1
|
Sillmann YM, Eber P, Orbeta E, Wilde F, Gross AJ, Guastaldi FPS. Milestones in Mandibular Bone Tissue Engineering: A Systematic Review of Large Animal Models and Critical-Sized Defects. J Clin Med 2025; 14:2717. [PMID: 40283548 PMCID: PMC12027812 DOI: 10.3390/jcm14082717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 04/07/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025] Open
Abstract
Background/Objectives: Mandibular reconstruction following trauma or oncologic resection is crucial for restoring function and aesthetics. While autologous bone grafting remains the gold standard, it presents challenges such as donor site morbidity and graft availability. Bone tissue engineering (BTE) offers an innovative alternative, integrating scaffolds, osteogenic cells, and bioactive factors to regenerate functional bone. This systematic review evaluates BTE strategies for mandibular reconstruction, focusing on critical-sized defects in large animal models and their translational potential for clinical applications. Methods: A systematic review was performed following PRISMA guidelines. Eligible studies involved large animal models and critical-sized mandibular defects treated with at least two BTE components (scaffold, osteogenic cells, or growth factors). Quality and bias assessments were conducted using ARRIVE guidelines and SYRCLE tools. Results: Of the 6088 studies screened, 27 met the inclusion criteria, focusing on critical-sized mandibular defects in large animal models such as pigs, sheep, and dogs. Common scaffolds included β-tricalcium phosphate (β-TCP), poly-lactic-co-glycolic acid (PLGA), and polycaprolactone (PCL), frequently combined with bone marrow-derived mesenchymal stem cells (BMSCs) and growth factors like recombinant human bone morphogenetic protein-2 (rhBMP-2). Preclinical outcomes demonstrated effective bone regeneration, vascularization, and biomechanical restoration. Advanced strategies, including in vivo bioreactors and 3D-printed scaffolds, further enhanced regeneration. However, challenges such as incomplete scaffold degradation, hypoxic conditions within constructs, and variability in growth factor efficacy and dose optimization were observed, emphasizing the need for further refinement to ensure consistent outcomes. Conclusions: BTE shows promise in mandibular reconstruction, achieving bone regeneration and functional restoration in preclinical models of critical-sized defects. However, challenges such as scaffold optimization, vascularization enhancement, and protocol standardization require further investigation to facilitate clinical translation. These findings emphasize the need for refinement to achieve consistent, scalable outcomes for clinical use.
Collapse
Affiliation(s)
- Yannick M. Sillmann
- Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, Harvard School of Dental Medicine, Boston, MA 02115, USA; (Y.M.S.); (P.E.)
- Department of Oral and Plastic Maxillofacial Surgery, University Hospital Ulm, 89081 Ulm, Germany;
| | - Pascal Eber
- Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, Harvard School of Dental Medicine, Boston, MA 02115, USA; (Y.M.S.); (P.E.)
| | - Elizabeth Orbeta
- College of Dental Medicine, Western University, Pomona, CA 91766, USA;
| | - Frank Wilde
- Department of Oral and Plastic Maxillofacial Surgery, University Hospital Ulm, 89081 Ulm, Germany;
- Department of Oral and Plastic Maxillofacial Surgery, Military Hospital Ulm (Academic Hospital of the University of Ulm), 89081 Ulm, Germany
| | - Andrew J. Gross
- Division of Oral and Maxillofacial Surgery, University of Utah, Salt Lake City, UT 84112, USA;
| | - Fernando P. S. Guastaldi
- Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, Harvard School of Dental Medicine, Boston, MA 02115, USA; (Y.M.S.); (P.E.)
| |
Collapse
|
2
|
Khattab NR, Olivas-Alanis LH, Chmielewska-Wysocka A, Emam H, Brune R, Jahadakbar A, Khambhampati S, Lozier J, Safaei K, Skoracki R, Elahinia M, Dean D. Evaluation of stiffness-matched, 3D-printed, NiTi mandibular graft fixation in an ovine model. Biomed Eng Online 2024; 23:105. [PMID: 39456000 PMCID: PMC11515221 DOI: 10.1186/s12938-024-01289-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/03/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Manually bent, standard-of-care, Ti-6Al-4V, mandibular graft fixation devices are associated with a significant post-operative failure rate. These failures require the patient to endure stressful and expensive re-operation. The approach recommended in this report demonstrates the optimization of graft fixation device mechanical properties via "stiffness-matching" by varying the fixation device's location, shape, and material composition through simulation of the device's post-operative performance. This provides information during pre-operative planning that may avoid future device failure. Optimized performance may combine translation of all loading into compression of the bone graft with the adjacent bone segments and elimination or minimization of post-healing interruption of normal stress-strain (loading) trajectories. RESULTS This study reports a sheep mandibular graft model where four animals received virtually optimized, experimental nickel-titanium (NiTi) fixation plates fabricated using laser beam powder bed fusion (LPBF) additive manufacturing (AM). The last animal, our control, received a standard-of-care, manually bent, Ti-6Al-4V (aka Ti64) fixation plate. A 17.5-mm mandibular graft healed completely in all four animals receiving the experimental device. Experimental NiTi-implanted sheep experienced mandibular bone healing and restoration. The Ti64 plate, in the control animal, fractured and dislocated shortly after being implanted. CONCLUSION The use of stiffness-matched implants, by means of plate material (NiTi) and geometry (porosity) enhanced bone healing and promoted better load transfer to the healed bone when compared to the bulk Ti64 found in the fixation plate that the Control animal received. The design technique and screw orientation and depth planning improved throughout the study leading to more rapid healing. The large animal model reported here provides data useful for a follow-on clinical trial.
