1
|
Shen K, Hu C, Zhang Y, Cheng X, Xu Z, Pan S. Advances and applications of multiomics technologies in precision diagnosis and treatment for gastric cancer. Biochim Biophys Acta Rev Cancer 2025; 1880:189336. [PMID: 40311712 DOI: 10.1016/j.bbcan.2025.189336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 04/24/2025] [Accepted: 04/25/2025] [Indexed: 05/03/2025]
Abstract
Gastric cancer (GC), one of the most prevalent malignancies worldwide, is distinguished by extensive genetic and phenotypic heterogeneity, posing persistent challenges to conventional diagnostic and therapeutic strategies. The significant global burden of GC highlights an urgent need to unravel its complex underlying mechanisms, discover novel diagnostic and prognostic biomarkers, and develop more effective therapeutic interventions. In this context, this review comprehensively examines the transformative roles of cutting-edge technologies, including radiomics, pathomics, genomics, transcriptomics, epigenomics, proteomics, and metabolomics, in advancing precision diagnosis and treatment for GC. Multiomics data analysis not only deepens our understanding of GC pathogenesis and molecular subtypes but also identifies promising biomarkers, facilitating the creation of tailored therapeutic approaches. Additionally, integrating multiomics approaches holds immense potential for elucidating drug resistance mechanisms, predicting patient outcomes, and uncovering novel therapeutic targets, thereby laying a robust foundation for precision medicine in the comprehensive management of GC.
Collapse
Affiliation(s)
- Ke Shen
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China; Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, China
| | - Can Hu
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, Zhejiang 310022, China; Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310022, China
| | - Yanqiang Zhang
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, Zhejiang 310022, China; Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310022, China
| | - Xiangdong Cheng
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, Zhejiang 310022, China; Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310022, China
| | - Zhiyuan Xu
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, Zhejiang 310022, China; Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310022, China.
| | - Siwei Pan
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, Zhejiang 310022, China; Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310022, China.
| |
Collapse
|
2
|
Liu J, Fang X. Regulation of hsa_circ_0112136 by m6A demethylase FTO can enhance the malignancy of gastric cancer via the regulation of the PI3K/AKT/mTOR pathway. Biotechnol Appl Biochem 2024; 71:1316-1328. [PMID: 39645568 DOI: 10.1002/bab.2631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/10/2024] [Indexed: 12/09/2024]
Abstract
A growing body of research highlights the role that N6-methyladenosine (m6A) modification and circular RNAs (circRNAs) play in gastric cancer (GC) cases. However, studies elucidating the function and mechanism of the recently discovered circRNA hsa_circ_0112136 in GC are limited. This study aimed to examine the pathophysiology of GC progression due to fat mass and obesity-associated protein (FTO)-mediated N6-methyladenosine (m6A) modification of hsa_circ_0112136. The hsa_circ_0112136 and FTO levels in the GC samples were analyzed using qRT-PCR. The Transwell invasion assay, wound healing assay, and CCK8 assays were employed to assess alterations in GC cell invasiveness, migration, and viability due to the aberrant regulation of hsa_circ_0112136 and FTO. Phosphorylated PI3K, AKT, and mTOR (the key proteins of the PI3K/AKT/mTOR pathway) were detected via western blotting after hsa_circ_0112136 suppression. A tumor transplantation mouse model was constructed to evaluate the suppression of hsa_circ_0112136's function in vivo. The correlation among hsa_circ_0112136 and FTO was identified using the MeRIP assay. Levels of hsa_circ_0112136 and FTO were evidently elevated in GC samples. Suppression of has_circ_0112136 reduced the viability, migration, and invasive ability of GC cells in vitro, as well as delayed tumor growth in vivo via suppression of the activation of the PI3K/AKT/mTOR pathway. FTO decreased hsa_circ_0112136 m6A levels and enhanced hsa_circ_0112136 expression. Furthermore, FTO upregulation enhanced GC cell invasion, migration, and survival, which was reversed by hsa_circ_0112136 suppression. Our study proposes that hsa_circ_0112136 functions as a tumor promoter, facilitating the malignant progression of GC through m6A modification (suppressed by FTO) and activating the PI3K/AKT/mTOR pathway. This suggests that targeting FTO-m6A-hsa_circ_0112136-PI3K/AKT/mTOR may be a novel approach for GC intervention.
