1
|
He L. Biomaterials for Regenerative Cranioplasty: Current State of Clinical Application and Future Challenges. J Funct Biomater 2024; 15:84. [PMID: 38667541 PMCID: PMC11050949 DOI: 10.3390/jfb15040084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Acquired cranial defects are a prevalent condition in neurosurgery and call for cranioplasty, where the missing or defective cranium is replaced by an implant. Nevertheless, the biomaterials in current clinical applications are hardly exempt from long-term safety and comfort concerns. An appealing solution is regenerative cranioplasty, where biomaterials with/without cells and bioactive molecules are applied to induce the regeneration of the cranium and ultimately repair the cranial defects. This review examines the current state of research, development, and translational application of regenerative cranioplasty biomaterials and discusses the efforts required in future research. The first section briefly introduced the regenerative capacity of the cranium, including the spontaneous bone regeneration bioactivities and the presence of pluripotent skeletal stem cells in the cranial suture. Then, three major types of biomaterials for regenerative cranioplasty, namely the calcium phosphate/titanium (CaP/Ti) composites, mineralised collagen, and 3D-printed polycaprolactone (PCL) composites, are reviewed for their composition, material properties, and findings from clinical trials. The third part discusses perspectives on future research and development of regenerative cranioplasty biomaterials, with a considerable portion based on issues identified in clinical trials. This review aims to facilitate the development of biomaterials that ultimately contribute to a safer and more effective healing of cranial defects.
Collapse
Affiliation(s)
- Lizhe He
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310028, China
| |
Collapse
|
2
|
Cohen T, Kossover O, Peled E, Bick T, Hasanov L, Chun TT, Cool S, Lewinson D, Seliktar D. A combined cell and growth factor delivery for the repair of a critical size tibia defect using biodegradable hydrogel implants. J Tissue Eng Regen Med 2022; 16:380-395. [PMID: 35119200 PMCID: PMC9303443 DOI: 10.1002/term.3285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/09/2021] [Accepted: 01/11/2022] [Indexed: 11/16/2022]
Abstract
The ability to repair critical‐sized long‐bone injuries using growth factor and cell delivery was investigated using hydrogel biomaterials. Physiological doses of the recombinant human bone morphogenic protein‐2 (rhBMP2) were delivered in a sustained manner from a biodegradable hydrogel containing peripheral human blood‐derived endothelial progenitor cells (hEPCs). The biodegradable implants made from polyethylene glycol (PEG) and denatured fibrinogen (PEG‐fibrinogen, PF) were loaded with 7.7 μg/ml of rhBMP2 and 2.5 × 106 cells/ml hEPCs. The safety and efficacy of the implant were tested in a rodent model of a critical‐size long‐bone defect. The hydrogel implants were formed ex‐situ and placed into defects in the tibia of athymic nude rats and analyzed for bone repair after 13 weeks following surgery. The hydrogels containing a combination of 7.7 μg/ml of rhBMP2 and 2.5 × 106 cells/ml hEPCs were compared to control hydrogels containing 7.7 μg/ml of rhBMP2 only, 2.5 × 106 cells/ml hEPCs only, or bare hydrogels. Assessments of bone repair include histological analysis, bone formation at the site of implantation using quantitative microCT, and assessment of implant degradation. New bone formation was detected in all treated animals, with the highest amounts found in the treatments that included animals that combined the PF implant with rhBMP2. Moreover, statistically significant increases in the tissue mineral density (TMD), trabecular number and trabecular thickness were observed in defects treated with rhBMP2 compared to non‐rhBMP2 defects. New bone formation was significantly higher in the hEPC‐treated defects compared to bare hydrogel defects, but there were no significant differences in new bone formation, trabecular number, trabecular thickness or TMD at 13 weeks when comparing the rhBMP2 + hEPCs‐treated defects to rhBMP2‐treated defects. The study concludes that the bone regeneration using hydrogel implants containing hEPCs are overshadowed by enhanced osteogenesis associated with sustained delivery of rhBMP2.