Collapse
Affiliation(s)
- Nada Raafat Khattab
- Department of Materials Science and Engineering, The Ohio State University, 140 W 19th Ave., Columbus, OH, 43210, USA
- Department of Plastic and Reconstructive Surgery, Ohio State Plastic Surgery, 915 Olentangy River Road, Columbus, OH, 43212, USA
| | - Luis H Olivas-Alanis
- Department of Materials Science and Engineering, The Ohio State University, 140 W 19th Ave., Columbus, OH, 43210, USA
- School of Engineering and Science, Tecnologico de Monterrey, Av Eugenio Garza Sada 2501 Sur, Monterrey, NL, 64849, Mexico
| | | | - Hany Emam
- Oral and Maxillofacial Surgery, The Ohio State University, 305 W. 12th Ave., Columbus, OH, 43210, USA
| | - Ryan Brune
- Center for Design and Manufacturing Excellence, The Ohio State University, Bevis Hall, 1080 Carmack Rd, Columbus, OH, 43210, USA
| | - Ahmadreza Jahadakbar
- Department of Mechanical, Industrial and Manufacturing Engineering, University of Toledo, 2801 Bancroft St., Toledo, OH, 43606, USA
- Confluent Medical Technologies, Fremont, CA, USA
| | - Sahil Khambhampati
- Department of Materials Science and Engineering, The Ohio State University, 140 W 19th Ave., Columbus, OH, 43210, USA
| | - Joseph Lozier
- Department of Veterinary Clinical Sciences, The Ohio State University, 1900 Coffey Rd., Columbus, OH, 43210, USA
| | - Keyvan Safaei
- Department of Mechanical, Industrial and Manufacturing Engineering, University of Toledo, 2801 Bancroft St., Toledo, OH, 43606, USA
- TA Instrument, New Castle, DE, USA
| | - Roman Skoracki
- Department of Plastic and Reconstructive Surgery, Ohio State Plastic Surgery, 915 Olentangy River Road, Columbus, OH, 43212, USA
| | - Mohammad Elahinia
- Department of Mechanical, Industrial and Manufacturing Engineering, University of Toledo, 2801 Bancroft St., Toledo, OH, 43606, USA
| | - David Dean
- Department of Materials Science and Engineering, The Ohio State University, 140 W 19th Ave., Columbus, OH, 43210, USA.
- Department of Plastic and Reconstructive Surgery, Ohio State Plastic Surgery, 915 Olentangy River Road, Columbus, OH, 43212, USA.
- Department of Materials Science and Engineering, Department of Plastic and Reconstructive Surgery, The Ohio State University, 460 West 12th Ave., Rm. 388, Columbus, OH, 43210, USA.
| |
Collapse
|
3
|
Llorente JJ, Junquera L, Gallego L, Pérez-Basterrechea M, Suárez LI, Llorente S. Design, In Vitro Evaluation and In Vivo Biocompatibility of Additive Manufacturing Three-Dimensional Printing of β beta-Tricalcium Phosphate Scaffolds for Bone Regeneration. Biomedicines 2024; 12:1049. [PMID: 38791011 PMCID: PMC11118782 DOI: 10.3390/biomedicines12051049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
The reconstruction of bone deficiencies remains a challenge due to the limitations of autologous bone grafting. The objective of this study is to evaluate the bone regeneration efficacy of additive manufacturing of tricalcium phosphate (TCP) implants using lithography-based ceramic manufacturing (LCM). LCM uses LithaBone TCP 300 slurry for 3D printing, producing cylindrical scaffolds. Four models of internal scaffold geometry were developed and compared. The in vitro studies included cell culture, differentiation, seeding, morphological studies and detection of early osteogenesis. The in vivo studies involved 42 Wistar rats divided into four groups (control, membrane, scaffold (TCP) and membrane with TCP). In each animal, unilateral right mandibular defects with a total thickness of 5 mm were surgically performed. The animals were sacrificed 3 and 6 months after surgery. Bone neoformation was evaluated by conventional histology, radiology, and micro-CT. Model A (spheres with intersecting and aligned arrays) showed higher penetration and interconnection. Histological and radiological analysis by micro-CT revealed increased bone formation in the grafted groups, especially when combined with a membrane. Our innovative 3D printing technology, combined with precise scaffold design and efficient cleaning, shows potential for bone regeneration. However, further refinement of the technique and long-term clinical studies are crucial to establish the safety and efficacy of these advanced 3D printed scaffolds in human patients.
Collapse
Affiliation(s)
| | - Luis Junquera
- Department of Surgery, University of Oviedo, 33006 Oviedo, Spain;
- Department of Oral and Maxillofacial Surgery, Central University Hospital, 33011 Oviedo, Spain
| | - Lorena Gallego
- Department of Surgery, University of Oviedo, 33006 Oviedo, Spain;
- Department of Oral and Maxillofacial Surgery, Cabueñes University Hospital, 33394 Gijón, Spain
| | | | | | | |
Collapse
|
4
|
Desnica J, Vujovic S, Stanisic D, Ognjanovic I, Jovicic B, Stevanovic M, Rosic G. Preclinical Evaluation of Bioactive Scaffolds for the Treatment of Mandibular Critical-Sized Bone Defects: A Systematic Review. APPLIED SCIENCES 2023; 13:4668. [DOI: 10.3390/app13084668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
This systematic review evaluated current in vivo research on regenerating critical-sized mandibular defects and discussed methodologies for mandibular bone tissue engineering. Out of the 3650 articles initially retrieved, 88 studies were included, and all studies that used a scaffold reported increased bone formation compared to negative controls. Combining scaffolds with growth factors and mesenchymal stem cells improved bone formation and healing. Bone morphogenic proteins were widely used and promoted significant bone formation compared to controls. However, discrepancies between studies exist due to the various methodologies and outcome measures used. The use of scaffolds with bioactive molecules and/or progenitor cells enhances success in mandibular bone engineering. Scaffold-based mandibular bone tissue engineering could be introduced into clinical practice due to its proven safety, convenience, and cost-effectiveness.
