cell RNA sequencing on 24,715 cells from two pairs of PNI-positive dCCA tumors and adjacent tissues, identifying eight unique cell types. Malignant cells exhibit significant inter- and intra-tumor heterogeneity. We delineate the compositional and functional phenotypes of five Schwann cell (SC) subsets in PNI-positive dCCA. Moreover, our analyses reveal two potential cell subtypes critical to forming PNI: NEAT1+ malignant cells characterized by hypoxic propensity and GFAP+ dedifferentiated SCs featuring hypermetabolism. Further bioinformatics uncover extensive cellular interactions between these two subpopulations. Functional experiments confirm that lactate in the hypoxic tumor microenvironment can induce GFAP-dedifferentiation in SCs, which promotes cancer cell invasion and progression through upregulating HMGB1. Taken together, our findings offer a thorough characterization of the transcriptional profile in PNI-positive dCCA and unveil potential therapeutic targets for dCCA PNI.
Collapse
Affiliation(s)
- Ziyang Zu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Chong Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jianxiang Shi
- Precision Medicine Center, Henan Institute of Medical and Pharmaceutical Sciences & BGI College, Zhengzhou University, Zhengzhou, 450052, China
| | - Kunlun Chen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Hongwei Tang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Engineering Technology Research Center of Organ Transplantation, Zhengzhou Engineering Laboratory of Organ Transplantation Technique and Application, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Kaizhao Hu
- Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Laboratory Animal Center, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450052, China
| | - Enchi Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Chengyang Ji
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Ruo Feng
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiaojing Shi
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Laboratory Animal Center, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450052, China.
| | - Wenlong Zhai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
3
|
Li X, Sun L, Wu X, Qiu M, Ma X. Cathepsins and their role in gynecological cancers: Evidence from two-sample Mendelian randomization analysis. Medicine (Baltimore) 2025; 104:e41653. [PMID: 40068078 PMCID: PMC11902974 DOI: 10.1097/md.0000000000041653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/05/2025] [Accepted: 02/06/2025] [Indexed: 03/14/2025] Open
Abstract
Prior studies have reported connections between cathepsins (CTS) and gynecological cancers; however, the exact causal links are yet to be fully understood. Leveraging publicly accessible genome-wide association study summary datasets, we performed a two-sample bidirectional Mendelian randomization (MR) and multivariate MR (MVMR) analysis, with the inverse variance weighted (IVW) method as the primary approach. MR analysis demonstrated inverse associations between CTSB and cervical cancer (IVW: odds ratio [OR] = 0.9995, 95% confidence interval [CI] = 0.9991-0.9999, P = .0418), CTSE and ovarian cancer (IVW: OR = 0.9197, 95% CI = 0.8505-0.9944, P = .0358), CTSZ and ovarian cancer (IVW: OR = 0.9449, 95% CI = 0.8938-0.9990, P = .0459), CTSE and high grade serous ovarian cancer (IVW: OR = 0.8939, 95% CI = 0.8248-0.9689, P = .0063), and CTSZ and high grade serous ovarian cancer (IVW: OR = 0.9269, 95% CI = 0.8667-0.9913, P = .0268). A positive correlation was identified between CTSH and clear cell ovarian cancer (IVW: OR = 1.1496, 95% CI = 1.0368-1.2745, P = .0081). Nevertheless, subsequent adjustment for the false discovery rate revealed that none of the P-values retained statistical significance (PFDR > 0.05). MVMR analysis results elucidated that CTSZ was inversely associated with cervical cancer (IVW: OR = 0.9988, 95% CI = 0.9981-0.9996, P = .0022). Moreover, a positive association was noted between CTSF and cervical cancer (IVW: OR = 1.0007, 95% CI = 1.0000-1.0014, P = .0364), and similarly, between CTSS and cervical cancer (IVW: OR = 1.0005, 95% CI = 1.0000-1.0011, P = .0490). CTSO exhibited a positive association with non-endometrioid endometrial cancer (IVW: OR = 1.4405, 95% CI = 1.1864-1.7490, P < .001), and CTSH was positively associated with clear cell ovarian cancer (IVW: OR = 1.1167, 95% CI = 1.0131-1.2310, P = .0263). The MVMR analysis findings reveal that CTSZ emerges as a protective element against cervical cancer, whereas CTSF and CTSS represent risk factors for this disease. CTSO stands out as a risk factor for non-endometrioid endometrial cancer, and CTSH acts as a risk factor for clear cell ovarian cancer. This study elucidates causative connections between CTS and gynecological cancers, providing innovative insights for diagnostic and therapeutic optimization.
