1
|
Saadh MJ, Allela OQB, Kareem RA, Kyada A, Malathi H, Nathiya D, Bhanot D, Sameer HN, Hamad AK, Athab ZH, Adil M. Immune cell dysfunction: A critical player in development of diabetes complications. Curr Res Transl Med 2025; 73:103510. [PMID: 40339429 DOI: 10.1016/j.retram.2025.103510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 03/08/2025] [Accepted: 03/28/2025] [Indexed: 05/10/2025]
Abstract
Diabetes mellitus, a global health challenge, influences millions worldwide by leading to severe complications and premature death. A key factor in its pathogenesis is immune cell dysfunction, which aggravates both type 1 and type 2 diabetes. The important role that immune cell dysregulation plays in the emergence of diabetes complications is investigated in this research. It highlights the manner in which diabetes compromises the immune system's adaptive as well as innate responses. Key defects in innate immunity include impaired pathogen recognition, and dysfunctional behavior of macrophages, neutrophils, and natural killer (NK) cells. Additionally, the complement system is dysregulated, and cytokine production is altered, affecting overall immune signaling. The study investigates the dysfunction of several T and B cell subsets, such as CD4+ T cells, CD8+ T cells, regulatory T cells, and B cells, in relation to adaptive immunity. These dysfunctions collectively contribute to chronic inflammation, reduced pathogen clearance, and increased susceptibility to infections, ultimately exacerbating diabetes complications. Developing targeted therapies to reduce diabetes complications and enhance patient outcomes requires an understanding of these mechanisms.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | | | | | - Ashishkumar Kyada
- Marwadi University Research Center, Department of Pharmacy, Faculty of Health Sciences, Marwadi University, Rajkot 360003, Gujarat, India
| | - H Malathi
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Deepak Nathiya
- Department of Pharmacy Practice, Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Deepak Bhanot
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| | - Hayder Naji Sameer
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar, 64001, Iraq
| | | | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | | |
Collapse
|
2
|
Grannes H, Sharma A, Suntharalingam A, Michelsen AE, Aukrust P, Ueland T, Birkeland KI, Gregersen I, Lee-Ødegård S, Halvorsen B. Plasma soluble TIM-3 is increased in normoglycemic South Asian women compared to Nordic women after gestational diabetes mellitus and associated with markers of metaflammation. Heliyon 2024; 10:e40339. [PMID: 39641064 PMCID: PMC11617222 DOI: 10.1016/j.heliyon.2024.e40339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 11/10/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024] Open
Abstract
Background Women with South Asian ethnicity have a higher risk of developing type 2 diabetes mellitus (T2DM) compared with white women of European descent, especially after gestational diabetes mellitus (GDM). Central obesity and adipose tissue dysfunction have been linked to their higher risk of T2DM, but the mechanisms are not known. We hypothesize that low-grade, persistent immune cell activation is involved in metabolic disturbances following GDM with different influence according to ethnicity. Methods We measured plasma levels of T cell exhaustion marker soluble T cell immunoglobin mucin domain 3 (sTIM-3), sCD25, sCD27 and soluble lymphocyte activation gene (sLAG)-3 in 266 women of South Asian (n = 160) and white Nordic (n = 106) ethnic background with a history of GDM. Results Baseline plasma concentration of sTIM-3 was higher in South Asian women compared to Nordic women (p < 0.001). This difference was driven by higher sTIM-3 in South Asian women with NGT, compared to their Nordic counterparts (p = 0.005) but there were no significant differences comparing Nordic and South Asian women with altered glucose tolerance (AGT). Soluble TIM-3 correlated positively with waist-height ratio (WHtR) and body mass index across all groups, but whereas sTIM-3 correlated moderately and consistently with markers of metaflammation in South Asians, this pattern was not found in Nordic women. Mediation analysis indicated that 15 % of the difference found in adipose insulin resistance between ethnicities could be mediated by sTIM-3, and that 33 % of the difference in sTIM-3 concentrations could be mediated by WHtR. Moreover, T cell markers sCD27 and sLAG3 were also increased in South Asian women compared with Nordic women, further supporting involvement of T cell activation in these women. Conclusion We found increased levels of sTIM-3, as well as additional markers of T cell activation/exhaustion, in a population of normoglycemic South Asian women with previous gestational diabetes as compared to women of Nordic descent. The possible causal relationship between T cell activation and metabolic dysfunction in high-risk South Asian women is however still elusive and merits further investigation.