Collapse
Affiliation(s)
- Jana Desnica
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Sanja Vujovic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Dragana Stanisic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Irena Ognjanovic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Bojan Jovicic
- Dental Clinic, Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia
| | - Momir Stevanovic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Gvozden Rosic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| |
Collapse
|
5
|
Repair of complex ovine segmental mandibulectomy utilizing customized tissue engineered bony flaps. PLoS One 2023; 18:e0280481. [PMID: 36827358 PMCID: PMC9955661 DOI: 10.1371/journal.pone.0280481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 01/03/2023] [Indexed: 02/26/2023] Open
Abstract
Craniofacial defects require a treatment approach that provides both robust tissues to withstand the forces of mastication and high geometric fidelity that allows restoration of facial architecture. When the surrounding soft tissue is compromised either through lack of quantity (insufficient soft tissue to enclose a graft) or quality (insufficient vascularity or inducible cells), a vascularized construct is needed for reconstruction. Tissue engineering using customized 3D printed bioreactors enables the generation of mechanically robust, vascularized bony tissues of the desired geometry. While this approach has been shown to be effective when utilized for reconstruction of non-load bearing ovine angular defects and partial segmental defects, the two-stage approach to mandibular reconstruction requires testing in a large, load-bearing defect. In this study, 5 sheep underwent bioreactor implantation and the creation of a load-bearing mandibular defect. Two bioreactor geometries were tested: a larger complex bioreactor with a central groove, and a smaller rectangular bioreactor that were filled with a mix of xenograft and autograft (initial bone volume/total volume BV/TV of 31.8 ± 1.6%). At transfer, the tissues generated within large and small bioreactors were composed of a mix of lamellar and woven bone and had BV/TV of 55.3 ± 2.6% and 59.2 ± 6.3%, respectively. After transfer of the large bioreactors to the mandibular defect, the bioreactor tissues continued to remodel, reaching a final BV/TV of 64.5 ± 6.2%. Despite recalcitrant infections, viable osteoblasts were seen within the transferred tissues to the mandibular site at the end of the study, suggesting that a vascularized customized bony flap is a potentially effective reconstructive strategy when combined with an optimal stabilization strategy and local antibiotic delivery prior to development of a deep-seated infection.
Collapse
|
6
|
Paré A, Charbonnier B, Veziers J, Vignes C, Dutilleul M, De Pinieux G, Laure B, Bossard A, Saucet-Zerbib A, Touzot-Jourde G, Weiss P, Corre P, Gauthier O, Marchat D. Standardized and axially vascularized calcium phosphate-based implants for segmental mandibular defects: A promising proof of concept. Acta Biomater 2022; 154:626-640. [PMID: 36210043 DOI: 10.1016/j.actbio.2022.09.071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 09/09/2022] [Accepted: 09/28/2022] [Indexed: 12/14/2022]
Abstract
The reconstruction of massive segmental mandibular bone defects (SMDs) remains challenging even today; the current gold standard in human clinics being vascularized bone transplantation (VBT). As alternative to this onerous approach, bone tissue engineering strategies have been widely investigated. However, they displayed limited clinical success, particularly in failing to address the essential problem of quick vascularization of the implant. Although routinely used in clinics, the insertion of intrinsic vascularization in bioengineered constructs for the rapid formation of a feeding angiosome remains uncommon. In a clinically relevant model (sheep), a custom calcium phosphate-based bioceramic soaked with autologous bone marrow and perfused by an arteriovenous loop was tested to regenerate a massive SMD and was compared to VBT (clinical standard). Animals did not support well the VBT treatment, and the study was aborted 2 weeks after surgery due to ethical and animal welfare considerations. SMD regeneration was successful with the custom vascularized bone construct. Implants were well osseointegrated and vascularized after only 3 months of implantation and totally entrapped in lamellar bone after 12 months; a healthy yellow bone marrow filled the remaining space. STATEMENT OF SIGNIFICANCE: Regenerative medicine struggles with the generation of large functional bone volume. Among them segmental mandibular defects are particularly challenging to restore. The standard of care, based on bone free flaps, still displays ethical and technical drawbacks (e.g., donor site morbidity). Modern engineering technologies (e.g., 3D printing, digital chain) were combined to relevant surgical techniques to provide a pre-clinical proof of concept, investigating for the benefits of such a strategy in bone-related regenerative field. Results proved that a synthetic-biologics-free approach is able to regenerate a critical size segmental mandibular defect of 15 cm3 in a relevant preclinical model, mimicking real life scenarii of segmental mandibular defect, with a full physiological regeneration of the defect after 12 months.
Collapse
Affiliation(s)
- Arnaud Paré
- INSERM, U 1229, Laboratory of Regenerative Medicine and Skeleton, RMeS, Nantes Université, 1 Place Alexis Ricordeau, Nantes 44042, France; Department of Maxillofacial and Plastic surgery, Burn Unit, University Hospital of Tours, Trousseau Hospital, Avenue de la République, Chambray lès Tours 37170, France
| | - Baptiste Charbonnier
- INSERM, U 1229, Laboratory of Regenerative Medicine and Skeleton, RMeS, Nantes Université, 1 Place Alexis Ricordeau, Nantes 44042, France; Mines Saint-Étienne, Univ Jean Monnet, INSERM, U 1059 Sainbiose, 42023, Saint-Étienne, France
| | - Joëlle Veziers
- INSERM, U 1229, Laboratory of Regenerative Medicine and Skeleton, RMeS, Nantes Université, 1 Place Alexis Ricordeau, Nantes 44042, France
| | - Caroline Vignes
- INSERM, U 1229, Laboratory of Regenerative Medicine and Skeleton, RMeS, Nantes Université, 1 Place Alexis Ricordeau, Nantes 44042, France
| | - Maeva Dutilleul
- INSERM, U 1229, Laboratory of Regenerative Medicine and Skeleton, RMeS, Nantes Université, 1 Place Alexis Ricordeau, Nantes 44042, France
| | - Gonzague De Pinieux
- Department of Pathology, University Hospital of Tours, Trousseau Hospital, Avenue de la République, Chambray lès Tours 37170, France
| | - Boris Laure
- Department of Maxillofacial and Plastic surgery, Burn Unit, University Hospital of Tours, Trousseau Hospital, Avenue de la République, Chambray lès Tours 37170, France
| | - Adeline Bossard
- ONIRIS Nantes-Atlantic College of Veterinary Medicine, Research Center of Preclinical Invesitagtion (CRIP), Site de la Chantrerie, 101 route de Gachet, Nantes 44307, France
| | - Annaëlle Saucet-Zerbib
- ONIRIS Nantes-Atlantic College of Veterinary Medicine, Research Center of Preclinical Invesitagtion (CRIP), Site de la Chantrerie, 101 route de Gachet, Nantes 44307, France
| | - Gwenola Touzot-Jourde
- INSERM, U 1229, Laboratory of Regenerative Medicine and Skeleton, RMeS, Nantes Université, 1 Place Alexis Ricordeau, Nantes 44042, France; ONIRIS Nantes-Atlantic College of Veterinary Medicine, Research Center of Preclinical Invesitagtion (CRIP), Site de la Chantrerie, 101 route de Gachet, Nantes 44307, France
| | - Pierre Weiss
- INSERM, U 1229, Laboratory of Regenerative Medicine and Skeleton, RMeS, Nantes Université, 1 Place Alexis Ricordeau, Nantes 44042, France
| | - Pierre Corre
- INSERM, U 1229, Laboratory of Regenerative Medicine and Skeleton, RMeS, Nantes Université, 1 Place Alexis Ricordeau, Nantes 44042, France; Clinique de Stomatologie et Chirurgie Maxillo-Faciale, Nantes University Hospital, 1 Place Alexis Ricordeau, Nantes 44042, France
| | - Olivier Gauthier
- INSERM, U 1229, Laboratory of Regenerative Medicine and Skeleton, RMeS, Nantes Université, 1 Place Alexis Ricordeau, Nantes 44042, France; ONIRIS Nantes-Atlantic College of Veterinary Medicine, Research Center of Preclinical Invesitagtion (CRIP), Site de la Chantrerie, 101 route de Gachet, Nantes 44307, France
| | - David Marchat
- Mines Saint-Étienne, Univ Jean Monnet, INSERM, U 1059 Sainbiose, 42023, Saint-Étienne, France.