Collapse
Affiliation(s)
- Talia Cohen
- The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Olga Kossover
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Eli Peled
- The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.,Department of Orthopedic Surgery, Rambam Medical Center, Haifa, Israel
| | - Tova Bick
- The Institute of Research of Bone Healing, the Rambam Healthcare Campus, Haifa, Israel
| | - Lena Hasanov
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Tan Tuan Chun
- Glycotherapeutics Group, Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore
| | - Simon Cool
- Glycotherapeutics Group, Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore
| | - Dina Lewinson
- The Institute of Research of Bone Healing, the Rambam Healthcare Campus, Haifa, Israel
| | - Dror Seliktar
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
3
|
Hayashi K, Shimabukuro M, Kishida R, Tsuchiya A, Ishikawa K. Structurally optimized honeycomb scaffolds with outstanding ability for vertical bone augmentation. J Adv Res 2022; 41:101-112. [DOI: 10.1016/j.jare.2021.12.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/25/2021] [Accepted: 12/22/2021] [Indexed: 12/12/2022] Open
|
4
|
Zhang Z, Gan Y, Guo Y, Lu X, Li X. Animal models of vertical bone augmentation (Review). Exp Ther Med 2021; 22:919. [PMID: 34335880 PMCID: PMC8290405 DOI: 10.3892/etm.2021.10351] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/10/2021] [Indexed: 11/28/2022] Open
Abstract
Vertical bone augmentation is an important challenge in dental implantology. Existing vertical bone augmentation techniques, along with bone grafting materials, have achieved certain clinical progress but continue to have numerous limitations. In order to evaluate the possibility of using biomaterials to develop bone substitutes, medical devices and/or new bone grafting techniques for vertical bone augmentation, it is essential to establish clinically relevant animal models to investigate their biocompatibility, mechanical properties, applicability and safety. The present review discusses recent animal experiments related to vertical bone augmentation. In addition, surgical protocols for establishing relevant preclinical models with various animal species were reviewed. The present study aims to provide guidance for selecting experimental animal models of vertical bone augmentation.
Collapse
Affiliation(s)
- Zepeng Zhang
- Department of Oral and Maxillofacial Surgery, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, P.R. China
| | - Yaxin Gan
- Department of Oral and Maxillofacial Surgery, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, P.R. China
| | - Yarong Guo
- Department of Oral and Maxillofacial Surgery, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, P.R. China
| | - Xuguang Lu
- Department of Oral and Maxillofacial Surgery, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, P.R. China
| | - Xianqi Li
- Department of Oral and Maxillofacial Surgery, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, P.R. China.,Department of Oral and Maxillofacial Surgery, School of Dentistry, Matsumoto Dental University, Shiojiri, Nagano 399-0781, Japan
| |
Collapse
|
5
|
Zhao F, Yang Z, Liu L, Chen D, Shao L, Chen X, Fz, Ls, Fz, Zy, Ll, Xc, Dc, Xc, Ls, Fz, Xc. Design and evaluation of a novel sub-scaffold dental implant system based on the osteoinduction of micro-nano bioactive glass. BIOMATERIALS TRANSLATIONAL 2020; 1:82-88. [PMID: 35837658 PMCID: PMC9255813 DOI: 10.3877/cma.j.issn.2096-112x.2020.01.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/26/2020] [Accepted: 10/30/2020] [Indexed: 12/16/2022]
Abstract
Alveolar ridge atrophy brings great challenges for endosteal implantation due to the lack of adequate vertical bone mass to hold the implants. To overcome this limitation, we developed a novel dental implant design: sub-scaffold dental implant system (SDIS), which is composed of a metal implant and a micro-nano bioactive glass scaffold. This implant system can be directly implanted under mucous membranes without adding any biomolecules or destroying the alveolar ridge. To evaluate the performance of the novel implant system in vivo, SDISs were implanted into the sub-epicranial aponeurosis space of Sprague-Dawley rats. After 6 weeks, the SDIS and surrounding tissues were collected and analysed by micro-CT, scanning electron microscopy and histology. Our results showed that SDISs implanted into the sub-epicranial aponeurosis had integrated with the skull without any mobility and could stably support a denture. Moreover, this design achieved alveolar ridge augmentation, as active osteogenesis could be observed outside the cortical bone. Considering that the microenvironment of the sub-epicranial aponeurosis space is similar to that of the alveolar ridge, SDISs have great potential for clinical applications in the treatment of atrophic alveolar ridges. The study was approved by the Animal Care Committee of Guangdong Pharmaceutical University (approval No. 2017370).