Collapse
Affiliation(s)
- Helene Grannes
- Research Institute for Internal Medicine, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Archana Sharma
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Endocrinology, Akershus University Hospital, University of Oslo, 1478, Lørenskog, Norway
| | - Anita Suntharalingam
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Dep. of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway
| | - Annika E. Michelsen
- Research Institute for Internal Medicine, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Pål Aukrust
- Research Institute for Internal Medicine, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital, Oslo, Norway
| | - Thor Ueland
- Research Institute for Internal Medicine, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Thrombosis Research and Expertise Centre, University of Tromsø, Tromsø, Norway
| | - Kåre I. Birkeland
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Dep. of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway
| | - Ida Gregersen
- Research Institute for Internal Medicine, Oslo University Hospital, Oslo, Norway
| | - Sindre Lee-Ødegård
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Dep. of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway
| | - Bente Halvorsen
- Research Institute for Internal Medicine, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Yuan S, He W, Liu B, Liu Z. Research Progress on the Weak Immune Response to the COVID-19 Vaccine in Patients with Type 2 Diabetes. Viral Immunol 2024; 37:79-88. [PMID: 38498797 DOI: 10.1089/vim.2023.0097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024] Open
Abstract
Coronavirus Disease 2019 (COVID-19) is generally susceptible to the population, highly infectious, rapidly transmitted, and highly fatal. There is a lack of specific drugs against the virus at present and vaccination is the most effective strategy to prevent infection. However, studies have found that some groups, particularly patients with diabetes, show varying degrees of weak immune reactivity to various COVID-19 vaccines, resulting in poor preventive efficacy against the novel coronavirus in patients with diabetes. Therefore, in this study, patients with type 2 diabetes mellitus (T2DM) who had weak immune response to the COVID-19 vaccine in recent years were analyzed. This article reviews the phenomenon, preliminary mechanism, and related factors affecting weak vaccine response in patients with T2DM, which is expected to help in the development of new vaccines for high-risk groups for COVID-19.
Collapse
Affiliation(s)
- Shiqi Yuan
- Department of Laboratory Medicine, Hengyang Medical School, The Second Affiliated Hospital, University of South China, Hengyang, China
| | - Wenwen He
- Department of Laboratory Medicine, Hengyang Medical School, The Second Affiliated Hospital, University of South China, Hengyang, China
| | - Bin Liu
- Department of Laboratory Medicine, Hengyang Medical School, The Second Affiliated Hospital, University of South China, Hengyang, China
| | - Zhuoran Liu
- Department of Laboratory Medicine, Hengyang Medical School, The Second Affiliated Hospital, University of South China, Hengyang, China
| |
Collapse
|
4
|
Meng X, Xia G, Zhang L, Xu C, Chen Z. T cell immunoglobulin and mucin domain-containing protein 3 is highly expressed in patients with acute decompensated heart failure and predicts mid-term prognosis. Front Cardiovasc Med 2022; 9:933532. [PMID: 36186992 PMCID: PMC9520239 DOI: 10.3389/fcvm.2022.933532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
Background and aims T cell immunoglobulin and mucin domain-containing protein 3 (Tim-3) is mainly expressed by immune cells and plays an immunomodulatory role in cardiovascular disease. However, the prognostic value of Tim-3 in acute decompensated heart failure (ADHF) is unclear. This study aimed to investigate the expression profile of Tim-3 on CD4+ and CD8+ T cells in patients with ADHF and its impact on their prognosis. Methods In this prospective study, 84 patients who were hospitalized with ADHF and 83 patients without heart failure were enrolled. Main clinical data were collected during patient visits. The Tim-3 expression on CD4+ and CD8+ T cells in peripheral blood samples was assayed by flow cytometry. Long-term prognosis of the patients with ADHF was evaluated by major adverse cardiac and cerebrovascular events (MACCE) over a 12-month follow-up period. Results We found that the Tim-3 expression on CD4+ T cells [2.08% (1.15–2.67%) vs. 0.88% (0.56–1.39%), p < 0.001] and CD8+ T cells [3.81% (2.24–6.03%) vs. 1.36% (0.76–3.00%), p < 0.001] in ADHF group were significantly increased vs. the non-ADHF group. Logistic analysis revealed that high levels of Tim-3 expressed on CD4+ and CD8+ T cells were independent risk factors of ADHF (OR: 2.76; 95% CI: 1.34–5.65, p = 0.006; OR: 2.58; 95% CI: 1.26–5.31, p = 0.010, respectively). ROC curve analysis showed that the high level of Tim-3 on CD4+ or CD8+ T cells as a biomarker has predictive performance for ADHF (AUC: 0.75; 95% CI: 0.68–0.83; AUC: 0.78, 95% CI: 0.71–0.85, respectively). During a median follow-up of 12 months, the Cox regression analysis revealed that higher Tim-3 on CD4+ and CD8+ T cells were strongly associated with increased risks of MACCE within 12 months after ADHF (HR: 2.613; 95% CI: 1.11–6.13, p = 0.027; HR: 2.762, 95% CI: 1.15–6.63, p = 0.023; respectively). Conclusion Our research indicated that the expression level of Tim-3 on CD4+ and CD8+ T cells, elevated in patients with ADHF, was an independent predictor of MACCE within 12 months after ADHF. It suggests a potential immunoregulatory role of Tim-3 signaling system in the mechanism of ADHF.