| |
Collapse
|
7
|
Kuten Pella O, Hornyák I, Horváthy D, Fodor E, Nehrer S, Lacza Z. Albumin as a Biomaterial and Therapeutic Agent in Regenerative Medicine. Int J Mol Sci 2022; 23:10557. [PMID: 36142472 PMCID: PMC9502107 DOI: 10.3390/ijms231810557] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/31/2022] [Accepted: 09/06/2022] [Indexed: 02/07/2023] Open
Abstract
Albumin is a constitutional plasma protein, with well-known biological functions, e.g., a nutrient for stem cells in culture. However, albumin is underutilized as a biomaterial in regenerative medicine. This review summarizes the advanced therapeutic uses of albumin, focusing on novel compositions that take advantage of the excellent regenerative potential of this protein. Albumin coating can be used for enhancing the biocompatibility of various types of implants, such as bone grafts or sutures. Albumin is mainly known as an anti-attachment protein; however, using it on implantable surfaces is just the opposite: it enhances stem cell adhesion and proliferation. The anticoagulant, antimicrobial and anti-inflammatory properties of albumin allow fine-tuning of the biological reaction to implantable tissue-engineering constructs. Another potential use is combining albumin with natural or synthetic materials that results in novel composites suitable for cardiac, neural, hard and soft tissue engineering. Recent advances in materials have made it possible to electrospin the globular albumin protein, opening up new possibilities for albumin-based scaffolds for cell therapy. Several described technologies have already entered the clinical phase, making good use of the excellent biological, but also regulatory, manufacturing and clinical features of serum albumin.
Collapse
Affiliation(s)
| | - István Hornyák
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary
| | - Dénes Horváthy
- Department of Interventional Radiology, Semmelweis University, 1122 Budapest, Hungary
| | - Eszter Fodor
- Institute for Sports and Health Sciences, Hungarian University of Sports Science, 1123 Budapest, Hungary
| | - Stefan Nehrer
- Center for Regenerative Medicine, Danube University Krems, 3500 Krems an der Donau, Austria
| | - Zsombor Lacza
- Orthosera GmbH, 3500 Krems an der Donau, Austria
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary
- Institute for Sports and Health Sciences, Hungarian University of Sports Science, 1123 Budapest, Hungary
| |
Collapse
|
8
|
Mangione F, Salmon B, EzEldeen M, Jacobs R, Chaussain C, Vital S. Characteristics of Large Animal Models for Current Cell-Based Oral Tissue Regeneration. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:489-505. [PMID: 33882717 DOI: 10.1089/ten.teb.2020.0384] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The recent advances in the field of cell-based therapeutics open promising perspectives for oral tissue regeneration. The development of large animal models, which overcome the limits of the rodent models and allow to emulate clinical situations, is crucial for the validation of regenerative strategies to move toward clinical application. Currently, porcine, canine, and ovine models are mainly developed for oral regeneration and their specific characteristics have an impact on the outcomes of the studies. Thus, this systematic review investigates the application of porcine, canine, and ovine models in present cell-based oral regeneration, according to the species characteristics and the targeted tissue to regenerate. A customized search of PubMed, EMBASE, Scopus, and Web of Science databases from January 2015 to March 2020 was conducted. Relevant articles about cell-based oral tissues engineering in porcine, canine, and ovine models were evaluated. Among the evaluated articles, 58 relevant studies about cell-based oral regeneration in porcine, canine, and ovine models matched the eligibility criteria and were selected for full analysis. Porcine models, the most similar species with humans, were mostly used for bone and periodontium regeneration; tooth regeneration was reported only in pig, except for one study in dog. Canine models were the most transversal models, successfully involved for all oral tissue regeneration and notably in implantology. However, differences with humans and ethical concerns affect the use of these models. Ovine models, alternative to porcine and canine ones, were mainly used for bone and, scarcely, periodontium regeneration. The anatomy and physiology of these animals restrain their involvement. If consistency was found in defect specificities and cell trends among different species animal models of bone, dentin-pulp complex, or tooth regeneration, variability appeared in periodontium. Regeneration assessment methods were more elaborate in porcines and canines than in ovines. Risk of bias was low for selection, attrition and reporting, but unclear for performance and detection. Overall, if none of the large animal models can be considered an ideal one, they are of deemed importance for oral cell-based tissue engineering and researchers should consider their relevance to establish favorable conditions for a given preclinical cell-based therapeutics.