Collapse
Affiliation(s)
- Fujian Zhao
- Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Zhen Yang
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong Province, China,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong Province, China
| | - Lu Liu
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong Province, China,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong Province, China
| | - Dafu Chen
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, Beijing Research Institute of Orthopaedics and Traumatology, Beijing Jishuitan Hospital, Beijing, China
| | - Longquan Shao
- Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong Province, China,Corresponding authors: Xiaofeng Chen, ; Longquan Shao,
| | - Xiaofeng Chen
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong Province, China,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong Province, China,Corresponding authors: Xiaofeng Chen, ; Longquan Shao,
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Calciolari E, Donos N. Proteomic and Transcriptomic Approaches for Studying Bone Regeneration in Health and Systemically Compromised Conditions. Proteomics Clin Appl 2020; 14:e1900084. [PMID: 32131137 DOI: 10.1002/prca.201900084] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 02/05/2020] [Indexed: 01/04/2023]
Abstract
Bone regeneration is a complex biological process, where the molecular mechanisms are only partially understood. In an ageing population, where the prevalence of chronic diseases with an impact on bone metabolism is increasing, it becomes crucial to identify new strategies that would improve regenerative outcomes also in medically compromised patients. In this context, omics are demonstrating a great potential, as they offer new insights on the molecular mechanisms regulating physiologic/pathologic bone healing and, at the same time, allow the identification of new diagnostic and therapeutic targets. This review provides an overview on the current evidence on the use of transcriptomic and proteomic approaches in bone regeneration research, particularly in relation to type 1 diabetes and osteoporosis, and discusses future scenarios and potential benefits and limitations on the integration of multi-omics. It is suggested that future research will leverage the synergy of omics with statistical modeling and bioinformatics to prompt the understanding of the biology underpinning bone formation in health and medically compromised conditions. With an eye toward personalized medicine, new strategies combining the mining of large datasets and bioinformatic data with a detailed characterization of relevant phenotypes will need to be pursued to further the understanding of disease mechanisms.
Collapse
Affiliation(s)
- Elena Calciolari
- Centre for Oral Immunobiology and Regenerative Medicine & Centre for Oral Clinical Research, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Turner Street, London, E1 2AD, UK.,Department of Medicine and Surgery, School of Dental Medicine, University of Parma, via Gramsci 14, Parma, 43126, Italy
| | - Nikolaos Donos
- Centre for Oral Immunobiology and Regenerative Medicine & Centre for Oral Clinical Research, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Turner Street, London, E1 2AD, UK
| |
Collapse
|
7
|
Almeida ALG, Freitas GP, Lopes HB, Gimenes R, Siessere S, Sousa LG, Beloti MM, Rosa AL. Effect of stem cells combined with a polymer/ceramic membrane on osteoporotic bone repair. Braz Oral Res 2019; 33:e079. [PMID: 31531565 DOI: 10.1590/1807-3107bor-2019.vol33.0079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 06/06/2019] [Indexed: 11/22/2022] Open
Abstract
Cell therapy associated with guided bone regeneration (GBR) can be used to treat bone defects under challenging conditions such as osteoporosis. This study aimed to evaluate the effect of mesenchymal stem cells (MSCs) in combination with a poly(vinylidene-trifluoroethylene)/barium titanate (PVDF-TrFE/BT) membrane on bone repair in osteoporotic rats. Osteoporosis was induced in female rats by bilateral removal of the ovaries (OVX) or sham surgery (SHAM), and the osteoporotic condition was characterized after 5 months by microtomographic and morphometric analyses. Calvarial defects were created in osteoporotic rats that immediately received the PVDF-TrFE/BT membrane. After 2 weeks, bone marrow-derived MSCs from healthy rats, characterized by the expression of surface markers using flow cytometry, or phosphate-buffered saline (PBS) (Control) were injected into the defects and bone formation was evaluated 4 weeks post-injection by microtomographic, morphometric, and histological analyses. A reduction in the amount of bone tissue in the femurs of OVX compared with SHAM rats confirmed the osteoporotic condition of the experimental model. More bone formation was observed when the defects were injected with MSCs compared to that with PBS. The modification that we are proposing in this study for the classical GBR approach where cells are locally injected after a membrane implantation may be a promising therapeutic strategy to increase bone formation under osteoporotic condition.
