1
|
McNeill RV, Kehrwald C, Brum M, Knopf K, Brunkhorst-Kanaan N, Etyemez S, Koreny C, Bittner RA, Freudenberg F, Herterich S, Reif A, Kittel-Schneider S. Uncovering associations between mental illness diagnosis, nitric oxide synthase gene variation, and peripheral nitric oxide concentration. Brain Behav Immun 2022; 101:275-283. [PMID: 35041938 DOI: 10.1016/j.bbi.2022.01.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/17/2021] [Accepted: 01/08/2022] [Indexed: 12/12/2022] Open
Abstract
Nitric oxide (NO) signalling has been implicated in the pathogenesis of several mental illnesses; however, its specific contribution remains unclear. We investigated whether peripheral NO concentration is associated with specific diagnoses, and whether there is a correlation with genetic variation in NO synthase (NOS) genes. We included 185 participants in the study; 52 healthy controls, 43 major depressive disorder (MDD) patients, 41 bipolar disorder (BPD) patients, and 49 schizophrenia (SCZ) patients. Clinical, genetic, and biochemical data were collected at admission to a psychiatric hospital and at discharge. Serum was used to quantify concentration of the stable NO metabolites nitrite and nitrate. Individuals were genotyped for the NOS1 exon 1f variable number of tandem repeats 1 (VNTR1) polymorphism, and single nucleotide polymorphisms (SNPs) in the NOS1, NOS1AP and NOS3 genes. At admission, SCZ patients were found to have significantly higher peripheral NO metabolite (NOx-) concentrations compared to healthy controls, MDD and BPD patients. NOS1 exon 1f VNTR1 short allele carriers were found to have significantly increased NOx- concentration. Moreover, this result was still significant in patients even at discharge. The data also revealed that patients who did not remit in their depressive symptoms had significantly increased NOx- concentration compared to remitters at discharge, supported by the finding of a significant positive correlation between depression symptom severity and NOx- concentration. Taken together, it is possible that elevated peripheral NOx- concentration is associated with increased severity of psychopathology, potentially due to NOS1 exon1f VNTR1 genotype. Our results further implicate NO signalling in mental illness pathogenesis, supporting its possible use as a peripheral biomarker, and imply that NOS genotype may play a significant role in regulating peripheral NOx- concentration.
Collapse
Affiliation(s)
- Rhiannon V McNeill
- Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital, University of Würzburg, D-97080 Würzburg, Germany; Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe-University Frankfurt, Heinrich-Hoffmann-Str. 10, D-60528 Frankfurt/Main, Germany.
| | - Christopher Kehrwald
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe-University Frankfurt, Heinrich-Hoffmann-Str. 10, D-60528 Frankfurt/Main, Germany
| | - Murielle Brum
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe-University Frankfurt, Heinrich-Hoffmann-Str. 10, D-60528 Frankfurt/Main, Germany
| | - Katrin Knopf
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe-University Frankfurt, Heinrich-Hoffmann-Str. 10, D-60528 Frankfurt/Main, Germany
| | - Nathalie Brunkhorst-Kanaan
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe-University Frankfurt, Heinrich-Hoffmann-Str. 10, D-60528 Frankfurt/Main, Germany
| | - Semra Etyemez
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe-University Frankfurt, Heinrich-Hoffmann-Str. 10, D-60528 Frankfurt/Main, Germany; Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Carolin Koreny
- Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital, University of Würzburg, D-97080 Würzburg, Germany
| | - Robert A Bittner
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe-University Frankfurt, Heinrich-Hoffmann-Str. 10, D-60528 Frankfurt/Main, Germany; Ernst Strüngmann Institute for Neuroscience in Cooperation with Max Planck Society, Frankfurt am Main, Germany
| | - Florian Freudenberg
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe-University Frankfurt, Heinrich-Hoffmann-Str. 10, D-60528 Frankfurt/Main, Germany
| | - Sabine Herterich
- Central Laboratory, University Hospital, University of Würzburg, D-97080 Würzburg, Germany
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe-University Frankfurt, Heinrich-Hoffmann-Str. 10, D-60528 Frankfurt/Main, Germany
| | - Sarah Kittel-Schneider
- Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital, University of Würzburg, D-97080 Würzburg, Germany; Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe-University Frankfurt, Heinrich-Hoffmann-Str. 10, D-60528 Frankfurt/Main, Germany
| |
Collapse
|
2
|
Xu H, Zhong Y, Yuan S, Wu Y, Ma Z, Hao Z, Ding H, Wu H, Liu G, Pang M, Liu N, Wang C, Zhang N. Nitric Oxide Synthase Type 1 Methylation Is Associated With White Matter Microstructure in the Corpus Callosum and Greater Panic Disorder Severity Among Panic Disorder Patients. Front Neurol 2021; 12:755270. [PMID: 34733233 PMCID: PMC8559336 DOI: 10.3389/fneur.2021.755270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/06/2021] [Indexed: 11/28/2022] Open
Abstract
Objectives: Methylation of the neuronal nitric oxide synthase (NOS1/nNOS) gene has recently been identified as a promising biomarker of psychiatric disorders. NOS1 plays an essential role in neurite outgrowth and may thus affect the microstructure development of white matter (WM) in the corpus callosum (CC), which is known to be altered in panic disorder (PD). We examined the relationship between NOS1 methylation, WM tracts in the CC, and symptoms based on this finding. Methods: Thirty-two patients with PD and 22 healthy controls (HCs) were recruited after age, gender, and the education level were matched. The cell type used was whole-blood DNA, and DNA methylation of NOS1 was measured at 20 CpG sites in the promoter region. Although 25 patients with PD were assessed with the Panic Disorder Severity Scale (PDSS), diffusion tensor imaging (DTI) scans were only collected from 16 participants with PD. Results: We observed that the PD group showed lower methylation than did the HCs group and positive correlations between the symptom severity of PD and methylation at CpG4 and CpG9. In addition, CpG9 methylation was significantly correlated with the fractional anisotropy (FA) and mean diffusivity (MD) values of the CC and its major components (the genu and the splenium) in the PD group. Furthermore, path analyses showed that CpG9 methylation offers a mediating effect for the association between the MD values of the genu of the CC and PD symptom severity (95% CI = −1.731 to −0.034). Conclusions: The results suggest that CpG9 methylation leads to atypical development of the genu of the CC, resulting in higher PD symptom severity, adding support for the methylation of NOS1 as a future prognostic indicator of PD.
Collapse
Affiliation(s)
- Huazhen Xu
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China.,The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Yuan Zhong
- School of Psychology, Nanjing Normal University, Nanjing, China.,Jiangsu Key Laboratory of Mental Health and Cognitive Science, Nanjing Normal University, Nanjing, China
| | - Shiting Yuan
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Yun Wu
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Zijuan Ma
- School of Psychology, South China Normal University, Guangzhou, China
| | - Ziyu Hao
- School of Psychology, Nanjing Normal University, Nanjing, China
| | - Huachen Ding
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Huiqing Wu
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Gang Liu
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Manlong Pang
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Na Liu
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China.,Cognitive Behavioral Therapy Institute of Nanjing Medical University, Nanjing, China
| | - Chun Wang
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China.,School of Psychology, Nanjing Normal University, Nanjing, China.,Cognitive Behavioral Therapy Institute of Nanjing Medical University, Nanjing, China.,Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, China
| | - Ning Zhang
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China.,Cognitive Behavioral Therapy Institute of Nanjing Medical University, Nanjing, China.,Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, China
| |
Collapse
|
3
|
Genetic variations influence brain changes in patients with attention-deficit hyperactivity disorder. Transl Psychiatry 2021; 11:349. [PMID: 34091591 PMCID: PMC8179928 DOI: 10.1038/s41398-021-01473-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 05/04/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022] Open
Abstract