Collapse
Affiliation(s)
- Xin Meng
- Department of Cardiology, The Affiliated Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guofang Xia
- Department of Cardiology, The Affiliated Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lili Zhang
- Department of Cardiology, The Affiliated Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Congfeng Xu
- Department of Cardiology, The Affiliated Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhong Chen
- Department of Cardiology, The Affiliated Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Wang H, Cao K, Liu S, Xu Y, Tang L. Tim-3 Expression Causes NK Cell Dysfunction in Type 2 Diabetes Patients. Front Immunol 2022; 13:852436. [PMID: 35464400 PMCID: PMC9018664 DOI: 10.3389/fimmu.2022.852436] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/16/2022] [Indexed: 11/17/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is characterized by high blood glucose levels and chronic low-grade inflammation. It shows a strong association with obesity and immune dysfunction, which makes T2DM patients more susceptible to infectious diseases. NK cells play an important role in pathogen control and tumor surveillance. However, whether NK cell distribution and functional status are altered in T2DM is unclear. To address this issue, we compared surface receptor expression and cytokine production between peripheral blood NK cells from 90 T2DM patients and 62 age- and sex-matched healthy controls. We found a significantly lower frequency and absolute number of NK cells in patients than in controls. Interestingly, the expression of inhibitory receptor Tim-3 was significantly increased, while the expression of the activating receptor NKG2D was significantly decreased, in T2DM NK cells. Both TNF-α secretion and degranulation capacity (evidenced by CD107a expression) were dampened in NK cells from patients. The expression of Tim-3 on NK cells correlated positively with both HbA1c and fasting blood glucose levels and negatively with the percentage and absolute number of total NK cells and was associated with increased NK cell apoptosis. In addition, Tim-3 expression on NK cells negatively correlated with TNF-α production, which could be restored by blocking Galectin-9/Tim-3 pathway. Our results suggest that NK cell dysfunction secondary to augmented Tim-3 expression occurs in T2DM patients, which may partly explain their increased susceptibility to cancer and infectious disease.
Collapse
Affiliation(s)
- Hui Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Kangli Cao
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Siyu Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yuanhong Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ling Tang
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
6
|
Increased Tim-3 + monocytes/macrophages are associated with disease severity in patients with IgA nephropathy. Int Immunopharmacol 2021; 97:107666. [PMID: 34058623 DOI: 10.1016/j.intimp.2021.107666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 12/28/2022]
Abstract
T-cell immunoglobulin and mucin-domain-containing protein-3 (Tim-3) plays multiple important roles in immune response and participates in the pathogenesis of various inflammatory diseases by regulating macrophage polarization. However, its functions in the development of IgA nephropathy (IgAN) are still unclear. In this study, changes in the relative levels of Tim-3+ monocytes/macrophages in peripheral blood and renal tissue, and their clinical significance in patients with IgAN were investigated. The expression of CD68 and Tim-3 in macrophages from patients with IgAN was determined via immunohistochemistry and immunofluorescence staining assays. Peripheral blood of 48 patients with biopsy-proven IgAN and 18 healthy controls (HCs) was collected to determine the frequency of circulating CD14+Tim-3+ cells using flow cytometry, before and after 24 weeks of prednisolone treatment. Serum interleukin (IL)-10 and tumor necrosis factor α (TNF-α) levels were measured using enzyme-linked immunosorbent assays. The potential association between clinical signs and Tim-3+ monocytes/macrophages was analyzed. The percentages of circulating CD14+Tim-3+ monocytes were higher in samples from patients with IgAN than in those from HCs and were positively associated with the pathological features (segmental glomerulosclerosis and tubular atrophy/interstitial fibrosis) of IgAN, according to the Oxford classification. Tissue staining assays revealed cells positive for both CD68 and Tim-3 in tubulointerstitial lesions of IgAN patients. In addition, elevated levels of serum IL-10 and TNF-α were detected in these patients in comparison to HCs. Furthermore, the frequency of circulating CD14+Tim-3+ monocytes had a positive correlation with levels of 24-h urinary protein and serum IL-10, and was negatively associated with renal function. After 24 weeks of treatment with prednisolone, the percentages of CD14+Tim-3+ cells were significantly reduced. In summary, our findings indicate that Tim-3+ monocytes/macrophages might be involved in the pathogenesisof IgAN and could be used as a potential indicator to evaluate disease severity.