Collapse
Affiliation(s)
- Xiaoying Li
- Department of Gynecology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Lingyi Sun
- Department of Gynecology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoting Wu
- Department of Gynecology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Meng Qiu
- Department of Gynecology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xiuli Ma
- Department of Gynecology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
4
|
Wang YH, Yang X, Liu CC, Wang X, Yu KD. Unraveling the peripheral nervous System's role in tumor: A Double-edged Sword. Cancer Lett 2025; 611:217451. [PMID: 39793755 DOI: 10.1016/j.canlet.2025.217451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/01/2025] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
The peripheral nervous system (PNS) includes all nerves outside the brain and spinal cord, comprising various cells like neurons and glial cells, such as schwann and satellite cells. The PNS is increasingly recognized for its bidirectional interactions with tumors, exhibiting both pro- and anti-tumor effects. Our review delves into the complex mechanisms underlying these interactions, highlighting recent findings that challenge the conventional understanding of PNS's role in tumorigenesis. We emphasize the contradictory results in the literature and propose novel perspectives on how these discrepancies can be resolved. By focusing on the PNS's influence on tumor initiation, progression, and microenvironment remodeling, we provide a comprehensive analysis that goes beyond the structural description of the PNS. Our review suggests that a deeper comprehension of the PNS-tumor crosstalk is pivotal for developing targeted anticancer strategies. We conclude by emphasizing the need for future research to unravel the intricate dynamics of the PNS in cancer, which may lead to innovative diagnostic tools and therapeutic approaches.
Collapse
Affiliation(s)
- Yan-Hao Wang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center and Cancer Institute, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China; Key Laboratory of Breast Cancer in Shanghai, Shanghai, 200032, PR China
| | - Xuan Yang
- Department of General Surgery, Shanxi Provincial People's Hospital, Taiyuan, 030000, PR China
| | - Cui-Cui Liu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center and Cancer Institute, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China; Key Laboratory of Breast Cancer in Shanghai, Shanghai, 200032, PR China
| | - Xin Wang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China
| | - Ke-Da Yu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center and Cancer Institute, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China; Key Laboratory of Breast Cancer in Shanghai, Shanghai, 200032, PR China.
| |
Collapse
|
5
|
Edirisinghe O, Ternier G, Alraawi Z, Suresh Kumar TK. Decoding FGF/FGFR Signaling: Insights into Biological Functions and Disease Relevance. Biomolecules 2024; 14:1622. [PMID: 39766329 PMCID: PMC11726770 DOI: 10.3390/biom14121622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/06/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Fibroblast Growth Factors (FGFs) and their cognate receptors, FGFRs, play pivotal roles in a plethora of biological processes, including cell proliferation, differentiation, tissue repair, and metabolic homeostasis. This review provides a comprehensive overview of FGF-FGFR signaling pathways while highlighting their complex regulatory mechanisms and interconnections with other signaling networks. Further, we briefly discuss the FGFs involvement in developmental, metabolic, and housekeeping functions. By complementing current knowledge and emerging research, this review aims to enhance the understanding of FGF-FGFR-mediated signaling and its implications for health and disease, which will be crucial for therapeutic development against FGF-related pathological conditions.
Collapse
Affiliation(s)
- Oshadi Edirisinghe
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Gaëtane Ternier
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA; (G.T.); (Z.A.)
| | - Zeina Alraawi
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA; (G.T.); (Z.A.)
| | - Thallapuranam Krishnaswamy Suresh Kumar
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA;
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA; (G.T.); (Z.A.)
| |
Collapse
|
6
|
Oberholzer Z, Loubser C, Nikitina NV. Fgf17: A regulator of the mid/hind brain boundary in mammals. Differentiation 2024; 140:100813. [PMID: 39327214 DOI: 10.1016/j.diff.2024.100813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/06/2024] [Accepted: 09/12/2024] [Indexed: 09/28/2024]
Abstract
The Fibroblast growth factor (FGFs) family consists of at least 22 members that exert their function by binding and activating fibroblast growth factor receptors (FGFRs). The Fgf8/FgfD subfamily member, Fgf17, is located on human chromosome 8p21.3 and mouse chromosome 14 D2. In humans, FGF17 can be alternatively spliced to produce two isoforms (FGF17a and b) whereas three isoforms are present in mice (Fgf17a, b, and c), however, only Fgf17a and Fgf17b produce functional proteins. Fgf17 is a secreted protein with a cleavable N-terminal signal peptide and contains two binding domains, namely a conserved core region and a heparin binding site. Fgf17 mRNA is expressed in a wide range of different tissues during development, including the rostral patterning centre, midbrain-hindbrain boundary, tailbud mesoderm, olfactory placode, mammary glands, and smooth muscle precursors of major arteries. Given its broad expression pattern during development, it is surprising that adult Fgf17-/- mice displayed a rather mild phenotype; such that mutants only exhibited morphological changes in the frontal cortex and mid/hind brain boundary and changes in certain social behaviours. In humans, FGF17 mutations are implicated in several diseases, including Congenital Hypogonadotropic Hypogonadism and Kallmann Syndrome. FGF17 mutations contribute to CHH/KS in 1.1% of affected individuals, often presenting in conjunction with mutations in other FGF pathway genes like FGFR1 and FLRT3. FGF17 mutations were also identified in patients diagnosed with Dandy-Walker malformation and Pituitary Stalk Interruption Syndrome, however, it remains unclear how FGF17 is implicated in these diseases. Altered FGF17 expression has been observed in several cancers, including prostate cancer, hematopoietic cancers (acute myeloid leukemia and acute lymphoblastic leukemia), glioblastomas, perineural invasion in cervical cancer, and renal cell carcinomas. Furthermore, FGF17 has demonstrated neuroprotective effects, particularly during ischemic stroke, and has been shown to improve cognitive function in ageing mice.