Attention-deficit hyperactivity disorder (ADHD) is a neurological and neurodevelopmental childhood-onset disorder characterized by a persistent pattern of inattentiveness, impulsiveness, restlessness, and hyperactivity. These symptoms may continue in 55-66% of cases from childhood into adulthood. Even though the precise etiology of ADHD is not fully understood, it is considered as a multifactorial and heterogeneous disorder with several contributing factors such as heritability, auxiliary to neurodevelopmental issues, severe brain injuries, neuroinflammation, consanguineous marriages, premature birth, and exposure to environmental toxins. Neuroimaging and neurodevelopmental assessments may help to explore the possible role of genetic variations on ADHD neuropsychobiology. Multiple genetic studies have observed a strong genetic association with various aspects of neuropsychobiological functions, including neural abnormalities and delayed neurodevelopment in ADHD. The advancement in neuroimaging and molecular genomics offers the opportunity to analyze the impact of genetic variations alongside its dysregulated pathways on structural and functional derived brain imaging phenotypes in various neurological and psychiatric disorders, including ADHD. Recently, neuroimaging genomic studies observed a significant association of brain imaging phenotypes with genetic susceptibility in ADHD. Integrating the neuroimaging-derived phenotypes with genomics deciphers various neurobiological pathways that can be leveraged for the development of novel clinical biomarkers, new treatment modalities as well as therapeutic interventions for ADHD patients. In this review, we discuss the neurobiology of ADHD with particular emphasis on structural and functional changes in the ADHD brain and their interactions with complex genomic variations utilizing imaging genetics methodologies. We also highlight the genetic variants supposedly allied with the development of ADHD and how these, in turn, may affect the brain circuit function and related behaviors. In addition to reviewing imaging genetic studies, we also examine the need for complementary approaches at various levels of biological complexity and emphasize the importance of combining and integrating results to explore biological pathways involved in ADHD disorder. These approaches include animal models, computational biology, bioinformatics analyses, and multimodal imaging genetics studies.
Collapse
|
4
|
Guo X, Liu L, Li T, Zhao Q, Li H, Huang F, Wang Y, Qian Q, Cao Q, Wang Y, Calhoun VD, Sui J, Sun L. Inhibition-directed multimodal imaging fusion patterns in adults with ADHD and its potential underlying "gene-brain-cognition" relationship. CNS Neurosci Ther 2021; 27:664-673. [PMID: 33724699 PMCID: PMC8111492 DOI: 10.1111/cns.13625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/27/2021] [Accepted: 01/30/2021] [Indexed: 11/30/2022] Open
Abstract
Aims Inhibition deficits have been suggested to be a core cognitive impairment in attention‐deficit/hyperactivity disorder (ADHD). Exploring imaging patterns and the potential genetic components associated with inhibition deficits would definitely promote our understanding of the neuropathological mechanism of ADHD. This study aims to investigate the multimodal imaging fusion features related to inhibition deficits in adults with ADHD (aADHD) and to make an exploratory analysis of the role of inhibition‐related gene, NOS1, on those brain alterations. Methods Specifically, multisite canonical correlation analysis with reference plus joint independent component analysis (MCCAR + jICA) was conducted to identify the joint co‐varying gray matter volume (GMV) and the functional connectivity (FC) features related to inhibition in 69 aADHD and 44 healthy controls. Then, mediation analysis was employed to detect the relationship among inhibition‐related imaging features, NOS1 ex1f‐VNTR genotypes, and inhibition. Results Inhibition‐directed multimodal imaging fusion patterns of aADHD were reduced GMV and FC in inhibition network and increased GMV and FC in default mode network. The results showed a significant indirect effect of NOS1 ex1f‐VNTR on inhibition via FC component [effect size = −0.54 (SE = 0.29), 95% CI = −1.16 to −0.01]. In addition, the results indicated a significant indirect effect of GMV on the inhibition via FC component [effect size = 0.43 (SE = 0.23), 95% CI = 0.12 to 1.00]. Conclusion The findings suggested that reduced GMV and FC in inhibition network and increased GMV and FC in default mode network were jointly responsible for inhibition deficits in aADHD. Both the NOS1 ex1f‐VNTR genotypes and GMV might influence the inhibition through the mediation effect of the aforementioned FC (NOS1/GMV→FC→Inhibition).