Collapse
Affiliation(s)
- Francesca Mangione
- URP 2496 Laboratory Orofacial Pathologies, Imaging and Biotherapies, Life Imaging Platform (PIV), UFR Odontology, Université de Paris, Montrouge, France.,Henri Mondor Hospital, AP-HP, Créteil, France
| | - Benjamin Salmon
- URP 2496 Laboratory Orofacial Pathologies, Imaging and Biotherapies, Life Imaging Platform (PIV), UFR Odontology, Université de Paris, Montrouge, France.,Bretonneau Hospital, AP-HP, Paris, France.,Reference Center for Rare Disorders of the Calcium and Phosphate Metabolism, Filière OSCAR, AP-HP, Paris, France
| | - Mostafa EzEldeen
- OMFS-IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, University of Leuven, Leuven, Belgium.,Maxillofacial Surgery Department, University Hospitals Leuven, Leuven, Belgium.,Department of Oral Health Sciences, KU Leuven and Paediatric Dentistry and Special Dental Care, University Hospitals Leuven, Leuven, Belgium
| | - Reinhilde Jacobs
- OMFS-IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, University of Leuven, Leuven, Belgium.,Maxillofacial Surgery Department, University Hospitals Leuven, Leuven, Belgium.,Department of Dental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Catherine Chaussain
- URP 2496 Laboratory Orofacial Pathologies, Imaging and Biotherapies, Life Imaging Platform (PIV), UFR Odontology, Université de Paris, Montrouge, France.,Bretonneau Hospital, AP-HP, Paris, France.,Reference Center for Rare Disorders of the Calcium and Phosphate Metabolism, Filière OSCAR, AP-HP, Paris, France
| | - Sibylle Vital
- URP 2496 Laboratory Orofacial Pathologies, Imaging and Biotherapies, Life Imaging Platform (PIV), UFR Odontology, Université de Paris, Montrouge, France.,AP-HP, Hôpital Louis Mourier, DMU ESPRIT, Colombes, France
| |
Collapse
|
9
|
Peña GDL, Gallego L, Redondo LM, Junquera L, Doval JF, Meana Á. Comparative analysis of plasma-derived albumin scaffold, alveolar osteoblasts and synthetic membrane in critical mandibular bone defects: An experimental study on rats. J Biomater Appl 2021; 36:481-491. [PMID: 33653155 DOI: 10.1177/0885328221999824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Repair of bone deficiencies in the craniofacial skeleton remains a challenging clinical problem. The aim of this study was to evaluate and compare the effects of a plasma-derived albumin scaffold, alveolar osteoblasts and synthetic membrane implanted into experimental mandibular defects. Bilateral mandibular defects were created in twelve immunodeficient rats. The bone defect was filled with serum scaffold alone in left sides and scaffold combined with human alveolar osteoblast in right side defects. Implanted areas were closed directly in Group 1 (n = 6) and covered by a resorbable polyglycolic-polylactic acid membrane in Group 2 (n = 6). Bone regeneration was determined at 12 weeks as measured by and exhaustive multiplanar computed tomography analysis and histological examination. No significant differences in bone density were observed between defects transplanted with scaffold alone or scaffold seeded with osteoblasts. The use of membrane did not result in a determining factor in the grade of bone regeneration between Groups 1 and 2. Based on these results, it could be concluded that the albumin scaffold alone has osteoinductive capacity but presence of seeded ostogenic cells accelerates defect repair without being significantly influenced by covering the defect with a resorbable membrane.
Collapse
Affiliation(s)
- Gonzalo de la Peña
- Oral and Maxillofacial Surgery Department, Hospital Universitario Quirónsalud Madrid, Madrid, Spain
| | - Lorena Gallego
- Oral and Maxillofacial Surgery Department, Hospital Universitario de Cabueñes, Gijon, Asturias, Spain
| | - Luis M Redondo
- Oral and Maxillofacial Surgery Department, Rio Hortega University Hospital, C/Dulzaina 2, Valladolid, Spain
| | - Luis Junquera
- Oviedo University, Catedrático José Serrano Street s/n, Oviedo, Asturias, Spain
| | - Javier F Doval
- Recaver Dental and Maxillofacial Clinic, Paseo Isabel la Catolica, Valladolid, Spain
| | - Álvaro Meana
- Fernandez Vega Ophthalmologic Institute, Oviedo, Asturias, Spain
| |
Collapse
|
10
|
Mayer Y, Ginesin O, Zigdon-Giladi H. Socket Preservation Using Xenograft Does Not Impair Implant Primary Stability in Sheep: Clinical, Histological, and Histomorphometric Study. J ORAL IMPLANTOL 2020; 46:580-588. [PMID: 32315436 DOI: 10.1563/aaid-joi-d-19-00237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Implant primary stability, which depends mainly on the amount and quality of bone, is important for implant survival. Socket preservation aims to reduce bone volumetric changes after tooth extraction. This animal study aims to examine whether preserving a ridge by using xenograft impairs the primary stability of the implant. Eighteen artificial bone defects were prepared in 4 sheep (5- and 8-mm length). Defects were randomly grafted with xenografts: Bio-Oss (BO), Bio-Active bone (BB), or left for natural healing (control). After 8 weeks, bone biopsy was harvested and dental implants installed. During installation, peak insertion torque (IT) was measured by hand ratchet, and primary stability by the Osstell method. Histomorphometric analysis showed a higher percentage of new bone formation in the naturally healed defects compared to sites with xenograft (control: 68.66 ± 4.5%, BB: 48.75 ± 4.34%, BO: 50.33 ± 4.0%). Connective tissue portion was higher in the BO and BB groups compared to control (44.25 ± 2.98%, 41 ± 6%, and 31.33 ± 4.5%, P < .05, respectively). Residual grafting material was similar in BO and BB (7 ± 2.44%, 8.66 ± 2.1%, respectively). Mean IT and implant stability quotient (ISQ) values were not statistically different among the groups. A positive correlation was found between IT and ISQ (r = 0.65, P = 0). In conclusion, previously grafted defects with xenograft did not influence primary stability and implant insertion torque in delayed implant placement. These results may be attributed to a relatively high bone fill of the defect (∼50%) 2 months after grafting.
