1
|
Gromadzka G, Antos A, Sorysz Z, Litwin T. Psychiatric Symptoms in Wilson's Disease-Consequence of ATP7B Gene Mutations or Just Coincidence?-Possible Causal Cascades and Molecular Pathways. Int J Mol Sci 2024; 25:12354. [PMID: 39596417 PMCID: PMC11595239 DOI: 10.3390/ijms252212354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/11/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Wilson's disease (WD) is an autosomal recessive disorder of copper metabolism. The genetic defect in WD affects the ATP7B gene, which encodes the ATP7B transmembrane protein, which is essential for maintaining normal copper homeostasis in the body. It is primarily expressed in the liver and acts by incorporating copper into ceruloplasmin (Cp), the major copper transport protein in the blood. In conditions of excess copper, ATP7B transports it to bile for excretion. Mutations in ATP7B lead to impaired ATP7B function, resulting in copper accumulation in hepatocytes leading to their damage. The toxic "free"-unbound to Cp-copper released from hepatocytes then accumulates in various organs, contributing to their damage and clinical manifestations of WD, including hepatic, neurological, hematological, renal, musculoskeletal, ophthalmological, psychiatric, and other effects. While most clinical manifestations of WD correspond to identifiable organic or cellular damage, the pathophysiology underlying its psychiatric manifestations remains less clearly understood. A search for relevant articles was conducted in PubMed/Medline, Science Direct, Scopus, Willy Online Library, and Google Scholar, combining free text and MeSH terms using a wide range of synonyms and related terms, including "Wilson's disease", "hepatolenticular degeneration", "psychiatric manifestations", "molecular mechanisms", "pathomechanism", and others, as well as their combinations. Psychiatric symptoms of WD include cognitive disorders, personality and behavioral disorders, mood disorders, psychosis, and other mental disorders. They are not strictly related to the location of brain damage, therefore, the question arises whether these symptoms are caused by WD or are simply a coincidence or a reaction to the diagnosis of a genetic disease. Hypotheses regarding the etiology of psychiatric symptoms of WD suggest a variety of molecular mechanisms, including copper-induced CNS toxicity, oxidative stress, mitochondrial dysfunction, mitophagy, cuproptosis, ferroptosis, dysregulation of neurotransmission, deficiencies of neurotrophic factors, or immune dysregulation. New studies on the expression of noncoding RNA in WD are beginning to shed light on potential molecular pathways involved in psychiatric symptomatology. However, current evidence is still insufficient to definitively establish the cause of psychiatric symptoms in WD. It is possible that the etiology of psychiatric symptoms varies among individuals, with multiple biological and psychological mechanisms contributing to them simultaneously. Future studies with larger samples and comprehensive analyses are necessary to elucidate the mechanisms underlying the psychiatric manifestations of WD and to optimize diagnostics and therapeutic approaches.
Collapse
Affiliation(s)
- Grażyna Gromadzka
- Department of Biomedical Sciences, Faculty of Medicine, Collegium Medicum, Cardinal Stefan Wyszynski University, Wóycickiego Street 1/3, 01-938 Warsaw, Poland
| | - Agnieszka Antos
- Second Department of Neurology, Institute of Psychiatry and Neurology, Sobieskiego Street 9, 02-957 Warsaw, Poland;
| | - Zofia Sorysz
- Students Scientific Association “Immunis”, Cardinal Stefan Wyszynski University, Dewajtis Street 5, 01-815 Warsaw, Poland
| | - Tomasz Litwin
- Second Department of Neurology, Institute of Psychiatry and Neurology, Sobieskiego Street 9, 02-957 Warsaw, Poland;
| |
Collapse
|
2
|
Schuurmans IK, Mulder RH, Baltramonaityte V, Lahtinen A, Qiuyu F, Rothmann LM, Staginnus M, Tuulari J, Burt SA, Buss C, Craig JM, Donald KA, Felix JF, Freeman TP, Grassi-Oliveira R, Huels A, Hyde LW, Jones SA, Karlsson H, Karlsson L, Koen N, Lawn W, Mitchell C, Monk CS, Mooney MA, Muetzel R, Nigg JT, Belangero SIN, Notterman D, O'Connor T, O'Donnell KJ, Pan PM, Paunio T, Ryabinin P, Saffery R, Salum GA, Seal M, Silk TJ, Stein DJ, Zar H, Walton E, Cecil CAM. Consortium Profile: The Methylation, Imaging and NeuroDevelopment (MIND) Consortium. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.23.24309353. [PMID: 38978656 PMCID: PMC11230303 DOI: 10.1101/2024.06.23.24309353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Epigenetic processes, such as DNA methylation, show potential as biological markers and mechanisms underlying gene-environment interplay in the prediction of mental health and other brain-based phenotypes. However, little is known about how peripheral epigenetic patterns relate to individual differences in the brain itself. An increasingly popular approach to address this is by combining epigenetic and neuroimaging data; yet, research in this area is almost entirely comprised of cross-sectional studies in adults. To bridge this gap, we established the Methylation, Imaging and NeuroDevelopment (MIND) Consortium, which aims to bring a developmental focus to the emerging field of Neuroimaging Epigenetics by (i) promoting collaborative, adequately powered developmental research via multi-cohort analyses; (ii) increasing scientific rigor through the establishment of shared pipelines and open science practices; and (iii) advancing our understanding of DNA methylation-brain dynamics at different developmental periods (from birth to emerging adulthood), by leveraging data from prospective, longitudinal pediatric studies. MIND currently integrates 15 cohorts worldwide, comprising (repeated) measures of DNA methylation in peripheral tissues (blood, buccal cells, and saliva) and neuroimaging by magnetic resonance imaging across up to five time points over a period of up to 21 years (Npooled DNAm = 11,299; Npooled neuroimaging = 10,133; Npooled combined = 4,914). By triangulating associations across multiple developmental time points and study types, we hope to generate new insights into the dynamic relationships between peripheral DNA methylation and the brain, and how these ultimately relate to neurodevelopmental and psychiatric phenotypes.