Collapse
|
7
|
Sasidharan Nair V, M Toor S, Z Taha R, Ahmed AA, Kurer MA, Murshed K, Soofi ME, Ouararhni K, M. Alajez N, Abu Nada M, Elkord E. Transcriptomic Profiling of Tumor-Infiltrating CD4 +TIM-3 + T Cells Reveals Their Suppressive, Exhausted, and Metastatic Characteristics in Colorectal Cancer Patients. Vaccines (Basel) 2020; 8:vaccines8010071. [PMID: 32041340 PMCID: PMC7157206 DOI: 10.3390/vaccines8010071] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/04/2020] [Accepted: 02/04/2020] [Indexed: 12/29/2022] Open
Abstract
T cell immunoglobulin mucin-3 (TIM-3) is an immune checkpoint identified as one of the key players in regulating T-cell responses. Studies have shown that TIM-3 is upregulated in the tumor microenvironment (TME). However, the precise role of TIM-3 in colorectal cancer (CRC) TME is yet to be elucidated. We performed phenotypic and molecular characterization of TIM-3+ T cells in the TME and circulation of CRC patients by analyzing tumor tissues (TT, TILs), normal tissues (NT, NILs), and peripheral blood mononuclear cells (PBMC). TIM-3 was upregulated on both CD4+ and CD3+CD4− (CD8+) TILs. CD4+TIM-3+ TILs expressed higher levels of T regulatory cell (Tregs)-signature genes, including FoxP3 and Helios, compared with their TIM-3− counterparts. Transcriptomic and ingenuity pathway analyses showed that TIM-3 potentially activates inflammatory and tumor metastatic pathways. Moreover, NF-κB-mediated transcription factors were upregulated in CD4+TIM-3+ TILs, which could favor proliferation/invasion and induce inflammatory and T-cell exhaustion pathways. In addition, we found that CD4+TIM-3+ TILs potentially support tumor invasion and metastasis, compared with conventional CD4+CD25+ Tregs in the CRC TME. However, functional studies are warranted to support these findings. In conclusion, this study discloses some of the functional pathways of TIM-3+ TILs, which could improve their targeting in more specific therapeutic approaches in CRC patients.
Collapse
Affiliation(s)
- Varun Sasidharan Nair
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), P.O. Box 34110, Doha, Qatar; (V.S.N.); (S.M.T.); (R.Z.T.); (K.O.); (N.M.A.)
| | - Salman M Toor
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), P.O. Box 34110, Doha, Qatar; (V.S.N.); (S.M.T.); (R.Z.T.); (K.O.); (N.M.A.)
| | - Rowaida Z Taha
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), P.O. Box 34110, Doha, Qatar; (V.S.N.); (S.M.T.); (R.Z.T.); (K.O.); (N.M.A.)
| | - Ayman A Ahmed
- Department of Surgery, Hamad Medical Corporation, P.O. Box 34110, Doha, Qatar; (A.A.A.); (M.A.K.); (M.A.N.)
| | - Mohamed A Kurer
- Department of Surgery, Hamad Medical Corporation, P.O. Box 34110, Doha, Qatar; (A.A.A.); (M.A.K.); (M.A.N.)
| | - Khaled Murshed
- Department of Pathology, Hamad Medical Corporation, P.O. Box 34110, Doha, Qatar; (K.M.); (M.E.S.)