Collapse
Affiliation(s)
- Yaniv Mayer
- Department of Periodontology, School of Graduate Dentistry, Rambam Health Care Campus (RHCC), Haifa, Israel
| | - Ofir Ginesin
- Department of Periodontology, School of Graduate Dentistry, Rambam Health Care Campus (RHCC), Haifa, Israel
| | - Hadar Zigdon-Giladi
- Department of Periodontology, School of Graduate Dentistry, Rambam Health Care Campus (RHCC), Haifa, Israel.,Laboratory for Hard Tissue Regeneration, Clinical Research Institute at Rambam Health Care Campus, Haifa, Israel.,Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israeli Institute of Technology, Haifa, Israel
| |
Collapse
|
11
|
Gallego L, Junquera L, García-Consuegra L, Martinez A, Meana Á. Regeneration of mandibular osteoradionecrosis with autologous cross-linked serum albumin scaffold. Regen Med 2020; 15:1841-1849. [PMID: 32815773 DOI: 10.2217/rme-2020-0042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Osteoradionecrosis is one of the most severe complications of radiotherapy administered for head and neck tumors. We present the first two cases of advanced and refractory mandibular osteoradionecrosis treated by application of a novel autologous cross-linked 3D serum matrix. Patients were followed clinically and radiographically up to 24 months. Complete wound healing and intact mucosal cover were achieved in both cases. At 12 months, the radiographic values showed an almost complete regeneration of the bone defect, which continued a favourable progression increased to the maximum by 24 months after surgery. The use of an autologous serum-derived scaffold proved to be a quick, predictable, cost-effective and safe adjunct to the conservative surgical treatment of this pathology.
Collapse
Affiliation(s)
- Lorena Gallego
- Department of Oral & Maxillofacial Surgery. Cabueñes University Hospital, 33394 Gijón, Spain.,Department of Surgery and Medical-Surgical Specialties, University of Oviedo, 33006 Oviedo, Spain
| | - Luis Junquera
- Department of Surgery and Medical-Surgical Specialties, University of Oviedo, 33006 Oviedo, Spain.,Department of Oral & Maxillofacial Surgery, Central University Hospital, 33006 Oviedo, Spain
| | - Luis García-Consuegra
- Department of Surgery and Medical-Surgical Specialties, University of Oviedo, 33006 Oviedo, Spain.,Department of Oral & Maxillofacial Surgery, Central University Hospital, 33006 Oviedo, Spain
| | - Antonio Martinez
- Department of Radiology, Cabueñes University Hospital, 33394 Gijón, Spain
| | - Álvaro Meana
- Community Blood & Tissue Center of Asturias, 33006 Oviedo, Spain.,Ophthalmologic Research Foundation, U714, CIBER Rare Diseases (CIBERER), Oviedo, Spain
| |
Collapse
|
12
|
Niermeyer WL, Rodman C, Li MM, Chiang T. Tissue engineering applications in otolaryngology-The state of translation. Laryngoscope Investig Otolaryngol 2020; 5:630-648. [PMID: 32864434 PMCID: PMC7444782 DOI: 10.1002/lio2.416] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/06/2020] [Accepted: 05/11/2020] [Indexed: 12/14/2022] Open
Abstract
While tissue engineering holds significant potential to address current limitations in reconstructive surgery of the head and neck, few constructs have made their way into routine clinical use. In this review, we aim to appraise the state of head and neck tissue engineering over the past five years, with a specific focus on otologic, nasal, craniofacial bone, and laryngotracheal applications. A comprehensive scoping search of the PubMed database was performed and over 2000 article hits were returned with 290 articles included in the final review. These publications have addressed the hallmark characteristics of tissue engineering (cellular source, scaffold, and growth signaling) for head and neck anatomical sites. While there have been promising reports of effective tissue engineered interventions in small groups of human patients, the majority of research remains constrained to in vitro and in vivo studies aimed at furthering the understanding of the biological processes involved in tissue engineering. Further, differences in functional and cosmetic properties of the ear, nose, airway, and craniofacial bone affect the emphasis of investigation at each site. While otolaryngologists currently play a role in tissue engineering translational research, continued multidisciplinary efforts will likely be required to push the state of translation towards tissue-engineered constructs available for routine clinical use. LEVEL OF EVIDENCE NA.
Collapse
Affiliation(s)
| | - Cole Rodman
- The Ohio State University College of MedicineColumbusOhioUSA
| | - Michael M. Li
- Department of Otolaryngology—Head and Neck SurgeryThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Tendy Chiang
- Department of OtolaryngologyNationwide Children's HospitalColumbusOhioUSA
- Department of Otolaryngology—Head and Neck SurgeryThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| |
Collapse
|
13
|
Basyuni S, Ferro A, Santhanam V, Birch M, McCaskie A. Systematic scoping review of mandibular bone tissue engineering. Br J Oral Maxillofac Surg 2020; 58:632-642. [PMID: 32247521 DOI: 10.1016/j.bjoms.2020.03.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 03/14/2020] [Indexed: 12/12/2022]
Abstract
Tissue engineering is a promising alternative that may facilitate bony regeneration in small defects in compromised host tissue as well as large mandibular defects. This scoping systematic review was therefore designed to assess in vivo research on its use in the reconstruction of mandibular defects in animal models. A total of 4524 articles were initially retrieved using the search algorithm. After screening of the titles and abstracts, 269 full texts were retrieved, and a total of 72 studies included. Just two of the included studies employed osteonecrosis as the model of mandibular injury. All the rest involved the creation of a critical defect. Calcium phosphates, especially tricalcium phosphate and hydroxyapatite, were the scaffolds most widely used. All the studies that used a scaffold reported increased formation of bone when compared with negative controls. When combined with scaffolds, mesenchymal stem cells (MSC) increased the formation of new bone and improved healing. Various growth factors have been studied for their potential use in the regeneration of the maxillofacial complex. Bone morphogenic proteins (BMP) were the most popular, and all subtypes promoted significant formation of bone compared with controls. Whilst the studies published to date suggest a promising future, our review has shown that several shortfalls must be addressed before the findings can be translated into clinical practice. A greater understanding of the underlying cellular and molecular mechanisms is required to identify the optimal combination of components that are needed for predictable and feasible reconstruction or regeneration of mandibular bone. In particular, a greater understanding of the biological aspects of the regenerative triad is needed before we can to work towards widespread translation into clinical practice.