Collapse
|
3
|
Hao W, Yang W, Yang Y, Cheng T, Wei T, Tang L, Qian N, Yang Y, Li X, Jiang H, Wang M. Identification of lncRNA-miRNA-mRNA Networks in the Lenticular Nucleus Region of the Brain Contributes to Hepatolenticular Degeneration Pathogenesis and Therapy. Mol Neurobiol 2024; 61:1673-1686. [PMID: 37759104 PMCID: PMC10896925 DOI: 10.1007/s12035-023-03631-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023]
Abstract
Long non-coding RNAs (lncRNAs) are a recently discovered group of non-coding RNAs that play a crucial role in the regulation of various human diseases, especially in the study of nervous system diseases which has garnered significant attention. However, there is limited knowledge on the identification and function of lncRNAs in hepatolenticular degeneration (HLD). The objective of this study was to identify novel lncRNAs and determine their involvement in the networks associated with HLD. We conducted a comprehensive analysis of RNA sequencing (RNA-seq) data, reverse transcription-quantitative polymerase chain reaction (RT-qPCR), and computational biology to identify novel lncRNAs and explore their potential mechanisms in HLD. We identified 212 differently expressed lncRNAs, with 98 upregulated and 114 downregulated. Additionally, 32 differently expressed mRNAs were found, with 15 upregulated and 17 downregulated. We obtained a total of 1131 pairs of co-expressed lncRNAs and mRNAs by Pearson correlation test and prediction and annotation of the lncRNA-targeted miRNA-mRNA network. The differential lncRNAs identified in this study were found to be involved in various biological functions and signaling pathways. These include translational initiation, motor learning, locomotors behavior, dioxygenase activity, integral component of postsynaptic membrane, neuroactive ligand-receptor interaction, nuclear factor-kappa B (NF-κB) signaling pathway, cholinergic synapse, sphingolipid signaling pathway, and Parkinson's disease signaling pathway, as revealed by the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. Six lncRNAs, including XR_001782921.1 (P < 0.01), XR_ 001780581.1 (P < 0.01), ENSMUST_00000207119 (P < 0.01), XR_865512.2 (P < 0.01), TCONS_00005916 (P < 0.01), and TCONS_00020683 (P < 0.01), showed significant differences in expression levels between the model group and normal group by RT-qPCR. Among these, four lncRNAs (TCONS_00020683, XR_865512.2, XR_001780581.1, and ENSMUST00000207119) displayed a high degree of conservation. This study provides a unique perspective for the pathogenesis and therapy of HLD by constructing the lncRNA-miRNA-mRNA network. This insight provides a foundation for future exploration in this field.
Collapse
Affiliation(s)
- Wenjie Hao
- Department of Neurology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, China
- Key Laboratory of Xin'an Medicine of the Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - Wenming Yang
- Department of Neurology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China.
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, China.
- Key Laboratory of Xin'an Medicine of the Ministry of Education, Anhui University of Chinese Medicine, Hefei, China.
| | - Yue Yang
- Department of Neurology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Ting Cheng
- Department of Graduate, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Taohua Wei
- Department of Neurology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, China
| | - Lulu Tang
- Department of Neurology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, China
| | - Nannan Qian
- Key Laboratory of Xin'an Medicine of the Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - Yulong Yang
- Key Laboratory of Xin'an Medicine of the Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - Xiang Li
- Department of Neurology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Hailin Jiang
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, China
| | - Meixia Wang
- Department of Neurology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
4
|
Walton E, Baltramonaityte V, Calhoun V, Heijmans BT, Thompson PM, Cecil CAM. A systematic review of neuroimaging epigenetic research: calling for an increased focus on development. Mol Psychiatry 2023; 28:2839-2847. [PMID: 37185958 PMCID: PMC10615743 DOI: 10.1038/s41380-023-02067-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/03/2023] [Accepted: 04/03/2023] [Indexed: 05/17/2023]
Abstract
Epigenetic mechanisms, such as DNA methylation (DNAm), have gained increasing attention as potential biomarkers and mechanisms underlying risk for neurodevelopmental, psychiatric and other brain-based disorders. Yet, surprisingly little is known about the extent to which DNAm is linked to individual differences in the brain itself, and how these associations may unfold across development - a time of life when many of these disorders emerge. Here, we systematically review evidence from the nascent field of Neuroimaging Epigenetics, combining structural or functional neuroimaging measures with DNAm, and the extent to which the developmental period (birth to adolescence) is represented in these studies. We identified 111 articles published between 2011-2021, out of which only a minority (21%) included samples under 18 years of age. Most studies were cross-sectional (85%), employed a candidate-gene approach (67%), and examined DNAm-brain associations in the context of health and behavioral outcomes (75%). Nearly half incorporated genetic data, and a fourth investigated environmental influences. Overall, studies support a link between peripheral DNAm and brain imaging measures, but there is little consistency in specific findings and it remains unclear whether DNAm markers present a cause, correlate or consequence of brain alterations. Overall, there is large heterogeneity in sample characteristics, peripheral tissue and brain outcome examined as well as the methods used. Sample sizes were generally low to moderate (median nall = 98, ndevelopmental = 80), and attempts at replication or meta-analysis were rare. Based on the strengths and weaknesses of existing studies, we propose three recommendations on how advance the field of Neuroimaging Epigenetics. We advocate for: (1) a greater focus on developmentally oriented research (i.e. pre-birth to adolescence); (2) the analysis of large, prospective, pediatric cohorts with repeated measures of DNAm and imaging to assess directionality; and (3) collaborative, interdisciplinary science to identify robust signals, triangulate findings and enhance translational potential.