Collapse
Affiliation(s)
- Jia Liu
- Department of Gastroenterology, Puren Hospital Affiliated Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Xiangming Fang
- Department of Gastroenterology, Puren Hospital Affiliated Wuhan University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
3
|
Xu Q, Jin Z, Yuan Z, Yu Z, Gao J, Zhao R, Li H, Ren H, Cao B, Wei B, Jiang L. YAP Promotes Chemoresistance to 5-FU in Colorectal Cancer Through mTOR/GLUT3 Axis. J Cancer 2024; 15:6784-6797. [PMID: 39668819 PMCID: PMC11632981 DOI: 10.7150/jca.100179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/28/2024] [Indexed: 12/14/2024] Open
Abstract
Background: Although chemoresistance constitutes a significant barrier to the effectiveness of chemotherapy in colorectal cancer (CRC), its precise mechanisms remain unclear. YAP functions as an oncogene in various malignancies. However, the relationship between YAP and chemoresistance in CRC needs clarification. Methods: The expression level of YAP in CRC tissues was assessed through immunohistochemistry (IHC), and the impact of YAP on CRC cell chemoresistance was evaluated using the Cell Counting Kit-8, EdU, and flow cytometry assays. Meanwhile, tumor proliferation was assessed in vivo by analyzing the expression of PCNA and Ki-67 in subcutaneous tumors via IHC. In addition, the TUNEL assay was employed to evaluate tumor apoptosis levels and western blot was utilized to detect the mTOR/GLUT3 pathway-related protein expression to provide insights into the underlying mechanism. Results: YAP was highly expressed in CRC tissues and correlated with patient prognosis and clinicopathological features. Bioinformatic analysis based on the TCGA database revealed that YAP was associated with DNA replication, glycolysis, and the mTOR pathway. Meanwhile, YAP could enhance chemoresistance and glycolysis in CRC cells both in vitro and in vivo. Additional mechanistic experiments unveiled that YAP promoted CRC cell chemoresistance via the mTOR/GLUT3 axis. Conclusion: This study validated the role of YAP as an oncogene in CRC, as it promoted chemoresistance through the mTOR/GLUT3 axis. These results suggested YAP as a potential target for promoting the efficacy of chemotherapy in patients with CRC.
Collapse
Affiliation(s)
- Qixuan Xu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Zhesi Jin
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu,China
| | - Zhen Yuan
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Zhiyuan Yu
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Jingwang Gao
- Department of General Surgery, Linfen Central Hospital, Linfen, Shanxi, China
| | - Ruiyang Zhao
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Hanghang Li
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Huiguang Ren
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Bo Cao
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Bo Wei
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Linhua Jiang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
4
|
Yu W, Zhang Q, Ali M, Chen B, Sun Q, Wang D. ACTL8 Promotes the Progression of Gastric Cancer Through PI3K/AKT/mTOR Signaling Pathway. Dig Dis Sci 2024; 69:3786-3798. [PMID: 39322809 PMCID: PMC11489201 DOI: 10.1007/s10620-024-08649-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 09/10/2024] [Indexed: 09/27/2024]
Abstract
BACKGROUND Actin-like protein 8 (ACTL8) significantly correlates with tumor growth and prognosis across various cancer types. Nevertheless, the potential relationship between ACTL8 and gastric cancer (GC) remains uncertain. OBJECTIVE This study aimed to elucidate the role of ACTL8 in human GC cells and to explore its mechanism. METHODS Bioinformatics analysis tools, such as GEPIA2, Kaplan-Meier, and STRING, were utilized for a comprehensive investigation of the characteristics and functional roles of ACTL8 in GC, including differential expression, prognostic value, and related signaling pathways. Subsequently, gene expression analyses, cell function assays, and signaling pathway experiments were conducted to verify key findings. RESULTS Bioinformatics analysis showed that ACTL8 was significantly elevated in GC and closely associated with poor prognosis. Gene expression experiments confirmed the bioinformatics results. Furthermore, ACTL8 knockdown markedly reduced GC cell proliferation and inhibited migration and invasion. Mechanistically, a significant increase in the phosphorylation levels of signaling proteins was observed in GC cells following ACTL8 overexpression, and PI3K/Akt/mTOR pathway inhibitors could reverse this effect. CONCLUSION ACTL8 expression is significantly upregulated in GC cells and is closely correlated with poor patient prognosis. Further mechanistic studies revealed that ACTL8 may promote GC cell migration and proliferation through activation of the PI3K/Akt/mTOR signaling pathway. Consequently, ACTL8 emerges as a promising therapeutic target for GC.
Collapse
Affiliation(s)
- Wenhao Yu
- Northern Jiangsu People's Hospital, Clinical Teaching Hospital of Medical School, Nanjing University, Yangzhou, China
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225001, China
- General Surgery Institute of Yangzhou, Yangzhou University, Yangzhou, 225001, China
- Yangzhou Key Laboratory of Basic and Clinical Transformation of Digestive and Metabolic Diseases, Yangzhou, China
- Northern Jiangsu People's Hospital, Yangzhou, 225001, China
| | - Qi Zhang
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225001, China
- General Surgery Institute of Yangzhou, Yangzhou University, Yangzhou, 225001, China
- Yangzhou Key Laboratory of Basic and Clinical Transformation of Digestive and Metabolic Diseases, Yangzhou, China
- Northern Jiangsu People's Hospital, Yangzhou, 225001, China
| | - Muhammad Ali
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225001, China
- General Surgery Institute of Yangzhou, Yangzhou University, Yangzhou, 225001, China
- Yangzhou Key Laboratory of Basic and Clinical Transformation of Digestive and Metabolic Diseases, Yangzhou, China
- Northern Jiangsu People's Hospital, Yangzhou, 225001, China
| | - Bangquan Chen
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225001, China
- General Surgery Institute of Yangzhou, Yangzhou University, Yangzhou, 225001, China
- Yangzhou Key Laboratory of Basic and Clinical Transformation of Digestive and Metabolic Diseases, Yangzhou, China
- Northern Jiangsu People's Hospital, Yangzhou, 225001, China
| | - Qiannan Sun
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225001, China
- General Surgery Institute of Yangzhou, Yangzhou University, Yangzhou, 225001, China
- Yangzhou Key Laboratory of Basic and Clinical Transformation of Digestive and Metabolic Diseases, Yangzhou, China
- Northern Jiangsu People's Hospital, Yangzhou, 225001, China
| | - Daorong Wang
- Northern Jiangsu People's Hospital, Clinical Teaching Hospital of Medical School, Nanjing University, Yangzhou, China.