Collapse
Affiliation(s)
| | - Gileade Pereira Freitas
- Universidade de São Paulo - USP, School of Dentistry of Ribeirão Preto , Bone Research Lab , Ribeirão Preto , SP , Brazil
| | - Helena Bacha Lopes
- Universidade de São Paulo - USP, School of Dentistry of Ribeirão Preto , Bone Research Lab , Ribeirão Preto , SP , Brazil
| | - Rossano Gimenes
- Universidade Federal de Itajubá - Unifei, Institute of Physics and Chemistry , Itajubá , MG , Brazil
| | - Selma Siessere
- Universidade de São Paulo - USP, School of Dentistry of Ribeirão Preto , Department of Basic and Oral Biology , Ribeirão Preto , SP , Brazil
| | - Luiz Gustavo Sousa
- Universidade de São Paulo - USP, School of Dentistry of Ribeirão Preto , Department of Basic and Oral Biology , Ribeirão Preto , SP , Brazil
| | - Marcio Mateus Beloti
- Universidade de São Paulo - USP, School of Dentistry of Ribeirão Preto , Bone Research Lab , Ribeirão Preto , SP , Brazil
| | - Adalberto Luiz Rosa
- Universidade de São Paulo - USP, School of Dentistry of Ribeirão Preto , Bone Research Lab , Ribeirão Preto , SP , Brazil
| |
Collapse
|
8
|
Omar O, Elgali I, Dahlin C, Thomsen P. Barrier membranes: More than the barrier effect? J Clin Periodontol 2019; 46 Suppl 21:103-123. [PMID: 30667525 PMCID: PMC6704362 DOI: 10.1111/jcpe.13068] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/21/2018] [Accepted: 01/09/2019] [Indexed: 12/13/2022]
Abstract
AIM To review the knowledge on the mechanisms controlling membrane-host interactions in guided bone regeneration (GBR) and investigate the possible role of GBR membranes as bioactive compartments in addition to their established role as barriers. MATERIALS AND METHODS A narrative review was utilized based on in vitro, in vivo and available clinical studies on the cellular and molecular mechanisms underlying GBR and the possible bioactive role of membranes. RESULTS Emerging data demonstrate that the membrane contributes bioactively to the regeneration of underlying defects. The cellular and molecular activities in the membrane are intimately linked to the promoted bone regeneration in the underlying defect. Along with the native bioactivity of GBR membranes, incorporating growth factors and cells in membranes or with graft materials may augment the regenerative processes in underlying defects. CONCLUSION In parallel with its barrier function, the membrane plays an active role in hosting and modulating the molecular activities of the membrane-associated cells during GBR. The biological events in the membrane are linked to the bone regenerative and remodelling processes in the underlying defect. Furthermore, the bone-promoting environments in the two compartments can likely be boosted by strategies targeting both material aspects of the membrane and host tissue responses.