Collapse
Affiliation(s)
- Esther Walton
- Department of Psychology, University of Bath, Bath, UK.
| | | | - Vince Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| | - Bastiaan T Heijmans
- Molecular Epidemiology, Dept. of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of the University of Southern California, Marina del Rey, CA, USA
| | - Charlotte A M Cecil
- Molecular Epidemiology, Dept. of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
5
|
Falker-Gieske C, Bennewitz J, Tetens J. Structural variation and eQTL analysis in two experimental populations of chickens divergently selected for feather-pecking behavior. Neurogenetics 2023; 24:29-41. [PMID: 36449109 PMCID: PMC9823035 DOI: 10.1007/s10048-022-00705-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/19/2022] [Indexed: 12/02/2022]
Abstract
Feather pecking (FP) is a damaging nonaggressive behavior in laying hens with a heritable component. Its occurrence has been linked to the immune system, the circadian clock, and foraging behavior. Furthermore, dysregulation of miRNA biogenesis, disturbance of the gamma-aminobutyric acid (GABAergic) system, as well as neurodevelopmental deficiencies are currently under debate as factors influencing the propensity for FP behavior. Past studies, which focused on the dissection of the genetic factors involved in FP, relied on single nucleotide polymorphisms (SNPs) and short insertions and deletions < 50 bp (InDels). These variant classes only represent a certain fraction of the genetic variation of an organism. Hence, we reanalyzed whole-genome sequencing data from two experimental populations, which have been divergently selected for FP behavior for over more than 15 generations, performed variant calling for structural variants (SVs) as well as tandem repeats (TRs), and jointly analyzed the data with SNPs and InDels. Genotype imputation and subsequent genome-wide association studies, in combination with expression quantitative trait loci analysis, led to the discovery of multiple variants influencing the GABAergic system. These include a significantly associated TR downstream of the GABA receptor subunit beta-3 (GABRB3) gene, two microRNAs targeting several GABA receptor genes, and dystrophin (DMD), a direct regulator of GABA receptor clustering. Furthermore, we found the transcription factor ETV1 to be associated with the differential expression of 23 genes, which points toward a role of ETV1, together with SMAD4 and KLF14, in the disturbed neurodevelopment of high-feather pecking chickens.
Collapse
Affiliation(s)
- Clemens Falker-Gieske
- Department of Animal Sciences, Georg-August-University, Burckhardtweg 2, 37077, Göttingen, Germany.
| | - Jörn Bennewitz
- grid.9464.f0000 0001 2290 1502Institute of Animal Science, University of Hohenheim, Garbenstr. 17, 70599 Stuttgart, Germany
| | - Jens Tetens
- grid.7450.60000 0001 2364 4210Department of Animal Sciences, Georg-August-University, Burckhardtweg 2, 37077 Göttingen, Germany ,grid.7450.60000 0001 2364 4210Center for Integrated Breeding Research, Georg-August-University, Albrecht-Thaer-Weg 3, 37075 Göttingen, Germany
| |
Collapse
|
6
|
Sato R, Muneuchi J, Sugitani Y, Doi H, Furuta T, Ezaki H, Kobayashi M, Hatai E, Watanabe M. Overgrowth of the Amygdala in Children with Single Ventricle Congenital Heart Disease. J Child Neurol 2022; 37:979-983. [PMID: 36170242 DOI: 10.1177/08830738221129027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aim: Early life stress is associated with overgrowth of the amygdala, which plays a key role in the processing and memory of emotional responses. Herein, we aimed to explore the amygdala volume in children with single-ventricle congenital heart disease who experience repeated admissions during the neonatal period and infancy. Methods: We compared the amygdala volume measured using brain magnetic resonance imaging (MRI) between 40 patients after completion of the Fontan procedure and 40 age- and sex-matched control subjects Results: Age at the MRI study were 9.2 (8.5-11.1) and 10.2 (9.2-10.3) years in the Fontan and control groups, respectively. The maximum amygdala volume in the Fontan group was significantly larger than in the control group (1232 [983-1392] mm3/m2 vs. 980 [728-1166] mm3/m2, P < 0.001). The amygdala volume did not correlate to cardiac index (r = 0.260) and central venous pressure (r = -0.107) in the Fontan group. Conclusions: Children with single-ventricle congenital heart disease exhibited amygdala overgrowth.
Collapse
Affiliation(s)
- Rie Sato
- Department of Pediatrics, 37039Kyushu Hospital, Japan Community Healthcare Organization, Kitakyushu, Japan
| | - Jun Muneuchi
- Department of Pediatrics, 37039Kyushu Hospital, Japan Community Healthcare Organization, Kitakyushu, Japan
| | - Yuichiro Sugitani
- Department of Pediatrics, 37039Kyushu Hospital, Japan Community Healthcare Organization, Kitakyushu, Japan
| | - Hirohito Doi
- Department of Pediatrics, 37039Kyushu Hospital, Japan Community Healthcare Organization, Kitakyushu, Japan
| | - Takashi Furuta
- Department of Pediatrics, 37039Kyushu Hospital, Japan Community Healthcare Organization, Kitakyushu, Japan
| | - Hiroki Ezaki
- Department of Pediatrics, 37039Kyushu Hospital, Japan Community Healthcare Organization, Kitakyushu, Japan
| | - Masaru Kobayashi
- Department of Pediatrics, 37039Kyushu Hospital, Japan Community Healthcare Organization, Kitakyushu, Japan
| | - Eriko Hatai
- Department of Pediatrics, 37039Kyushu Hospital, Japan Community Healthcare Organization, Kitakyushu, Japan
| | - Mamie Watanabe
- Department of Pediatrics, 37039Kyushu Hospital, Japan Community Healthcare Organization, Kitakyushu, Japan
| |
Collapse
|
7
|
Hüls A, Wedderburn CJ, Groenewold NA, Gladish N, Jones MJ, Koen N, MacIsaac JL, Lin DTS, Ramadori KE, Epstein MP, Donald KA, Kobor MS, Zar HJ, Stein DJ. Newborn differential DNA methylation and subcortical brain volumes as early signs of severe neurodevelopmental delay in a South African Birth Cohort Study. World J Biol Psychiatry 2022; 23:601-612. [PMID: 34895032 PMCID: PMC9273810 DOI: 10.1080/15622975.2021.2016955] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 01/25/2023]
Abstract
OBJECTIVES Early detection of neurodevelopmental delay is crucial for intervention and treatment strategies. We analysed associations between newborn DNA methylation (DNAm), neonatal magnetic resonance imaging (MRI) neuroimaging data, and neurodevelopment. METHODS Neurodevelopment was assessed in 161 children from the South African Drakenstein Child Health Study at 2 years of age using the Bayley Scales of Infant and Toddler Development III. We performed an epigenome-wide association study of neurodevelopmental delay using DNAm from cord blood. Subsequently, we analysed if associations between DNAm and neurodevelopmental delay were mediated by altered neonatal brain volumes (subset of 51 children). RESULTS Differential DNAm at SPTBN4 (cg26971411, Δbeta = -0.024, p-value = 3.28 × 10-08), and two intergenic regions (chromosome 11: cg00490349, Δbeta = -0.036, p-value = 3.02 × 10-08; chromosome 17: cg15660740, Δbeta = -0.078, p-value = 6.49 × 10-08) were significantly associated with severe neurodevelopmental delay. While these associations were not mediated by neonatal brain volume, neonatal caudate volumes were independently associated with neurodevelopmental delay, particularly in language (Δcaudate volume = 165.30 mm3, p = 0.0443) and motor (Δcaudate volume = 365.36 mm3, p-value = 0.0082) domains. CONCLUSIONS Differential DNAm from cord blood and increased neonatal caudate volumes were independently associated with severe neurodevelopmental delay at 2 years of age. These findings suggest that neurobiological signals for severe developmental delay may be detectable in very early life.