| | - Madiha E Soofi
- Department of Pathology, Hamad Medical Corporation, P.O. Box 34110, Doha, Qatar; (K.M.); (M.E.S.)
| | - Khalid Ouararhni
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), P.O. Box 34110, Doha, Qatar; (V.S.N.); (S.M.T.); (R.Z.T.); (K.O.); (N.M.A.)
| | - Nehad M. Alajez
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), P.O. Box 34110, Doha, Qatar; (V.S.N.); (S.M.T.); (R.Z.T.); (K.O.); (N.M.A.)
| | - Mohamed Abu Nada
- Department of Surgery, Hamad Medical Corporation, P.O. Box 34110, Doha, Qatar; (A.A.A.); (M.A.K.); (M.A.N.)
| | - Eyad Elkord
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), P.O. Box 34110, Doha, Qatar; (V.S.N.); (S.M.T.); (R.Z.T.); (K.O.); (N.M.A.)
- Biomedical Research Center, School of Science, Engineering and Environment, University of Salford, Manchester M5 4WT, UK
- Correspondence: or ; Tel.: +974-4454-2367; Fax: +974-4454-1770
| |
Collapse
|
8
|
Guo S, Yu X, Wang L, Jing J, Sun Y, Li N, Kuang J, Zhao D, Yu X, Yang J, Yan W. The frequency of Tim-3 on circulating Tfh cells was increased in type 2 diabetes mellitus patients. EUR J INFLAMM 2020. [DOI: 10.1177/2058739220982803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic, low-grade inflammation disease. T follicular helper (Tfh) cells and T cell immunoglobulin and mucin domain 3 (Tim-3) are implicated in many immune diseases. This study aims to explore whether Tim-3 expression on Tfh cells is associated with T2DM progression. White blood cells (WBCs) were harvested from 30 patients with T2DM and 20 healthy donors. The abundance of circulating Tfh cells (cTfh) and the frequency of Tim-3 were analyzed by flow cytometry. Levels of fasting plasma glucose (FPG), insulin, hemoglobin A1C (HbA1C), and fasting plasma C-peptide were measured. Body mass index (BMI) and diabetes duration were also recorded. Patients with T2DM had higher numbers of cTfh cells. In addition, cTfh cells showed a negative correlation with HbA1C and diabetes duration, a positive correlation with fasting plasma C-peptide. The frequency of Tim-3 on cTfh cells was higher among T2DM patients compared with healthy donors. The in vitro experiment showed that high glucose levels increased the abundance cTfh cells but had no effect on Tim-3 expression. Our results suggest that cTfh cells and associated Tim-3 frequency may contribute to the progression of T2DM, and high glucose levels may influence cTfh cells directly.
Collapse
Affiliation(s)
- Shuai Guo
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Xujie Yu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Limei Wang
- Translational Medicine Core Facility of Advanced Medical Research Institute, Shandong University, Jinan, Shandong, China
| | - Jing Jing
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuanyuan Sun
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Na Li
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jiangying Kuang
- Department of Cardiology, The Second Hospital of Shandong University, Jinan, China
| | - Di Zhao
- Department of Clinical Laboratory, Qilu Hospital of Shandong University; Key Laboratory of Tumor Marker Translational Medicine, Shandong Provincial Medicine and Health, Jinan, Shandong, China
| | - Xingyu Yu
- Class 2019, MSc Banking and Finance, University of St Andrews, Fife, UK
| | - Jingjing Yang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wenjiang Yan
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
9
|
Sun L, Zou S, Ding S, Du X, Shen Y, Liu C, Shi B, Zhang X. Circulating T Cells Exhibit Different TIM3/Galectin-9 Expression in Patients with Obesity and Obesity-Related Diabetes. J Diabetes Res 2020; 2020:2583257. [PMID: 33123595 PMCID: PMC7585658 DOI: 10.1155/2020/2583257] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 08/24/2020] [Accepted: 09/09/2020] [Indexed: 11/30/2022] Open
Abstract
AIMS Obesity is highly associated with type 2 diabetes mellitus (T2DM). The TIM3/galectin-9 pathway plays an important role in immune tolerance. Herein, we aimed to investigate the expression of TIM3 and galectin-9 in peripheral blood and to evaluate their clinical significance in patients with obesity and obesity-related T2DM. METHODS We performed flow cytometry on peripheral blood samples from healthy donors (HC), patients with simple obesity (OB), and patients with obesity comorbid T2DM (OD). The expression of TIM3 on CD3+, CD4+, and CD8+ T cells was determined. The level of galectin-9 in plasma was detected by ELISA. RESULTS We demonstrated the enhancement of TIM3 on CD3+, CD4+, and CD8+ T cells in the OB group when compared with healthy controls, while it was decreased significantly in the OD group. The TIM3+CD8+ T cells of the OB group were positively correlated with risk factors including BMI, body fat rate, and hipline. The concentration of galectin-9 of the OD group in plasma was significantly higher than that of healthy donors and the OB group. Moreover, the level of galectin-9 of the OD group was positively correlated with fasting insulin and C-peptide, which were two clinical features that represented pancreatic islet function in T2DM. CONCLUSIONS Our results suggested that TIM3 and galectin-9 may be potential biomarkers related to the pathogenesis of obesity-related T2DM.