Collapse
Affiliation(s)
- Omar Omar
- Department of BiomaterialsInstitute of Clinical SciencesSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Ibrahim Elgali
- Department of BiomaterialsInstitute of Clinical SciencesSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Christer Dahlin
- Department of BiomaterialsInstitute of Clinical SciencesSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Department of Oral Maxillofacial Surgery/ENTNU‐Hospital OrganisationTrollhättanSweden
| | - Peter Thomsen
- Department of BiomaterialsInstitute of Clinical SciencesSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| |
Collapse
|
9
|
Zhao F, Xie W, Zhang W, Fu X, Gao W, Lei B, Chen X. 3D Printing Nanoscale Bioactive Glass Scaffolds Enhance Osteoblast Migration and Extramembranous Osteogenesis through Stimulating Immunomodulation. Adv Healthc Mater 2018; 7:e1800361. [PMID: 29952135 DOI: 10.1002/adhm.201800361] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 05/17/2018] [Indexed: 11/10/2022]
Abstract
Bioactive glass (BG) can repair bone defects, however, it is not clear whether BG has the ability for bone augmentation without making any bone defect. Unlike the intramembranous osteogenesis in bone defect repair, the extramembranous osteogenesis occurs outside the cortical bone and the osteoprogenitor cells show the reversed migration. Herein, nanoscale bioactive glass scaffolds (BGSs) are fabricated, and their role and immunomodulation-related mechanism in the extramembranous osteogenesis are investigated. The in vitro migration and differentiation of calvaria preosteoblasts are studied by culturing with peripheral macrophage-conditioned medium after stimulating with BGSs. The results indicate that the proinflammatory environment significantly promotes preosteoblast migration, but has limited effect on osteogenic differentiation. However, the anti-inflammatory environment and BGSs significantly increase the osteogenic differentiation of preosteoblasts. The in vivo extramembranous osteogenesis evaluation shows that the active osteogenesis is observed near the skull. The osteoblasts derived from the reverse migration of cranial cells can be confirmed by comparing with the scaffolds implanted in back subcutaneous which is just colonized by fibrous tissue. This study may bring a fresh perspective for BG in bone regeneration and explore the osteogenic immunomodulation of peripheral macrophages in a nonosteogenic environment.
Collapse
Affiliation(s)
- Fujian Zhao
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- National Engineering Research Center for Tissue Restoration, South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Materials and Engineering, Ministry of Education, South China University of Technology, Guangzhou, 510006, China
| | - Weihan Xie
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- National Engineering Research Center for Tissue Restoration, South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Materials and Engineering, Ministry of Education, South China University of Technology, Guangzhou, 510006, China
| | - Wen Zhang
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- National Engineering Research Center for Tissue Restoration, South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Materials and Engineering, Ministry of Education, South China University of Technology, Guangzhou, 510006, China
| | - Xiaoling Fu
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- National Engineering Research Center for Tissue Restoration, South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Materials and Engineering, Ministry of Education, South China University of Technology, Guangzhou, 510006, China
| | - Wendong Gao
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- National Engineering Research Center for Tissue Restoration, South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Materials and Engineering, Ministry of Education, South China University of Technology, Guangzhou, 510006, China
| | - Bo Lei
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710000, China
| | - Xiaofeng Chen
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- National Engineering Research Center for Tissue Restoration, South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Materials and Engineering, Ministry of Education, South China University of Technology, Guangzhou, 510006, China
| |
Collapse
|
10
|
Qasim SB, Najeeb S, Delaine-Smith RM, Rawlinson A, Ur Rehman I. Potential of electrospun chitosan fibers as a surface layer in functionally graded GTR membrane for periodontal regeneration. Dent Mater 2016; 33:71-83. [PMID: 27842886 DOI: 10.1016/j.dental.2016.10.003] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 10/02/2016] [Accepted: 10/24/2016] [Indexed: 12/21/2022]
Abstract
OBJECTIVE The regeneration of periodontal tissues lost as a consequence of destructive periodontal disease remains a challenge for clinicians. Guided tissue regeneration (GTR) has emerged as the most widely practiced regenerative procedure. Aim of this study was to electrospin chitosan (CH) membranes with a low or high degree of fiber orientation and examines their suitability for use as a surface layer in GTR membranes, which can ease integration with the periodontal tissue by controlling the direction of cell growth. METHODS A solution of CH-doped with polyethylene oxide (PEO) (ratio 95:5) was prepared for electrospinning. Characterization was performed for biophysiochemical and mechanical properties by means of scanning electron microscopy (SEM), Fourier Transform Infrared (FTIR) spectroscopy, swelling ratio, tensile testing and monitoring degradation using pH analysis, weight profile, ultraviolet-visible (UV-vis) spectroscopy and FTIR analysis. Obtained fibers were also assessed for viability and matrix deposition using human osteosarcoma (MG63) and human embryonic stem cell-derived mesenchymal progenitor (hES-MP) cells. RESULTS Random and aligned CH fibers were obtained. FTIR analysis showed neat CH spectral profile before and after electrospinning. Electropsun mats were conducive to cellular attachment and viability increased with time. The fibers supported matrix deposition by hES-MPs. Histological sections showed cellular infiltration as well. SIGNIFICANCE The surface layer would act as seal to prevent junctional epithelium from falling into the defect site and hence maintain space for bone regeneration.