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225001, China.
- General Surgery Institute of Yangzhou, Yangzhou University, Yangzhou, 225001, China.
- Yangzhou Key Laboratory of Basic and Clinical Transformation of Digestive and Metabolic Diseases, Yangzhou, China.
- Northern Jiangsu People's Hospital, Yangzhou, 225001, China.
- Department of Gastrointestinal Surgery, Northern Jiangsu People's Hospital, Clinical Teaching Hospital of Medical School, Nanjing University, 98 Nantong West Road, Yangzhou, 225001, Jiangsu, China.
| |
Collapse
|
5
|
Morgos DT, Stefani C, Miricescu D, Greabu M, Stanciu S, Nica S, Stanescu-Spinu II, Balan DG, Balcangiu-Stroescu AE, Coculescu EC, Georgescu DE, Nica RI. Targeting PI3K/AKT/mTOR and MAPK Signaling Pathways in Gastric Cancer. Int J Mol Sci 2024; 25:1848. [PMID: 38339127 PMCID: PMC10856016 DOI: 10.3390/ijms25031848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
Gastric cancer (GC) is the fourth leading cause of death worldwide, with more than 1 million cases diagnosed every year. Helicobacter pylori represents the main risk factor, being responsible for 78% of the cases. Increased amounts of salt, pickled food, red meat, alcohol, smoked food, and refined sugars negatively affect the stomach wall, contributing to GC development. Several gene mutations, including PIK3CA, TP53, ARID1A, CDH1, Ras, Raf, and ERBB3 are encountered in GC pathogenesis, leading to phosphatidylinositol 3-kinase (PI3K) protein kinase B (AKT)/mammalian target of rapamycin (mTOR)-PI3K/AKT/mTOR-and mitogen-activated protein kinase (MAPK) signaling pathway activation and promoting tumoral activity. Helicobacter pylori, growth factors, cytokines, hormones, and oxidative stress also activate both pathways, enhancing GC development. In clinical trials, promising results have come from monoclonal antibodies such as trastuzumab and ramucirumab. Dual inhibitors targeting the PI3K/AKT/mTOR and MAPK signaling pathways were used in vitro studies, also with promising results. The main aim of this review is to present GC incidence and risk factors and the dysregulations of the two protein kinase complexes together with their specific inhibitors.
Collapse
Affiliation(s)
- Diana-Theodora Morgos
- Discipline of Anatomy, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Constantin Stefani
- Department I of Family Medicine and Clinical Base, “Dr. Carol Davila” Central Military Emergency University Hospital, 010825 Bucharest, Romania
| | - Daniela Miricescu
- Discipline of Biochemistry, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Maria Greabu
- Discipline of Biochemistry, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Silviu Stanciu
- Department of Internal Medicine and Gastroenterology, Carol Davila University of Medicine and Pharmacy, Central Military Emergency University Hospital, 010825 Bucharest, Romania;
| | - Silvia Nica
- Emergency Discipline, University Hospital of Bucharest, 050098 Bucharest, Romania;
| | - Iulia-Ioana Stanescu-Spinu
- Discipline of Physiology, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (I.-I.S.-S.); (D.G.B.); (A.-E.B.-S.)
| | - Daniela Gabriela Balan
- Discipline of Physiology, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (I.-I.S.-S.); (D.G.B.); (A.-E.B.-S.)
| | - Andra-Elena Balcangiu-Stroescu
- Discipline of Physiology, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (I.-I.S.-S.); (D.G.B.); (A.-E.B.-S.)
| | - Elena-Claudia Coculescu
- Discipline of Oral Pathology, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Dragos-Eugen Georgescu
- Department of General Surgery, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 50474 Bucharest, Romania;
- Department of General Surgery, “Dr. Ion Cantacuzino” Clinical Hospital, 020475 Bucharest, Romania
| | - Remus Iulian Nica
- Central Military Emergency University Hospital “Dr. Carol Davila”, 010825 Bucharest, Romania;
- Discipline of General Surgery, Faculty of Midwifery and Nursing, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|