Collapse
Affiliation(s)
- Lili Sun
- Jiangsu Institute of Clinical Immunology & Jiangsu Key Laboratory of Clinical Immunology, First Affiliated Hospital of Soochow University, No. 708 Renmin Road, Suzhou, 215006 Jiangsu, China
- Departments of Endocrinology, The First Affiliated Hospital of Soochow University, Suzhou, 215006 Jiangsu, China
| | - Shengyi Zou
- Departments of Endocrinology, The First Affiliated Hospital of Soochow University, Suzhou, 215006 Jiangsu, China
| | - Sisi Ding
- Jiangsu Institute of Clinical Immunology & Jiangsu Key Laboratory of Clinical Immunology, First Affiliated Hospital of Soochow University, No. 708 Renmin Road, Suzhou, 215006 Jiangsu, China
| | - Xuan Du
- Departments of Endocrinology, The First Affiliated Hospital of Soochow University, Suzhou, 215006 Jiangsu, China
| | - Yu Shen
- Jiangsu Institute of Clinical Immunology & Jiangsu Key Laboratory of Clinical Immunology, First Affiliated Hospital of Soochow University, No. 708 Renmin Road, Suzhou, 215006 Jiangsu, China
| | - Cuiping Liu
- Jiangsu Institute of Clinical Immunology & Jiangsu Key Laboratory of Clinical Immunology, First Affiliated Hospital of Soochow University, No. 708 Renmin Road, Suzhou, 215006 Jiangsu, China
| | - Bimin Shi
- Departments of Endocrinology, The First Affiliated Hospital of Soochow University, Suzhou, 215006 Jiangsu, China
| | - Xueguang Zhang
- Jiangsu Institute of Clinical Immunology & Jiangsu Key Laboratory of Clinical Immunology, First Affiliated Hospital of Soochow University, No. 708 Renmin Road, Suzhou, 215006 Jiangsu, China
| |
Collapse
|
10
|
Lin M, Huang J, Huang J, Liu SL, Chen WC. Level of serum soluble Tim-3 expression in early-phase acute pancreatitis. TURKISH JOURNAL OF GASTROENTEROLOGY 2019; 30:188-191. [PMID: 30459127 DOI: 10.5152/tjg.2018.18137] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND/AIMS T-cell immunoglobulin and mucin domain 3 (Tim-3) assumedly play a crucial immunomodulatory role in inflammatory response. Data on the potential role of soluble Tim-3 (sTim-3) in acute pancreatitis (AP) are scarce. We conducted a prospective clinical study to characterize its role in the early-phase AP. METHODS In total, 44 patients with AP (16 mild and 28 none-mild) who presented within 24 hours on admission and 20 healthy volunteers (NC) were included in our study. Serum interleukin (IL)-6, IL-10, tumor necrosis factor (TNF)-α, and sTim-3 levels were detected using enzyme-linked immunosorbent assay (ELISA). RESULTS Levels of the pro-inflammatory cytokines IL-6 and TNF-α and the anti-inflammatory cytokine IL-10 in the none-mild and mild groups were significantly elevated compared with those of the NC group. The sTim-3 levels of the none-mild and mild group were significantly increased compared with the NC. The sTim-3 level positively correlated with the IL-6 and TNF-α but showed no obvious correlations with the IL-10 level. The sTim-3 level positively correlated with the APACHE II score. CONCLUSION The results indicate that sTim-3 participates in the early progression of AP by positively regulating the pro-inflammatory cytokines and that the measurement of serum sTim-3 is an early marker for predicting AP.