Collapse
Affiliation(s)
- Xiaojie Guo
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China.,National Clinical Research Center for Mental Disorders & Key Laboratory of Mental Health, Ministry of Health (Peking University, Beijing, China
| | - Lu Liu
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China.,National Clinical Research Center for Mental Disorders & Key Laboratory of Mental Health, Ministry of Health (Peking University, Beijing, China
| | - Tiantian Li
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qihua Zhao
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China.,National Clinical Research Center for Mental Disorders & Key Laboratory of Mental Health, Ministry of Health (Peking University, Beijing, China
| | - Hui Li
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China.,National Clinical Research Center for Mental Disorders & Key Laboratory of Mental Health, Ministry of Health (Peking University, Beijing, China
| | - Fang Huang
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China.,National Clinical Research Center for Mental Disorders & Key Laboratory of Mental Health, Ministry of Health (Peking University, Beijing, China
| | - Yanfei Wang
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China.,National Clinical Research Center for Mental Disorders & Key Laboratory of Mental Health, Ministry of Health (Peking University, Beijing, China
| | - Qiujin Qian
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China.,National Clinical Research Center for Mental Disorders & Key Laboratory of Mental Health, Ministry of Health (Peking University, Beijing, China
| | - Qingjiu Cao
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China.,National Clinical Research Center for Mental Disorders & Key Laboratory of Mental Health, Ministry of Health (Peking University, Beijing, China
| | - Yufeng Wang
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China.,National Clinical Research Center for Mental Disorders & Key Laboratory of Mental Health, Ministry of Health (Peking University, Beijing, China
| | - Vince D Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) [Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| | - Jing Sui
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Brain Science, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Li Sun
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China.,National Clinical Research Center for Mental Disorders & Key Laboratory of Mental Health, Ministry of Health (Peking University, Beijing, China
| |
Collapse
|
5
|
Chachlaki K, Prevot V. Nitric oxide signalling in the brain and its control of bodily functions. Br J Pharmacol 2020; 177:5437-5458. [PMID: 31347144 PMCID: PMC7707094 DOI: 10.1111/bph.14800] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 07/10/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023] Open
Abstract
Nitric oxide (NO) is a versatile molecule that plays key roles in the development and survival of mammalian species by endowing brain neuronal networks with the ability to make continual adjustments to function in response to moment-to-moment changes in physiological input. Here, we summarize the progress in the field and argue that NO-synthetizing neurons and NO signalling in the brain provide a core hub for integrating sensory- and homeostatic-related cues, control key bodily functions, and provide a potential target for new therapeutic opportunities against several neuroendocrine and behavioural abnormalities.