Collapse
Affiliation(s)
- Saad B Qasim
- Materials Science and Engineering Department, Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, United Kingdom
| | - Shariq Najeeb
- School of Clinical Dentistry, University of Sheffield, University of Sheffield, Sheffield S10 2SZ, United Kingdom
| | - Robin M Delaine-Smith
- Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, Mile End Road E1 4NS, London, United Kingdom
| | - Andrew Rawlinson
- Academic Unit of Restorative Dentistry, School of Clinical Dentistry, University of Sheffield, Sheffield S10 2SZ, United Kingdom
| | - Ihtesham Ur Rehman
- Materials Science and Engineering Department, Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, United Kingdom.
| |
Collapse
|
11
|
Real-time-guided bone regeneration around standardized critical size calvarial defects using bone marrow-derived mesenchymal stem cells and collagen membrane with and without using tricalcium phosphate: an in vivo micro-computed tomographic and histologic experiment in rats. Int J Oral Sci 2016; 8:7-15. [PMID: 27025260 PMCID: PMC4822179 DOI: 10.1038/ijos.2015.34] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2014] [Indexed: 11/18/2022] Open
Abstract
The aim of the present real time in vivo micro-computed tomography (µCT) and histologic experiment was to assess the efficacy of guided bone regeneration (GBR) around standardized calvarial critical size defects (CSD) using bone marrow-derived mesenchymal stem cells (BMSCs), and collagen membrane (CM) with and without tricalcium phosphate (TCP) graft material. In the calvaria of nine female Sprague-Dawley rats, full-thickness CSD (diameter 4.6 mm) were created under general anesthesia. Treatment-wise, rats were divided into three groups. In group 1, CSD was covered with a resorbable CM; in group 2, BMSCs were filled in CSD and covered with CM; and in group 3, TCP soaked in BMSCs was placed in CSD and covered with CM. All defects were closed using resorbable sutures. Bone volume and bone mineral density of newly formed bone (NFB) and remaining TCP particles and rate of new bone formation was determined at baseline, 2, 4, 6, and 10 weeks using in vivo µCT. At the 10th week, the rats were killed and calvarial segments were assessed histologically. The results showed that the hardness of NFB was similar to that of the native bone in groups 1 and 2 as compared to the NFB in group 3. Likewise, values for the modulus of elasticity were also significantly higher in group 3 compared to groups 1 and 2. This suggests that TCP when used in combination with BMSCs and without CM was unable to form bone of significant strength that could possibly provide mechanical “lock” between the natural bone and NFB. The use of BMSCs as adjuncts to conventional GBR initiated new bone formation as early as 2 weeks of treatment compared to when GBR is attempted without adjunct BMSC therapy.
