1
|
Wu M, Liu Y, Zhu X, Zhang X, Kong Q, Lu W, Yuan X, Liu Y, Liu Y, Lu K, Dai Y, Zhang B. Advances in i-motif structures: Stability, gene expression, and therapeutic applications. Int J Biol Macromol 2025; 311:143555. [PMID: 40294675 DOI: 10.1016/j.ijbiomac.2025.143555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/12/2025] [Accepted: 04/25/2025] [Indexed: 04/30/2025]
Abstract
The i-motif, a cytosine-rich DNA structure formed under acidic conditions, plays a pivotal role in regulating gene expression and holds significant therapeutic potential across various diseases. Found in the promoter regions of oncogenes such as Bcl-2, C-MYC, and KRAS, i-motifs dynamically interact with transcription factors and ligands to modulate oncogene activity. Their pH-sensitive nature enables innovative applications, including cellular pH sensors like the "i-switch" and drug delivery platforms such as DNA hydrogels that release therapeutics in acidic tumor microenvironments. However, challenges remain in developing specific ligands and detection methods. Advances in nanotechnology and multi-target therapies highlight the transformative potential of i-motifs in precision medicine. This review underscores the importance of i-motifs as therapeutic targets and tools, bridging fundamental research with clinical applications in oncology, metabolic disorders, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Mengqing Wu
- College of Basic Medicine, Zunyi Medical University, Zunyi 563000, Guizhou Province, China
| | - Yang Liu
- College of Basic Medicine, Zunyi Medical University, Zunyi 563000, Guizhou Province, China
| | - Xiao Zhu
- College of Basic Medicine, Zunyi Medical University, Zunyi 563000, Guizhou Province, China
| | - Xiaoke Zhang
- College of Basic Medicine, Zunyi Medical University, Zunyi 563000, Guizhou Province, China
| | - Qinghong Kong
- College of Basic Medicine, Zunyi Medical University, Zunyi 563000, Guizhou Province, China
| | - Wei Lu
- College of Basic Medicine, Zunyi Medical University, Zunyi 563000, Guizhou Province, China
| | - Xiao Yuan
- College of Basic Medicine, Zunyi Medical University, Zunyi 563000, Guizhou Province, China
| | - Yunlai Liu
- College of Basic Medicine, Zunyi Medical University, Zunyi 563000, Guizhou Province, China
| | - Yang Liu
- School of Public Health, Zunyi Medical University, Zunyi 563000, Guizhou Province, China
| | - Keyu Lu
- College of Basic Medicine, Zunyi Medical University, Zunyi 563000, Guizhou Province, China.
| | - Yangxue Dai
- College of Basic Medicine, Zunyi Medical University, Zunyi 563000, Guizhou Province, China.
| | - Bo Zhang
- College of Basic Medicine, Zunyi Medical University, Zunyi 563000, Guizhou Province, China.
| |
Collapse
|
2
|
Huang Y, Zhang Z, Tong H, Qin W, Li Q, Ma L, Ren Z, Chen W, Zhang Y, Zhong Y, Yao L, Zhou P. Chondroitin polymerizing factor promotes development and progression of colorectal cancer via facilitating transcription of VEGFB. J Cell Mol Med 2024; 28:e18268. [PMID: 38775031 PMCID: PMC11109815 DOI: 10.1111/jcmm.18268] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 02/28/2024] [Accepted: 03/13/2024] [Indexed: 05/24/2024] Open
Abstract
Colorectal cancer (CRC) is a highly prevalent malignancy affecting the digestive system on a global scale. This study aimed to explore the previously unexplored role of CHPF in the progression of CRC. Our results revealed a significant upregulation of CHPF expression in CRC tumour tissues compared to normal tissues, with its levels correlating with tumour malignancy. In vitro experiments using CRC cell lines demonstrated that inhibiting CHPF expression suppressed cell proliferation, colony formation and cell migration, while promoting apoptosis. Conversely, overexpressing CHPF had the opposite effect. Additionally, our xenograft models in mice confirmed the inhibitory impact of CHPF knockdown on CRC progression using various cell models. Mechanistic investigations unveiled that CHPF may enhance VEGFB expression through E2F1-mediated transcription. Functionally, suppressing VEGFB expression successfully mitigated the oncogenic effects induced by CHPF overexpression. Collectively, these findings suggest that CHPF may act as a tumour promoter in CRC, operating in a VEGFB-dependent manner and could be a potential target for therapeutic interventions in CRC treatment.
Collapse
Affiliation(s)
- Yuan Huang
- Shanghai Collaborative Innovation Center of Endoscopy, Endoscopy Center and Endoscopy Research Institute, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Zhen Zhang
- Shanghai Collaborative Innovation Center of Endoscopy, Endoscopy Center and Endoscopy Research Institute, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Hanxing Tong
- Department of General Surgery, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Wenzheng Qin
- Shanghai Collaborative Innovation Center of Endoscopy, Endoscopy Center and Endoscopy Research Institute, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Quanlin Li
- Shanghai Collaborative Innovation Center of Endoscopy, Endoscopy Center and Endoscopy Research Institute, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Lili Ma
- Shanghai Collaborative Innovation Center of Endoscopy, Endoscopy Center and Endoscopy Research Institute, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Zhong Ren
- Shanghai Collaborative Innovation Center of Endoscopy, Endoscopy Center and Endoscopy Research Institute, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Weifeng Chen
- Shanghai Collaborative Innovation Center of Endoscopy, Endoscopy Center and Endoscopy Research Institute, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Yiqun Zhang
- Shanghai Collaborative Innovation Center of Endoscopy, Endoscopy Center and Endoscopy Research Institute, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Yunshi Zhong
- Shanghai Collaborative Innovation Center of Endoscopy, Endoscopy Center and Endoscopy Research Institute, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Liqing Yao
- Shanghai Collaborative Innovation Center of Endoscopy, Endoscopy Center and Endoscopy Research Institute, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Pinghong Zhou
- Shanghai Collaborative Innovation Center of Endoscopy, Endoscopy Center and Endoscopy Research Institute, Zhongshan HospitalFudan UniversityShanghaiChina
| |
Collapse
|