Collapse
Affiliation(s)
- Zane Oberholzer
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, Wits, 2050, Johannesburg, South Africa.
| | - Chiron Loubser
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, Wits, 2050, Johannesburg, South Africa.
| | - Natalya V Nikitina
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, Wits, 2050, Johannesburg, South Africa.
| |
Collapse
|
7
|
Song J, Meng H, Deng G, Lin H. Sustainable Release Selenium Laden with SiO 2 Restoring Peripheral Nerve Injury via Modulating PI3K/AKT Pathway Signaling Pathway. Int J Nanomedicine 2024; 19:7851-7870. [PMID: 39105098 PMCID: PMC11299799 DOI: 10.2147/ijn.s460397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/23/2024] [Indexed: 08/07/2024] Open
Abstract
Background Inhibiting ROS overproduction is considered a very effective strategy for the treatment of peripheral nerve injuries, and Se has a remarkable antioxidant effect; however, since the difference between the effective concentration of Se and the toxic dose is not large, we synthesized a nanomaterial that can release Se slowly so that it can be used more effectively. Methods Se@SiO2 NPs were synthesized using a mixture of Cu2-x Se nanocrystals, and the mechanism of action of Se@SiO2 NPs was initially explored by performing sequencing, immunofluorescence staining and Western blotting of cellular experiments. The mechanism of action of Se@SiO2 NPs was further determined by performing behavioral assays after animal experiments and by sampling the material for histological staining, immunofluorescence staining, and ELISA. The effects, mechanisms and biocompatibility of Se@SiO2 NPs for peripheral nerve regeneration were determined. Results Porous Se@SiO2 was successfully synthesized, had good particle properties, and could release Se slowly. CCK-8 experiments revealed that the optimal experimental doses were 100 μM H2O2 and 200 μg/mL Se@SiO2, and RNA-seq revealed that porous Se@SiO2 was associated with cell proliferation, apoptosis, and the PI3K/AKT pathway. WB showed that porous Se@SiO2 could increase the expression of cell proliferation antigens (PCNA and S100) and antiapoptotic proteins (Bcl-2), decrease the expression of proapoptotic proteins (Bax), and increase the expression of antioxidative stress proteins (Nrf2, HO-1, and SOD2). EdU cell proliferation and ROS fluorescence assays showed that porous Se@SiO2 promoted cell proliferation and reduced ROS levels. The therapeutic effect of LY294002 (a PI3K/AKT pathway inhibitor) was decreased significantly and its effect was lost when it was added simultaneously with porous Se@SiO2. Animal experiments revealed that the regenerated nerve fiber density, myelin thickness, axon area, gastrocnemius muscle wet-to-weight ratio, myofiber area, sciatic nerve function index (SFI), CMAP, apoptotic cell ratio, and levels of antioxidative stress proteins and anti-inflammatory factors were increased following the administration of porous Se@SiO2. The levels of oxidative stress proteins and anti-inflammatory factors were significantly greater in the Se@SiO2 group than in the PNI group, and the effect of LY294002 was decreased significantly and was lost when it was added simultaneously with porous Se@SiO2. Conclusion Se@SiO2 NPs are promising, economical and effective Se-releasing nanomaterials that can effectively reduce ROS production, inhibit apoptosis and promote cell proliferation after nerve injury via the PI3K/AKT pathway, ultimately accelerating nerve regeneration. These findings could be used to design new, promising drugs for the treatment of peripheral nerve injury.