Collapse
|
12
|
Machtei EE, Kim DM, Karimbux N, Zigdon-Giladi H. The use of endothelial progenitor cells combined with barrier membrane for the reconstruction of peri-implant osseous defects: an animal experimental study. J Clin Periodontol 2016; 43:289-97. [DOI: 10.1111/jcpe.12511] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2015] [Indexed: 11/30/2022]
Affiliation(s)
- Eli E. Machtei
- Department of Periodontology; School of Graduate Dentistry and Laboratory for Bone Repair; Rambam Medical Center and Faculty of Medicine - Technion (Israeli Institute of Technology); Haifa Israel
- Division of Periodontology; Department of Oral Medicine, Infection and Immunity; Harvard School of Dental Medicine; Boston Massachusetts USA
| | - David M. Kim
- Division of Periodontology; Department of Oral Medicine, Infection and Immunity; Harvard School of Dental Medicine; Boston Massachusetts USA
| | - Nadeem Karimbux
- Department of Periodontology; School of Dental Medicine; Tufts University; Boston Massachusetts USA
| | - Hadar Zigdon-Giladi
- Department of Periodontology; School of Graduate Dentistry and Laboratory for Bone Repair; Rambam Medical Center and Faculty of Medicine - Technion (Israeli Institute of Technology); Haifa Israel
| |
Collapse
|
13
|
Zhang B, Liu N, Shi H, Wu H, Gao Y, He H, Gu B, Liu H. High glucose microenvironments inhibit the proliferation and migration of bone mesenchymal stem cells by activating GSK3β. J Bone Miner Metab 2016; 34:140-50. [PMID: 25840567 DOI: 10.1007/s00774-015-0662-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 02/01/2015] [Indexed: 12/18/2022]
Abstract
Diabetes mellitus involves metabolic changes that can impair bone repair. Bone mesenchymal stem cells (BMSCs) play an important role in bone regeneration. However, the bone regeneration ability of BMSCs is inhibited in high glucose microenvironments. It can be speculated that this effect is due to changes in BMSCs' proliferation and migration ability, because the recruitment of factors with an adequate number of MSCs and the microenvironment around the site of bone injury are required for effective bone repair. Recent genetic evidence has shown that the Cyclin D1 and the CXC receptor 4 (CXCR-4) play important roles in the proliferation and migration of BMSCs. In this study we determined the specific role of glycogen synthase kinase-3β (GSK3β) in the proliferation and migration of BMSCs in high glucose microenvironments. The proliferation and migration ability of BMSCs were suppressed under high glucose conditions. We showed that high glucose activates GSK3β but suppresses CXCR-4, β-catenin, LEF-1, and cyclin D1. Inhibition of GSK3β by LiCl led to increased levels of β-catenin, LEF-1, cyclin D1, and CXCR-4 expression. Our data indicate that GSK3β plays an important role in regulating the proliferation and migration of BMSCs by inhibiting cyclin D1 and CXCR-4 under high glucose conditions.
Collapse
Affiliation(s)
- Bo Zhang
- Stomatology Department, General Hospital of Chinese PLA, 28 FuXing Road, Beijing, 100853, China
| | - Na Liu
- Stomatology Department, General Hospital of Chinese PLA, 28 FuXing Road, Beijing, 100853, China
| | - Haigang Shi
- Technical Institute of Physics and Chemistry of CAS, Beijing, China
| | - Hao Wu
- Stomatology Department, General Hospital of Chinese PLA, 28 FuXing Road, Beijing, 100853, China
| | - Yuxuan Gao
- Stomatology Department, General Hospital of Chinese PLA, 28 FuXing Road, Beijing, 100853, China
| | - Huixia He
- Stomatology Department, General Hospital of Chinese PLA, 28 FuXing Road, Beijing, 100853, China
| | - Bin Gu
- Stomatology Department, General Hospital of Chinese PLA, 28 FuXing Road, Beijing, 100853, China.
| | - Hongchen Liu
- Stomatology Department, General Hospital of Chinese PLA, 28 FuXing Road, Beijing, 100853, China.