Collapse
Affiliation(s)
- Anke Hüls
- Department of Epidemiology and Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Catherine J Wedderburn
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
- Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, UK
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Nynke A Groenewold
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
- South African Medical Research Council (SAMRC) Unit on Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Nicole Gladish
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
- BC Children's Hospital Research Institute, Vancouver, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, Canada
| | - Meaghan J Jones
- Department of Biochemistry and Medical Genetics, University of Manitoba, and Children's Hospital Research Institute of Manitoba, Winnipeg, Canada
| | - Nastassja Koen
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
- South African Medical Research Council (SAMRC) Unit on Risk and Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa
| | - Julia L MacIsaac
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
- BC Children's Hospital Research Institute, Vancouver, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, Canada
| | - David T S Lin
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
- BC Children's Hospital Research Institute, Vancouver, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, Canada
| | - Katia E Ramadori
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
- BC Children's Hospital Research Institute, Vancouver, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, Canada
| | - Michael P Epstein
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, USA
| | - Kirsten A Donald
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Michael S Kobor
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
- BC Children's Hospital Research Institute, Vancouver, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, Canada
| | - Heather J Zar
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
- South African Medical Research Council (SAMRC) Unit on Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Dan J Stein
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
- South African Medical Research Council (SAMRC) Unit on Risk and Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
8
|
Nie Y, Wen L, Song J, Wang N, Huang L, Gao L, Qu M. Emerging trends in epigenetic and childhood trauma: Bibliometrics and visual analysis. Front Psychiatry 2022; 13:925273. [PMID: 36458128 PMCID: PMC9705591 DOI: 10.3389/fpsyt.2022.925273] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 10/25/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The epigenetic study of childhood trauma has become a valuable field. However, the evolution and emerging trends in epigenetics and childhood trauma have not been studied by bibliometric methods. OBJECTIVE This study aims to evaluate status of epigenetic studies in childhood trauma and reveal the research trends based on bibliometrics. METHODS A total of 1,151 publications related to childhood trauma and epigenetics published between 2000 and 2021 were retrieved from the Web of Science Core Collection (WoSCC). CiteSpace (5.8. R 3) was used to implement bibliometric analysis and visualization. RESULTS Since 2010, the number of related publications has expanded quickly. The United States and McGill University are the most influential countries and research institutes, respectively. Elisabeth Binder is a leading researcher in childhood trauma and epigenetic-related research. Biological Psychiatry is probably the most popular journal. In addition, comprehensive keyword analysis revealed that "glucocorticoid receptor," "brain development," "epigenetic regulation," "depression," "posttraumatic stress disorder," "maternal care," "histone acetylation," "telomere length," "microRNA," and "anxiety" reflect the latest research trends in the field. A comprehensive reference analysis demonstrated NR3C1 gene methylation, FKBP5 DNA methylation, BDNF DNA methylation, and KITLG methylation have been hot spots in epigenetic studies in the field of childhood trauma in recent years. Notably, the relationship between childhood adversity and NR3C1 gene methylation levels remains unresolved and requires well-designed studies with control for more confounding factors. CONCLUSION As the best of our knowledge, this is the first bibliometric analysis of the association between childhood trauma and epigenetics. Our analysis of the literature suggests that childhood trauma may induce depression, anxiety, and post-traumatic stress disorder through epigenetic regulation of glucocorticoid receptor expression and brain development. The hypothalamic-pituitary-adrenal axis is the key points of epigenetic research. The current researches focus on NR3C1 gene methylation, FKBP5 DNA methylation, BDNF DNA methylation, and KITLG methylation. These results provide a guiding perspective for the study of epigenetic effects of childhood trauma, and help researchers choose future research directions based on current keywords.