Collapse
Affiliation(s)
- Konstantina Chachlaki
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine BrainJean‐Pierre Aubert Research Centre, UMR‐S 1172LilleFrance
- School of MedicineUniversity of LilleLilleFrance
- CHU LilleFHU 1,000 days for HealthLilleFrance
| | - Vincent Prevot
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine BrainJean‐Pierre Aubert Research Centre, UMR‐S 1172LilleFrance
- School of MedicineUniversity of LilleLilleFrance
- CHU LilleFHU 1,000 days for HealthLilleFrance
| |
Collapse
|
6
|
Roth NJ, Zipperich S, Kopf J, Deckert J, Reif A. Influence of two functional polymorphisms in NOS1 on baseline cortisol and working memory in healthy subjects. Nitric Oxide 2019; 88:45-49. [PMID: 31002875 DOI: 10.1016/j.niox.2019.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 04/02/2019] [Accepted: 04/09/2019] [Indexed: 10/27/2022]
Abstract
INTRODUCTION The neuronal isoform of the nitric oxide synthase (NOS-I) encoded by NOS1 is the main source of nitric oxide (NO) in the brain. Reduced NO signaling in the prefrontal cortex has been linked to schizophrenia and cognitive processes while reduced striatal NOS1 expression has been associated with impulsive behavior. METHODS To evaluate the effect of two functional polymorphisms in alternative first exons of NOS1, ex1f-VNTR and ex1c-SNP rs41279104, on the HPA stress axis and neurocognitive abilities, 280 healthy subjects were genotyped, had their salivary cortisol levels measured and were assessed in verbal memory, verbal fluency, working memory and verbal IQ by using the California Verbal Learning Test (CVLT), the Regensburger test of verbal fluency (RWT), a n-back task and subscales of the Wechsler Adult Intelligence Scale III (WAIS-III). RESULTS Schizophrenia risk (A)-allele carriers of NOS1 ex1c-SNP rs41279104 displayed significantly lower baseline cortisol levels (p = 0.004). NOS1 ex1f-VNTR genotype carriers showed differences in working memory performance (p = 0.05) in a gene-dose effect manner, with homozygous carriers of the short impulsivity-risk allele committing most commission errors. Finally, A-allele carriers of the NOS1 ex1c-SNP rs41279104 tended to react faster during the working memory task (p = 0.065). CONCLUSION For the first time, we demonstrated an influence of the NOS1 ex1c-SNP rs41279104 on salivary cortisol levels and additionally implicate the A-allele in an enhanced reaction time during a working memory task. Regarding the NOS1 ex1f-VNTR our study supports the previously reported influence on impulsivity, lending further support to the hypothesis that this genetic variant underlies impulsive behavior.
Collapse
Affiliation(s)
- N J Roth
- Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital Wuerzburg, Wuerzburg, Germany.
| | - S Zipperich
- Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - J Kopf
- Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - J Deckert
- Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital Wuerzburg, Wuerzburg, Germany
| | - A Reif
- Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
7
|
Grimm O, Kittel-Schneider S, Reif A. Recent developments in the genetics of attention-deficit hyperactivity disorder. Psychiatry Clin Neurosci 2018; 72:654-672. [PMID: 29722101 DOI: 10.1111/pcn.12673] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/01/2018] [Indexed: 12/19/2022]
Abstract
Attention-deficit hyperactivity disorder (ADHD) is a developmental psychiatric disorder that affects children and adults. ADHD is one of the psychiatric disorders with the strongest genetic basis according to familial, twin, and single nucleotide polymorphisms (SNP)-based epidemiological studies. In this review, we provide an update of recent insights into the genetic basis of ADHD. We discuss recent progress from genome-wide association studies (GWAS) looking at common variants as well as rare copy number variations. New analysis of gene groups, so-called functional ontologies, provide some insight into the gene networks afflicted, pointing to the role of neurodevelopmentally expressed gene networks. Bioinformatic methods, such as functional enrichment analysis and protein-protein network analysis, are used to highlight biological processes of likely relevance to the etiology of ADHD. Additionally, copy number variations seem to map on important pathways implicated in synaptic signaling and neurodevelopment. While some candidate gene associations of, for example, neurotransmitter receptors and signaling, have been replicated, they do not seem to explain significant variance in recent GWAS. We discuss insights from recent case-control SNP-GWAS that have presented the first whole-genome significant SNP in ADHD.
Collapse
Affiliation(s)
- Oliver Grimm
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Sarah Kittel-Schneider
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt, Germany
| |
Collapse
|