Collapse
Affiliation(s)
- Jianguo Song
- Trauma Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, People's Republic of China
| | - Huanliang Meng
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, People's Republic of China
| | - Guoying Deng
- Trauma Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, People's Republic of China
| | - Haodong Lin
- Trauma Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, People's Republic of China
| |
Collapse
|
8
|
Chen G, Sun H, Chen Y, Wang L, Song O, Zhang J, Li D, Liu X, Feng L. Perineural Invasion in Cervical Cancer: A Hidden Trail for Metastasis. Diagnostics (Basel) 2024; 14:1517. [PMID: 39061654 PMCID: PMC11275432 DOI: 10.3390/diagnostics14141517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Perineural invasion (PNI), the neoplastic invasion of nerves, is an often overlooked pathological phenomenon in cervical cancer that is associated with poor clinical outcomes. The occurrence of PNI in cervical cancer patients has limited the promotion of Type C1 surgery. Preoperative prediction of the PNI can help identify suitable patients for Type C1 surgery. However, there is a lack of appropriate preoperative diagnostic methods for PNI, and its pathogenesis remains largely unknown. Here, we dissect the neural innervation of the cervix, analyze the molecular mechanisms underlying the occurrence of PNI, and explore suitable preoperative diagnostic methods for PNI to advance the identification and treatment of this ominous cancer phenotype.
Collapse
Affiliation(s)
- Guoqiang Chen
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
- Department of Gynecology, The People’s Hospital of Baoan Shenzhen, The Second Affiliated Hospital of Shenzhen University, Shenzhen 518101, China
| | - Hao Sun
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Yunxia Chen
- Department of Gynecology, The People’s Hospital of Baoan Shenzhen, The Second Affiliated Hospital of Shenzhen University, Shenzhen 518101, China
| | - Li Wang
- Department of Gynecology, The People’s Hospital of Baoan Shenzhen, The Second Affiliated Hospital of Shenzhen University, Shenzhen 518101, China
| | - Ouyi Song
- Department of Gynecology, The People’s Hospital of Baoan Shenzhen, The Second Affiliated Hospital of Shenzhen University, Shenzhen 518101, China
| | - Jili Zhang
- Department of Gynecology, The People’s Hospital of Baoan Shenzhen, The Second Affiliated Hospital of Shenzhen University, Shenzhen 518101, China
| | - Dazhi Li
- Department of Gynecology, The People’s Hospital of Baoan Shenzhen, The Second Affiliated Hospital of Shenzhen University, Shenzhen 518101, China
| | - Xiaojun Liu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Lixia Feng
- Department of Gynecology, The People’s Hospital of Baoan Shenzhen, The Second Affiliated Hospital of Shenzhen University, Shenzhen 518101, China
| |
Collapse
|
9
|
Cai Z, Yao H, Chen J, Ahmed AA, Li C, Hu X, Tang X, Jiang C. Schwann cells in pancreatic cancer: Unraveling their multifaceted roles in tumorigenesis and neural interactions. Cancer Lett 2024; 587:216689. [PMID: 38367898 DOI: 10.1016/j.canlet.2024.216689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/15/2024] [Accepted: 01/26/2024] [Indexed: 02/19/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC), characterized by heightened neural density, presents a challenging prognosis primarily due to perineural invasion. Recognized for their crucial roles in neural support and myelination, Schwann cells (SCs) significantly influence the process of tumorigenesis. This review succinctly outlines the interplay between PDAC and neural systems, positioning SCs as a nexus in the tumor-neural interface. Subsequently, it delves into the cellular origin and influencers of SCs within the pancreatic tumor microenvironment, emphasizing their multifaceted roles in tumor initiation, progression, and modulation of the neural and immune microenvironment. The discussion encompasses potential therapeutic interventions targeting SCs. Lastly, the review underscores pressing issues, advocating for sustained exploration into the diverse contributions of SCs within the intricate landscape of PDAC, with the aim of enhancing our understanding of their involvement in this complex malignancy.
Collapse
Affiliation(s)
- Zhiwei Cai
- Department of General Surgery, Pancreatobiliary Surgery Center, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, PR China
| | - Hongfei Yao
- Department of General Surgery, Pancreatobiliary Surgery Center, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, PR China
| | - Jiahao Chen
- Department of General Surgery, Pancreatobiliary Surgery Center, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, PR China
| | - Abousalam Abdoulkader Ahmed
- Department of General Surgery, Pancreatobiliary Surgery Center, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, PR China
| | - Chunjing Li
- Department of General Surgery, Pancreatobiliary Surgery Center, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, PR China
| | - Xiao Hu
- Department of General Surgery, Pancreatobiliary Surgery Center, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, PR China
| | - Xiaoyan Tang
- Department of General Surgery, Pancreatobiliary Surgery Center, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, PR China
| | - Chongyi Jiang
- Department of General Surgery, Pancreatobiliary Surgery Center, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, PR China.
| |
Collapse
|