Collapse
Affiliation(s)
- Yuting Nie
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Lulu Wen
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Juexian Song
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ningqun Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Liyuan Huang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Li Gao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Miao Qu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
9
|
Parental Education, Household Income, Race, and Children's Working Memory: Complexity of the Effects. Brain Sci 2020; 10:brainsci10120950. [PMID: 33297546 PMCID: PMC7762416 DOI: 10.3390/brainsci10120950] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/01/2020] [Accepted: 12/04/2020] [Indexed: 12/20/2022] Open
Abstract
Background. Considerable research has linked social determinants of health (SDoHs) such as race, parental education, and household income to school performance, and these effects may be in part due to working memory. However, a growing literature shows that these effects may be complex: while the effects of parental education may be diminished for Blacks than Whites, household income may explain such effects. Purpose. Considering race as sociological rather than a biological construct (race as a proxy of racism) and built on Minorities' Diminished Returns (MDRs), this study explored complexities of the effects of SDoHs on children's working memory. Methods. We borrowed data from the Adolescent Brain Cognitive Development (ABCD) study. The total sample was 10,418, 9- and 10-year-old children. The independent variables were race, parental education, and household income. The primary outcome was working memory measured by the NIH Toolbox Card Sorting Test. Age, sex, ethnicity, and parental marital status were the covariates. To analyze the data, we used mixed-effect regression models. Results. High parental education and household income were associated with higher and Black race was associated with lower working memory. The association between high parental education but not household income was less pronounced for Black than White children. This differential effect of parental education on working memory was explained by household income. Conclusions. For American children, parental education generates unequal working memory, depending on race. This means parental education loses some of its expected effects for Black families. It also suggests that while White children with highly educated parents have the highest working memory, Black children report lower working memory, regardless of their parental education. This inequality is mainly because of differential income in highly educated White and Black families. This finding has significant public policy and economic implications and suggests we need to do far more than equalizing education to eliminate racial inequalities in children's cognitive outcomes. While there is a need for multilevel policies that reduce the effect of racism and social stratification for middle-class Black families, equalizing income may have more returns than equalizing education.
Collapse
|
10
|
Stephen JM, Solis I, Janowich J, Stern M, Frenzel MR, Eastman JA, Mills MS, Embury CM, Coolidge NM, Heinrichs-Graham E, Mayer A, Liu J, Wang YP, Wilson TW, Calhoun VD. The Developmental Chronnecto-Genomics (Dev-CoG) study: A multimodal study on the developing brain. Neuroimage 2020; 225:117438. [PMID: 33039623 DOI: 10.1016/j.neuroimage.2020.117438] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/07/2020] [Accepted: 10/05/2020] [Indexed: 01/10/2023] Open
Abstract
Brain development has largely been studied through unimodal analysis of neuroimaging data, providing independent results for structural and functional data. However, structure clearly impacts function and vice versa, pointing to the need for performing multimodal data collection and analysis to improve our understanding of brain development, and to further inform models of typical and atypical brain development across the lifespan. Ultimately, such models should also incorporate genetic and epigenetic mechanisms underlying brain structure and function, although currently this area is poorly specified. To this end, we are reporting here a multi-site, multi-modal dataset that captures cognitive function, brain structure and function, and genetic and epigenetic measures to better quantify the factors that influence brain development in children originally aged 9-14 years. Data collection for the Developmental Chronnecto-Genomics (Dev-CoG) study (http://devcog.mrn.org/) includes cognitive, emotional, and social performance scales, structural and functional MRI, diffusion MRI, magnetoencephalography (MEG), and saliva collection for DNA analysis of single nucleotide polymorphisms (SNPs) and DNA methylation patterns. Across two sites (The Mind Research Network and the University of Nebraska Medical Center), data from over 200 participants were collected and these children were re-tested annually for at least 3 years. The data collection protocol, sample demographics, and data quality measures for the dataset are presented here. The sample will be made freely available through the collaborative informatics and neuroimaging suite (COINS) database at the conclusion of the study.
Collapse
Affiliation(s)
- J M Stephen
- The Mind Research Network a division of Lovelace Biomedical Research Institute, Albuquerque, NM, United States.
| | - I Solis
- The Mind Research Network a division of Lovelace Biomedical Research Institute, Albuquerque, NM, United States; Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | - J Janowich
- The Mind Research Network a division of Lovelace Biomedical Research Institute, Albuquerque, NM, United States; Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | - M Stern
- The Mind Research Network a division of Lovelace Biomedical Research Institute, Albuquerque, NM, United States; Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | - M R Frenzel
- University of Nebraska Medical Center, Omaha, NE, United States
| | - J A Eastman
- University of Nebraska Medical Center, Omaha, NE, United States
| | - M S Mills
- University of Nebraska Medical Center, Omaha, NE, United States
| | - C M Embury
- University of Nebraska Medical Center, Omaha, NE, United States
| | - N M Coolidge
- University of Nebraska Medical Center, Omaha, NE, United States
| | | | - A Mayer
- The Mind Research Network a division of Lovelace Biomedical Research Institute, Albuquerque, NM, United States
| | - J Liu
- The Mind Research Network a division of Lovelace Biomedical Research Institute, Albuquerque, NM, United States
| | - Y P Wang
- Tulane University, New Orleans, LA, United States
| | - T W Wilson
- University of Nebraska Medical Center, Omaha, NE, United States
| | - V D Calhoun
- The Mind Research Network a division of Lovelace Biomedical Research Institute, Albuquerque, NM, United States; Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM, United States; Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
| |
Collapse
|
11
|
Subjective Socioeconomic Status and Children's Amygdala Volume: Minorities' Diminish Returns. NEUROSCI 2020; 1:59-74. [PMID: 33103157 DOI: 10.3390/neurosci1020006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Considerable research has suggested that low socioeconomic status (SES) negatively influences brain structure, including but not limited to decreased amygdala volume. Considering race and ethnicity as sociological rather than biological constructs, this study was built on minorities' diminished returns (MDRs) to test if the effects of family SES on the total amygdala volume is weaker for black and Latino children than white and non-Latino children. We borrowed data from the Adolescent Brain Cognitive Development (ABCD) study, a national multi-center brain imaging investigation of childhood brain development in the US. The total sample was 9380 9-10-year-old children. The independent variables were subjective family SES and parental education. The primary outcome was total amygdala volume. High subjective SES and parental education were independently associated with larger total amygdala size. The association between high subjective SES and larger total amygdala volume was less pronounced for black and Latino children than white and non-Latino children. For American children, family SES has unequal effects on amygdala size and function, a pattern that is consistent with MDRs. This result suggests that SES loses some of its expected effects for racial and ethnic minority families.