Collapse
Affiliation(s)
- Min Lin
- Department of Gastroenterology, the Affiliated Changzhou No.2 People's Hospital with Nanjing Medical University, Changzhou, China
| | - Jin Huang
- Department of Gastroenterology, the Affiliated Changzhou No.2 People's Hospital with Nanjing Medical University, Changzhou, China
| | - Jian Huang
- Department of Gastroenterology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Sheng-Lan Liu
- Department of ICU, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wei-Chang Chen
- Department of Gastroenterology, the First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
11
|
Sun P, Jin Q, Nie S, Jia S, Li Y, Li X, Guo F. Unlike PD-L1, PD-1 Is Downregulated on Partial Immune Cells in Type 2 Diabetes. J Diabetes Res 2019; 2019:5035261. [PMID: 31008114 PMCID: PMC6441514 DOI: 10.1155/2019/5035261] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 09/21/2018] [Accepted: 01/10/2019] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Type 2 diabetes is a worldwide disease which is associated with chronic, low-grade inflammation. The PD-1/PD-L1 pathway has been reported to be a negative regulatory element in immune homeostasis and to be involved in many diseases. MATERIALS AND METHODS Peripheral blood mononuclear cells (PBMCs) were obtained from type 2 diabetes patients (n = 23) and healthy donors (n = 20). The PD-L1 and PD-1 expressions on corresponding immune cells were evaluated by flow cytometry. RESULTS The PD-L1 expression on corresponding immune cells has no significant difference between these two groups. We showed the downregulated PD-1 expression in type 2 diabetes patients. The correlation analysis indicated that the PD-1 on NK cells has a positive correlation with insulin and diabetes duration. And an inverse correlation has been shown between the PD-1 expression on monocytes and BMI (body mass index). CONCLUSIONS The results in this article suggest that PD-1, unlike PD-L1, might participate in the progression of type 2 diabetes. This investigation will provide evidence for the potential immune therapy for T2D.
Collapse
Affiliation(s)
- Peng Sun
- Department of Intervention Oncology, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Jinan, Shandong, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Qingyan Jin
- Department of Intervention Oncology, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Shengnan Nie
- Department of Intervention Oncology, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Shijie Jia
- Department of Intervention Oncology, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yuanyuan Li
- Operation Room of Intervention Oncology, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xiaoxue Li
- Department of Intervention Oncology, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Fang Guo
- Department of Intervention Oncology, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
12
|
Sun J, Huang Q, Li S, Meng F, Li X, Gong X. miR-330-5p/Tim-3 axis regulates macrophage M2 polarization and insulin resistance in diabetes mice. Mol Immunol 2018; 95:107-113. [PMID: 29433065 DOI: 10.1016/j.molimm.2018.02.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/01/2018] [Accepted: 02/06/2018] [Indexed: 12/11/2022]
Abstract
Obesity is associated with a state of low-grade inflammatory response in adipose tissue, and contributes to the development of type 2 diabetes. Immune cells such as macrophages can infiltrate adipose tissue and are responsible for the majority of inflammatory cytokine production. Therefore, adipose tissue promotes macrophage infiltration, resulting in local inflammation and insulin resistance. Tim-3 negatively regulates IFN-γ secretion and influences the ability to induce T cell tolerance in diabetes. MicroRNA contributes to the development of immunological tolerance and involves in macrophage polarization. However, the potential of Tim-3 to regulate macrophage polarization and the related microRNA has not been reported. In this experiment, 8-week-old C57BL/6 mice were fed a high-fat diet for 8 weeks. The adipose tissue macrophages were isolated, miR-330-5p and Tim-3 levels, and M1/M2 polarization were analyzed. In addition, insulin tolerance tests was detected. The results demonstrated that miR-330-5p levels increased but Tim-3 levels decreased, leading to M1 polarization and insulin tolerance in diabetes mice. In addition, inhibition of miR-330-5p enhanced Tim-3 levels, leading to M2 polarization and insulin tolerance attenuation in diabetes mice. Furthermore, we detected the inverse relationship between miR-330-5p and Tim-3. We found that Tim-3 mRNA contained conserved miR-330-5p binding sites in its 3'UTR, and miR-330-5p could directly regulate Tim-3 expression through these 3'UTR sites. Our study demonstrated that miR-330-5p served as a regulator of the M2 polarization and miR-330-5p/Tim-3 axis potentially down-regulated insulin resistance in diabetes, probably through enhancing the M2 polarization of macrophage.