Collapse
Affiliation(s)
- S Basyuni
- Department of Oral and Maxillo-Facial Surgery, Cambridge University Hospitals, Cambridge, United Kingdom; Department of Surgery, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom.
| | - A Ferro
- Department of Oral and Maxillo-Facial Surgery, Cambridge University Hospitals, Cambridge, United Kingdom.
| | - V Santhanam
- Department of Oral and Maxillo-Facial Surgery, Cambridge University Hospitals, Cambridge, United Kingdom.
| | - M Birch
- Department of Surgery, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom.
| | - A McCaskie
- Department of Surgery, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
14
|
Black C, Kanczler JM, de Andrés MC, White LJ, Savi FM, Bas O, Saifzadeh S, Henkel J, Zannettino A, Gronthos S, Woodruff MA, Hutmacher DW, Oreffo ROC. Characterisation and evaluation of the regenerative capacity of Stro-4+ enriched bone marrow mesenchymal stromal cells using bovine extracellular matrix hydrogel and a novel biocompatible melt electro-written medical-grade polycaprolactone scaffold. Biomaterials 2020; 247:119998. [PMID: 32251928 PMCID: PMC7184676 DOI: 10.1016/j.biomaterials.2020.119998] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 03/20/2020] [Accepted: 03/20/2020] [Indexed: 12/15/2022]
Abstract
Many skeletal tissue regenerative strategies centre around the multifunctional properties of bone marrow derived stromal cells (BMSC) or mesenchymal stem/stromal cells (MSC)/bone marrow derived skeletal stem cells (SSC). Specific identification of these particular stem cells has been inconclusive. However, enriching these heterogeneous bone marrow cell populations with characterised skeletal progenitor markers has been a contributing factor in successful skeletal bone regeneration and repair strategies. In the current studies we have isolated, characterised and enriched ovine bone marrow mesenchymal stromal cells (oBMSCs) using a specific antibody, Stro-4, examined their multipotential differentiation capacity and, in translational studies combined Stro-4+ oBMSCs with a bovine extracellular matrix (bECM) hydrogel and a biocompatible melt electro-written medical-grade polycaprolactone scaffold, and tested their bone regenerative capacity in a small in vivo, highly vascularised, chick chorioallantoic membrane (CAM) model and a preclinical, critical-sized ovine segmental tibial defect model. Proliferation rates and CFU-F formation were similar between unselected and Stro-4+ oBMSCs. Col1A1, Col2A1, mSOX-9, PPARG gene expression were upregulated in respective osteogenic, chondrogenic and adipogenic culture conditions compared to basal conditions with no significant difference between Stro-4+ and unselected oBMSCs. In contrast, proteoglycan expression, alkaline phosphatase activity and adipogenesis were significantly upregulated in the Stro-4+ cells. Furthermore, with extended cultures, the oBMSCs had a predisposition to maintain a strong chondrogenic phenotype. In the CAM model Stro-4+ oBMSCs/bECM hydrogel was able to induce bone formation at a femur fracture site compared to bECM hydrogel and control blank defect alone. Translational studies in a critical-sized ovine tibial defect showed autograft samples contained significantly more bone, (4250.63 mm3, SD = 1485.57) than blank (1045.29 mm3, SD = 219.68) ECM-hydrogel (1152.58 mm3, SD = 191.95) and Stro-4+/ECM-hydrogel (1127.95 mm3, SD = 166.44) groups. Stro-4+ oBMSCs demonstrated a potential to aid bone repair in vitro and in a small in vivo bone defect model using select scaffolds. However, critically, translation to a large related preclinical model demonstrated the complexities of bringing small scale reported stem-cell material therapies to a clinically relevant model and thus facilitate progression to the clinic.
Collapse
Affiliation(s)
- C Black
- Bone & Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Human Development & Health, Institute of Developmental Sciences, University of Southampton, SO16 6YD, UK
| | - J M Kanczler
- Bone & Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Human Development & Health, Institute of Developmental Sciences, University of Southampton, SO16 6YD, UK
| | - M C de Andrés
- Bone & Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Human Development & Health, Institute of Developmental Sciences, University of Southampton, SO16 6YD, UK; Cartilage Epigenetics Group, Rheumatology Division, Biomedical Research Institute of A Coruña (INIBIC), Hospital Universitario de A Coruña-CHUAC, 15006 A Coruña ,Spain
| | - L J White
- School of Pharmacy, Biodiscovery Institute, University Park, University of Nottingham, Nottingham, NG7 2RD, UK
| | - F M Savi
- ARC Industrial Transformation Training Centre in Additive Biomanufacturing, Queensland University of Technology (QUT), Brisbane, QLD, 4059, Australia; Institute of Health Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, 4059, Australia
| | - O Bas
- ARC Industrial Transformation Training Centre in Additive Biomanufacturing, Queensland University of Technology (QUT), Brisbane, QLD, 4059, Australia; Institute of Health Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, 4059, Australia
| | - S Saifzadeh
- ARC Industrial Transformation Training Centre in Additive Biomanufacturing, Queensland University of Technology (QUT), Brisbane, QLD, 4059, Australia
| | - J Henkel
- ARC Industrial Transformation Training Centre in Additive Biomanufacturing, Queensland University of Technology (QUT), Brisbane, QLD, 4059, Australia
| | - A Zannettino
- Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia and Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, Australia and Central Adelaide Local Health Network, Adelaide, South Australia, Australia
| | - S Gronthos
- Mesenchymal Stem Cell Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia and Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - M A Woodruff
- ARC Industrial Transformation Training Centre in Additive Biomanufacturing, Queensland University of Technology (QUT), Brisbane, QLD, 4059, Australia
| | - D W Hutmacher
- ARC Industrial Transformation Training Centre in Additive Biomanufacturing, Queensland University of Technology (QUT), Brisbane, QLD, 4059, Australia; Institute of Health Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, 4059, Australia
| | - R O C Oreffo
- Bone & Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Human Development & Health, Institute of Developmental Sciences, University of Southampton, SO16 6YD, UK; College of Biomedical Engineering, China Medical University, Taichung, 40402, Taiwan.