Collapse
|
12
|
DNA Methylation within the Amygdala Early in Life Increases Susceptibility for Depression and Anxiety Disorders. J Neurosci 2020; 39:8828-8830. [PMID: 31694977 DOI: 10.1523/jneurosci.0845-19.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 08/27/2019] [Accepted: 09/11/2019] [Indexed: 12/15/2022] Open
|
13
|
Cecil CAM, Zhang Y, Nolte T. Childhood maltreatment and DNA methylation: A systematic review. Neurosci Biobehav Rev 2020; 112:392-409. [PMID: 32081689 DOI: 10.1016/j.neubiorev.2020.02.019] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 02/14/2020] [Accepted: 02/15/2020] [Indexed: 12/20/2022]
Abstract
DNA methylation (DNAm) - an epigenetic process that regulates gene expression - may represent a mechanism for the biological embedding of early traumatic experiences, including childhood maltreatment. Here, we conducted the first systematic review of human studies linking childhood maltreatment to DNAm. In total, 72 studies were included in the review (2008-2018). The majority of extant studies (i) were based on retrospective data in adults, (ii) employed a candidate gene approach (iii) focused on global maltreatment, (iv) were based on easily accessible peripheral tissues, typically blood; and (v) were cross-sectional. Two-thirds of studies (n = 48) also examined maltreatment-related outcomes, such as stress reactivity and psychiatric symptoms. While findings generally support an association between childhood maltreatment and altered patterns of DNAm, factors such as the lack of longitudinal data, low comparability across studies as well as potential genetic and 'pre-exposure' environmental confounding currently limit the conclusions that can be drawn. Key challenges are discussed and concrete recommendations for future research are provided to move the field forward.
Collapse
Affiliation(s)
- Charlotte A M Cecil
- Department of Child and Adolescent Psychiatry, Erasmus Medical Centre, Rotterdam, The Netherlands; Department of Epidemiology, Erasmus Medical Centre, Rotterdam, The Netherlands; Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.
| | - Yuning Zhang
- Centre for Innovation in Mental Health, University of Southampton; State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Tobias Nolte
- The Wellcome Centre for Human Neuroimaging, University College London, London, United Kingdom; Anna Freud National Centre for Children and Families, London, United Kingdom
| |
Collapse
|
14
|
Hidden hypotheses in ‘hypothesis-free’ genome-wide epigenetic associations. Curr Opin Psychol 2019; 27:13-17. [DOI: 10.1016/j.copsyc.2018.07.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 07/16/2018] [Indexed: 11/17/2022]
|
15
|
Chen J, Liu J, Calhoun VD. The Translational Potential of Neuroimaging Genomic Analyses To Diagnosis And Treatment In The Mental Disorders. PROCEEDINGS OF THE IEEE. INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS 2019; 107:912-927. [PMID: 32051642 PMCID: PMC7015534 DOI: 10.1109/jproc.2019.2913145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Imaging genomics focuses on characterizing genomic influence on the variation of neurobiological traits, holding promise for illuminating the pathogenesis, reforming the diagnostic system, and precision medicine of mental disorders. This paper aims to provide an overall picture of the current status of neuroimaging-genomic analyses in mental disorders, and how we can increase their translational potential into clinical practice. The review is organized around three perspectives. (a) Towards reliability, generalizability and interpretability, where we summarize the multivariate models and discuss the considerations and trade-offs of using these methods and how reliable findings may be reached, to serve as ground for further delineation. (b) Towards improved diagnosis, where we outline the advantages and challenges of constructing a dimensional transdiagnostic model and how imaging genomic analyses map into this framework to aid in deconstructing heterogeneity and achieving an optimal stratification of patients that better inform treatment planning. (c) Towards improved treatment. Here we highlight recent efforts and progress in elucidating the functional annotations that bridge between genomic risk and neurobiological abnormalities, in detecting genomic predisposition and prodromal neurodevelopmental changes, as well as in identifying imaging genomic biomarkers for predicting treatment response. Providing an overview of the challenges and promises, this review hopefully motivates imaging genomic studies with multivariate, dimensional and transdiagnostic designs for generalizable and interpretable findings that facilitate development of personalized treatment.
Collapse
Affiliation(s)
- Jiayu Chen
- The Mind Research Network, Albuquerque, NM 87106 USA
| | - Jingyu Liu
- The Mind Research Network, Albuquerque, NM 87106 USA, and also with the Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM 87131 USA
| | - Vince D Calhoun
- The Mind Research Network, Albuquerque, NM 87106 USA, and also with the Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM 87131 USA
| |
Collapse
|
16
|
Cecil CAM, Walton E, Pingault JB, Provençal N, Pappa I, Vitaro F, Côté S, Szyf M, Tremblay RE, Tiemeier H, Viding E, McCrory EJ. DRD4 methylation as a potential biomarker for physical aggression: An epigenome-wide, cross-tissue investigation. Am J Med Genet B Neuropsychiatr Genet 2018; 177:746-764. [PMID: 30411855 DOI: 10.1002/ajmg.b.32689] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 08/23/2018] [Accepted: 09/21/2018] [Indexed: 12/13/2022]
Abstract
Epigenetic processes that regulate gene expression, such as DNA methylation (DNAm), have been linked to individual differences in physical aggression. Yet, it is currently unclear whether: (a) DNAm patterns in humans associate with physical aggression independently of other co-occurring psychiatric and behavioral symptoms; (b) whether these patterns are observable across multiple tissues; and (c) whether they may function as a causal versus noncausal biomarker of physical aggression. Here, we used a multisample, cross-tissue design to address these questions. First, we examined genome-wide DNAm patterns (buccal swabs; Illumina 450k) associated with engagement in physical fights in a sample of high-risk youth (n = 119; age = 16-24 years; 53% female). We identified one differentially methylated region in DRD4, which survived genome-wide correction, associated with physical aggression above and beyond co-occurring symptomatology (e.g., ADHD, substance use), and showed strong cross-tissue concordance with both blood and brain. Second, we found that DNAm sites within this region were also differentially methylated in an independent sample of young adults, between individuals with a history of chronic-high versus low physical aggression (peripheral T cells; ages 26-28). Finally, we ran a Mendelian randomization analysis using GWAS data from the EAGLE consortium to test for a causal association of DRD4 methylation with physical aggression. Only one genetic instrument was eligible for the analysis, and results provided no evidence for a causal association. Overall, our findings lend support for peripheral DRD4 methylation as a potential biomarker of physically aggressive behavior, with no evidence yet of a causal relationship.