| |
Collapse
|
14
|
|
15
|
Zigdon-Giladi H, Bick T, Lewinson D, Machtei EE. Mesenchymal stem cells and endothelial progenitor cells stimulate bone regeneration and mineral density. J Periodontol 2013; 85:984-90. [PMID: 24147844 DOI: 10.1902/jop.2013.130475] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Alveolar bone deficiency is a major clinical problem in maxillofacial reconstructive surgery. The available surgical techniques to enhance extracortical bone augmentation are generally unpredictable and not satisfying. The aim of the present study is to quantify extracortical bone augmentation and tissue mineral density (TMD) after cotransplantation of peripheral blood-derived endothelial progenitor cells (EPCs) and bone marrow-derived mesenchymal stem cells (MSCs) by microcomputed tomography (micro-CT). METHODS Bone regeneration was tested in the guided bone regeneration rat calvaria model. Gold domes filled with beta tricalcium phosphate (β-TCP; control [CNT]) or β-TCP mixed with 5 × 10(5) rat EPCs and 5 × 10(5) rat osteogenic transformed MSCs (EPC/otMSCs) were fixed to the exposed calvaria. Rats were sacrificed after 3 months. Bone volume fraction (BV/TV) and TMD were analyzed using micro-CT. In the middle of the dome, a cylindrical region of interest was defined (it represents the area in which implants are placed) and subdivided into bottom, middle, and top to analyze the effect of the distance from the calvaria on bone formation. RESULTS In the whole cylinder, BV/TV and TMD were higher in the EPC/otMSC group compared with CNT (BV/TV: 22.9% ± 4.4% versus 29.1 ± 2.2%, P = 0.02; TMD: 937.79 ± 18.68 versus 960.78 ± 5.8 mgHA/ccm, P = 0.03; CNT versus EPC/otMSC, respectively). In each of the three subregions, BV/TV was higher in the EPC/otMSC group compared with CNT (top: 20.25% ± 2.4% versus 23.74% ± 1.5%, P = 0.007; middle: 23.2% ± 4.8% versus 28% ± 2.2%, P = 0.05; bottom: 25.3% ± 7.6% versus 35.7% ± 4.9%, P = 0.02; CNT versus EPC/otMSC, respectively). CONCLUSION Three-dimensional quantification by micro-CT demonstrated that cotransplantation of EPC/otMSCs significantly improved bone formation and mineral density.
Collapse
Affiliation(s)
- Hadar Zigdon-Giladi
- Department of Periodontology, School of Graduate Dentistry, Rambam Health Care Campus, Haifa, Israel
| | | | | | | |
Collapse
|
16
|
Co-Transplantation of Endothelial Progenitor Cells and Mesenchymal Stem Cells Promote Neovascularization and Bone Regeneration. Clin Implant Dent Relat Res 2013; 17:353-9. [DOI: 10.1111/cid.12104] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
17
|
Zigdon-Giladi H, Bick T, Morgan EF, Lewinson D, Machtei EE. Peripheral Blood-Derived Endothelial Progenitor Cells Enhance Vertical Bone Formation. Clin Implant Dent Relat Res 2013; 17:83-92. [DOI: 10.1111/cid.12078] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Hadar Zigdon-Giladi
- Department of Periodontology; School of Graduate Dentistry; Rambam Health Care Campus; Haifa Israel
- Research Institute for Bone Repair; Rambam Health Care Campus; Haifa Israel
- The Rappaport Family Faculty of Medicine; Technion - Israel Institute of Technology; Haifa Israel
| | - Tova Bick
- Research Institute for Bone Repair; Rambam Health Care Campus; Haifa Israel
| | - Elise F. Morgan
- Department of Mechanical Engineering; Boston University; Boston MA USA
| | - Dina Lewinson
- Research Institute for Bone Repair; Rambam Health Care Campus; Haifa Israel
| | - Eli E. Machtei
- Department of Periodontology; School of Graduate Dentistry; Rambam Health Care Campus; Haifa Israel
- The Rappaport Family Faculty of Medicine; Technion - Israel Institute of Technology; Haifa Israel
| |
Collapse
|