Collapse
Affiliation(s)
- Jiling Sun
- Department of Nurse, The People's Hospital of Linyi, Linyi, Shandong 276000, China
| | - Qiujing Huang
- Department of Endocrinology, The Third People's Hospital of Linyi, Linyi, Shandong 276023, China
| | - Shufa Li
- Department of Endocrinology, The Third People's Hospital of Linyi, Linyi, Shandong 276023, China.
| | - Fanqing Meng
- Department of Endocrinology, The Third People's Hospital of Linyi, Linyi, Shandong 276023, China
| | - Xunhua Li
- Department of Urology, The Third People's Hospital of Linyi, Linyi, Shandong 276023, China
| | - Xiaoyun Gong
- Department of Public Health, The Third People's Hospital of Linyi, Linyi, Shandong 276023, China
| |
Collapse
|
13
|
唐 映, 徐 加. Tim-3在肝脏疾病中的调节作用. Shijie Huaren Xiaohua Zazhi 2017; 25:2080-2087. [DOI: 10.11569/wcjd.v25.i23.2080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
T淋巴细胞免疫球蛋白黏蛋白分子(T-cell immunoglobulin domain and mucin domain-containing molecule, Tim)-3是Tim家族中的一员, 为近年来新发现的一种在辅助Ⅰ型T淋巴细胞(Help T cell 1, Th1)上特异性表达的Ⅰ型细胞表面分子. Tim-3作为负性调节因子通过与其配体Galectin-9结合引起细胞死亡, 进而调控Th1型细胞功能. Tim-3还表达于其他类型细胞表面, 如自然杀伤细胞、树突状细胞和单核细胞, 对自身免疫性疾病和其他免疫介导的疾病进行免疫调控. 对Tim-3在不同细胞不同免疫条件下的功能以及如何调节进行研究, 将有利于研发Tim-3的潜在治疗作用. 近年来大量研究显示Tim-3通道与肝脏疾病发生发展有着密切关系, 本文就其在肝脏疾病中的调节作用做一总结.
Collapse
|
14
|
Yan WJ, Sun P, Wei DD, Wang SX, Yang JJ, Li YH, Zhang C. T cell immunoglobulin and mucin domain-containing molecule 3 on CD14 + monocytes serves as a novel biological marker for diabetes duration in type 2 diabetes mellitus. J Diabetes Investig 2016; 7:867-873. [PMID: 27182056 PMCID: PMC5089949 DOI: 10.1111/jdi.12523] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 02/29/2016] [Accepted: 03/21/2016] [Indexed: 12/19/2022] Open
Abstract
Aims/Introduction Type 2 diabetes is a worldwide disease that is associated with increased rates of obesity and reduced physical activity. Obesity‐associated insulin resistance in type 2 diabetes is a disorder in the balance between pro‐inflammatory and anti‐inflammatory signals. T cell immunoglobulin and mucin domain‐containing molecule 3 (Tim‐3) has been reported as an important regulatory inflammation molecule, and plays a pivotal role in several inflammation‐related diseases. Materials and Methods Peripheral blood mononuclear cells were obtained from type 2 diabetes patients (n = 31) and healthy donors (n = 18), and Tim‐3 expression on peripheral blood mononuclear cells was evaluated by flow cytometry. Results We showed the downregulated expression of Tim‐3 on CD14+ monocytes from type 2 diabetes patients. In addition, the upregulated expression of Tim‐3 on peripheral CD4+ T cells and CD8+ T cells was observed in the present study. The correlation analysis between Tim‐3 expression on CD14+ monocytes and diabetes duration showed the longer diabetes duration time, the lower Tim‐3 expression on CD14 monocytes. Conclusions The present results suggest that Tim‐3 might participate in the progression of type 2 diabetes by its negative regulation on these immune cells, and Tim‐3 on CD14+ monocytes serves as a novel biological marker for diabetes duration in type 2 diabetes patients.
Collapse
Affiliation(s)
- Wen-Jiang Yan
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Peng Sun
- Department of Intervention Oncology, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Dan-Dan Wei
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Shuang-Xi Wang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jing-Jing Yang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yi-Hui Li
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Cheng Zhang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| |
Collapse
|