Collapse
Affiliation(s)
- Charlotte A M Cecil
- Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,Department of Child and Adolescent Psychiatry/Psychology, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, Netherlands
| | - Esther Walton
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
| | - Jean-Baptiste Pingault
- Division of Psychology and Language Sciences, University College London, London, United Kingdom
| | - Nadine Provençal
- Faculty of Health Sciences, Simon Fraser University, Burnaby and BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Irene Pappa
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, Netherlands
| | - Frank Vitaro
- Department of Psychoeducation, Université de Montréal, Montréal, Québec, Canada
| | - Sylvana Côté
- Department of Pediatrics, Université de Montréal, Montréal, Québec, Canada.,Department of Psychology, Université de Montréal, Montréal, Québec, Canada
| | - Moshe Szyf
- Department of Pharmacology & Therapeutics, McGill University, Montréal, Québec, Canada
| | - Richard E Tremblay
- Department of Pediatrics, Université de Montréal, Montréal, Québec, Canada.,Department of Psychology, Université de Montréal, Montréal, Québec, Canada
| | - Henning Tiemeier
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, Netherlands.,Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, United States of America
| | - Essi Viding
- Division of Psychology and Language Sciences, University College London, London, United Kingdom
| | - Eamon J McCrory
- Division of Psychology and Language Sciences, University College London, London, United Kingdom
| |
Collapse
|
17
|
Abstract
INTRODUCTION Depression and posttraumatic stress disorder (PTSD) are two complex and debilitating psychiatric disorders that result in poor life and destructive behaviors against self and others. Currently, diagnosis is based on subjective rather than objective determinations leading to misdiagnose and ineffective treatments. Advances in novel neurobiological methods have allowed assessment of promising biomarkers to diagnose depression and PTSD, which offers a new means of appropriately treating patients. Areas covered: Biomarkers discovery in blood represents a fundamental tool to predict, diagnose, and monitor treatment efficacy in depression and PTSD. The potential role of altered HPA axis, epigenetics, NPY, BDNF, neurosteroid biosynthesis, the endocannabinoid system, and their function as biomarkers for mood disorders is discussed. Insofar, we propose the identification of a biomarker axis to univocally identify and discriminate disorders with large comorbidity and symptoms overlap, so as to provide a base of support for development of targeted treatments. We also weigh in on the feasibility of a future blood test for early diagnosis. Expert commentary: Potential biomarkers have already been assessed in patients' blood and need to be further validated through multisite large clinical trial stratification. Another challenge is to assess the relation among several interdependent biomarkers to form an axis that identifies a specific disorder and secures the best-individualized treatment. The future of blood-based tests for PTSD and depression is not only on the horizon but, possibly, already around the corner.
Collapse
Affiliation(s)
- Dario Aspesi
- a The Psychiatric Institute, Department of Psychiatry , University of Illinois at Chicago , Chicago , IL , USA
| | - Graziano Pinna
- a The Psychiatric Institute, Department of Psychiatry , University of Illinois at Chicago , Chicago , IL , USA
| |
Collapse
|
18
|
Barker ED, Walton E, Cecil CA, Rowe R, Jaffee SR, Maughan B, O'Connor TG, Stringaris A, Meehan AJ, McArdle W, Relton CL, Gaunt TR. A Methylome-Wide Association Study of Trajectories of Oppositional Defiant Behaviors and Biological Overlap With Attention Deficit Hyperactivity Disorder. Child Dev 2018; 89:1839-1855. [PMID: 28929496 PMCID: PMC6207925 DOI: 10.1111/cdev.12957] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In 671 mother-child (49% male) pairs from an epidemiological birth cohort, we investigated (a) prospective associations between DNA methylation (at birth) and trajectories (ages 7-13) of oppositional defiant disorder (ODD), and the ODD subdimensions of irritable and headstrong; (b) common biological pathways, indexed by DNA methylation, between ODD trajectories and attention deficit hyperactivity disorder (ADHD); (c) genetic influence on DNA methylation; and (d) prenatal risk exposure associations. Methylome-wide significant associations were identified for the ODD and headstrong, but not for irritable. Overlap analysis indicated biological correlates between ODD, headstrong, and ADHD. DNA methylation in ODD and headstrong was (to a degree) genetically influenced. DNA methylation associated with prenatal risk exposures of maternal anxiety (headstrong) and cigarette smoking (ODD and headstrong).
Collapse
|
19
|
Liu J, Chen J, Perrone-Bizzozero N, Calhoun VD. A Perspective of the Cross-Tissue Interplay of Genetics, Epigenetics, and Transcriptomics, and Their Relation to Brain Based Phenotypes in Schizophrenia. Front Genet 2018; 9:343. [PMID: 30190726 PMCID: PMC6115489 DOI: 10.3389/fgene.2018.00343] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 08/09/2018] [Indexed: 12/11/2022] Open
Abstract
Genetic association studies of psychiatric disorders have provided unprecedented insight into disease risk profiles with high confidence. Yet, the next research challenge is how to translate this rich information into mechanisms of disease, and further help interventions and treatments. Given other comprehensive reviews elsewhere, here we want to discuss the research approaches that integrate information across various tissue types. Taking schizophrenia as an example, the tissues, cells, or organisms being investigated include postmortem brain tissues or neurons, peripheral blood and saliva, in vivo brain imaging, and in vitro cell lines, particularly human induced pluripotent stem cells (iPSC) and iPSC derived neurons. There is a wealth of information on the molecular signatures including genetics, epigenetics, and transcriptomics of various tissues, along with neuronal phenotypic measurements including neuronal morphometry and function, together with brain imaging and other techniques that provide data from various spatial temporal points of disease development. Through consistent or complementary processes across tissues, such as cross-tissue methylation quantitative trait loci (QTL) and expression QTL effects, systemic integration of such information holds the promise to put the pieces of puzzle together for a more complete view of schizophrenia disease pathogenesis.