| |
Collapse
|
15
|
Iaquinta MR, Mazzoni E, Bononi I, Rotondo JC, Mazziotta C, Montesi M, Sprio S, Tampieri A, Tognon M, Martini F. Adult Stem Cells for Bone Regeneration and Repair. Front Cell Dev Biol 2019; 7:268. [PMID: 31799249 PMCID: PMC6863062 DOI: 10.3389/fcell.2019.00268] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 10/21/2019] [Indexed: 12/13/2022] Open
Abstract
The regeneration of bone fractures, resulting from trauma, osteoporosis or tumors, is a major problem in our super-aging society. Bone regeneration is one of the main topics of concern in regenerative medicine. In recent years, stem cells have been employed in regenerative medicine with interesting results due to their self-renewal and differentiation capacity. Moreover, stem cells are able to secrete bioactive molecules and regulate the behavior of other cells in different host tissues. Bone regeneration process may improve effectively and rapidly when stem cells are used. To this purpose, stem cells are often employed with biomaterials/scaffolds and growth factors to accelerate bone healing at the fracture site. Briefly, this review will describe bone structure and the osteogenic differentiation of stem cells. In addition, the role of mesenchymal stem cells for bone repair/regrowth in the tissue engineering field and their recent progress in clinical applications will be discussed.
Collapse
Affiliation(s)
- Maria Rosa Iaquinta
- Department of Morphology, Surgery, and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Elisa Mazzoni
- Department of Morphology, Surgery, and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Ilaria Bononi
- Department of Morphology, Surgery, and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - John Charles Rotondo
- Department of Morphology, Surgery, and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Chiara Mazziotta
- Department of Morphology, Surgery, and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Monica Montesi
- Institute of Science and Technology for Ceramics, National Research Council, Faenza, Italy
| | - Simone Sprio
- Institute of Science and Technology for Ceramics, National Research Council, Faenza, Italy
| | - Anna Tampieri
- Institute of Science and Technology for Ceramics, National Research Council, Faenza, Italy
| | - Mauro Tognon
- Department of Morphology, Surgery, and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Fernanda Martini
- Department of Morphology, Surgery, and Experimental Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
16
|
Gugjoo MB, Amarpal. Mesenchymal stem cell research in sheep: Current status and future prospects. Small Rumin Res 2018. [DOI: 10.1016/j.smallrumres.2018.08.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
17
|
Repair of maxillary cystic bone defects with mesenchymal stem cells seeded on a cross-linked serum scaffold. J Craniomaxillofac Surg 2018; 46:222-229. [DOI: 10.1016/j.jcms.2017.11.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 09/20/2017] [Accepted: 11/02/2017] [Indexed: 12/22/2022] Open
|
18
|
Spalthoff S, Zimmerer R, Dittmann J, Kokemüller H, Tiede M, Flohr L, Korn P, Gellrich NC, Jehn P. Heterotopic bone formation in the musculus latissimus dorsi of sheep using β-tricalcium phosphate scaffolds: evaluation of different seeding techniques. Regen Biomater 2017; 5:77-84. [PMID: 29644089 PMCID: PMC5888254 DOI: 10.1093/rb/rbx029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 09/27/2017] [Accepted: 09/28/2017] [Indexed: 12/21/2022] Open
Abstract
Osseous reconstruction of large bone defects remains a challenge in oral and maxillofacial surgery. In addition to autogenous bone grafts, which despite potential donor-site mobility still represent the gold standard in reconstructive surgery, many studies have investigated less invasive alternatives such as in vitro cultivation techniques. This study compared different types of seeding techniques on pure β-tricalcium phosphate scaffolds in terms of bone formation and ceramic resorption in vivo. Cylindrical scaffolds loaded with autologous cancellous bone, venous blood, bone marrow aspirate concentrate or extracorporeal in vitro cultivated bone marrow stromal cells were cultured in sheep on a perforator vessel of the musculus latissimus dorsi over a 6-month period. Histological and histomorphometric analyses revealed that scaffolds loaded with cancellous bone were superior at promoting heterotopic bone formation and ceramic degradation, with autogenous bone and bone marrow aspirate concentrate inducing in vivo formation of vital bone tissue. These results confirm that autologous bone constitutes the preferred source of osteoinductive and osteogenic material that can reliably induce heterotopic bone formation in vivo.
Collapse
Affiliation(s)
- Simon Spalthoff
- Department of Oral and Maxillofacial Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany and
- Correspondence address. Department of Oral and Maxillofacial Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany. Tel: +49-511-532-4879; Fax: +49-511-532-18598; E-mail:
| | - Rüdiger Zimmerer
- Department of Oral and Maxillofacial Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany and
| | - Jan Dittmann
- Department of Oral and Maxillofacial Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany and
| | - Horst Kokemüller
- Department of Oral and Maxillofacial Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany and
| | - Marco Tiede
- Department of Conservative Dentistry, Periodontology and Preventive Dentistry, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany
| | - Laura Flohr
- Department of Oral and Maxillofacial Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany and
| | - Philippe Korn
- Department of Oral and Maxillofacial Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany and
| | - Nils-Claudius Gellrich
- Department of Oral and Maxillofacial Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany and
| | - Philipp Jehn
- Department of Oral and Maxillofacial Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany and
| |
Collapse
|
19
|
Robla Costales D, Junquera L, García Pérez E, Gómez Llames S, Álvarez-Viejo M, Meana-Infiesta Á. Ectopic bone formation during tissue-engineered cartilage repair using autologous chondrocytes and novel plasma-derived albumin scaffolds. J Craniomaxillofac Surg 2016; 44:1743-1749. [DOI: 10.1016/j.jcms.2016.08.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 06/28/2016] [Accepted: 08/08/2016] [Indexed: 10/21/2022] Open
|