Collapse
Affiliation(s)
- Jingyu Liu
- Mind Research Network, Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM, United States
- Department of Neurosciences, University of New Mexico, Albuquerque, NM, United States
| | - Jiayu Chen
- Mind Research Network, Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM, United States
| | - Nora Perrone-Bizzozero
- Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM, United States
| | - Vince D. Calhoun
- Mind Research Network, Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM, United States
- Department of Neurosciences, University of New Mexico, Albuquerque, NM, United States
| |
Collapse
|
20
|
Population DNA methylation studies in the Developmental Origins of Health and Disease (DOHaD) framework. J Dev Orig Health Dis 2018; 10:306-313. [PMID: 30101736 DOI: 10.1017/s2040174418000442] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Epigenetic changes represent a potential mechanism underlying associations of early-life exposures and later life health outcomes. Population-based cohort studies starting in early life are an attractive framework to study the role of such changes. DNA methylation is the most studied epigenetic mechanism in population research. We discuss the application of DNA methylation in early-life population studies, some recent findings, key challenges and recommendations for future research. Studies into DNA methylation within the Developmental Origins of Health and Disease framework generally either explore associations between prenatal exposures and offspring DNA methylation or associations between offspring DNA methylation in early life and later health outcomes. Only a few studies to date have integrated prospective exposure, epigenetic and phenotypic data in order to explicitly test the role of DNA methylation as a potential biological mediator of environmental effects on health outcomes. Population epigenetics is an emerging field which has challenges in terms of methodology and interpretation of the data. Key challenges include tissue specificity, cell type adjustment, issues of power and comparability of findings, genetic influences, and exploring causality and functional consequences. Ongoing studies are working on addressing these issues. Large collaborative efforts of prospective cohorts are emerging, with clear benefits in terms of optimizing power and use of resources, and in advancing methodology. In the future, multidisciplinary approaches, within and beyond longitudinal birth and preconception cohorts will advance this complex, but highly promising, the field of research.
Collapse
|
21
|
Barker ED, Walton E, Cecil CAM. Annual Research Review: DNA methylation as a mediator in the association between risk exposure and child and adolescent psychopathology. J Child Psychol Psychiatry 2018; 59:303-322. [PMID: 28736860 DOI: 10.1111/jcpp.12782] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/17/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND DNA methylation (DNAm) is a potential mechanism for propagating the effects of environmental exposures on child and adolescent mental health. In recent years, this field has experienced steady growth. METHODS We provide a strategic review of the current child and adolescent literature to evaluate evidence for a mediating role of DNAm in the link between environmental risks and psychopathological outcomes, with a focus on internalising and externalising difficulties. RESULTS Based on the studies presented, we conclude that there is preliminary evidence to support that (a) environmental factors, such as diet, neurotoxic exposures and stress, influence offspring DNAm, and that (b) variability in DNAm, in turn, is associated with child and adolescent psychopathology. Overall, very few studies have examined DNAm in relation to both exposures and outcomes, and almost all analyses have been correlational in nature. CONCLUSIONS DNAm holds potential as a biomarker indexing both environmental risk exposure and vulnerability for child psychopathology. However, the extent to which it may represent a causal mediator is not clear. In future, collection of prospective risk exposure, DNAm and outcomes - as well as functional characterisation of epigenetic findings - will assist in determining the role of DNAm in the link between risk exposure and psychopathology.
Collapse
Affiliation(s)
- Edward D Barker
- Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Esther Walton
- Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Charlotte A M Cecil
- Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
22
|
Kular L, Kular S. Epigenetics applied to psychiatry: Clinical opportunities and future challenges. Psychiatry Clin Neurosci 2018; 72:195-211. [PMID: 29292553 DOI: 10.1111/pcn.12634] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 12/12/2017] [Accepted: 12/26/2017] [Indexed: 12/11/2022]
Abstract
Psychiatric disorders are clinically heterogeneous and debilitating chronic diseases resulting from a complex interplay between gene variants and environmental factors. Epigenetic processes, such as DNA methylation and histone posttranslational modifications, instruct the cell/tissue to correctly interpret external signals and adjust its functions accordingly. Given that epigenetic modifications are sensitive to environment, stable, and reversible, epigenetic studies in psychiatry could represent a promising approach to better understanding and treating disease. In the present review, we aim to discuss the clinical opportunities and challenges arising from the epigenetic research in psychiatry. Using selected examples, we first recapitulate key findings supporting the role of adverse life events, alone or in combination with genetic risk, in epigenetic programming of neuropsychiatric systems. Epigenetic studies further report encouraging findings about the use of methylation changes as diagnostic markers of disease phenotype and predictive tools of progression and response to treatment. Then we discuss the potential of using targeted epigenetic pharmacotherapy, combined with psychosocial interventions, for future personalized medicine for patients. Finally, we review the methodological limitations that could hinder interpretation of epigenetic data in psychiatry. They mainly arise from heterogeneity at the individual and tissue level and require future strategies in order to reinforce the biological relevance of epigenetic data and its translational use in psychiatry. Overall, we suggest that epigenetics could provide new insights into a more comprehensive interpretation of mental illness and might eventually improve the nosology, treatment, and prevention of psychiatric disorders.
Collapse
Affiliation(s)
- Lara Kular
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Sonia Kular
- Adult Psychiatry Unit of Laval Secteur Est, Laval, France
| |
Collapse
|