1
|
Yıldız F, LeBaron TW, Alwazeer D. A comprehensive review of molecular hydrogen as a novel nutrition therapy in relieving oxidative stress and diseases: Mechanisms and perspectives. Biochem Biophys Rep 2025; 41:101933. [PMID: 39911528 PMCID: PMC11795818 DOI: 10.1016/j.bbrep.2025.101933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/20/2024] [Accepted: 01/22/2025] [Indexed: 02/07/2025] Open
Abstract
Oxidative stress is responsible for the pathogenesis of many diseases, and antioxidants are commonly included in their treatment protocols. Over the past two decades, numerous biomedical reports have revealed the therapeutic benefits of molecular hydrogen (H2) in relieving oxidation-related diseases. H2 has been found to have selective antioxidant properties against the most dangerous oxidants (hydroxyl radicals and peroxynitrite). H2 demonstrates numerous biologically therapeutic properties, including anti-inflammatory, antioxidant, anti-cancer, anti-stress, anti-apoptotic, anti-allergic effects, signaling molecule functions, regulation of redox balance, modulation of antioxidant enzyme gene expression, improvement of blood vessel function, down-regulation of pro-inflammatory cytokines, stimulation of energy metabolism, and protection of the nervous system. Experimental and clinical studies have shown the potential use of hydrogen nutrition therapy for ameliorating various diseases, including cardiovascular, respiratory, and metabolic disorders, as well as obesity, gastrointestinal disorders, and brain and nervous system disorders. The administration methods of hydrogen include inhalation, hydrogen-rich water, hydrogen-rich saline, hydrogen-rich eye drops, and hydrogen-rich bathing. Hydrogen nutritional therapy can be applied to different diseases, and it offers a natural alternative to chemical and radiation therapies. This review covers the different administration methods and the latest experimental and clinical research on the potential applications of H2 in nutritional therapy for different diseases.
Collapse
Affiliation(s)
- Fatmanur Yıldız
- Research Center for Redox Applications in Foods (RCRAF), Iğdır University, 76000, Iğdır, Türkiye
- Innovative Food Technologies Development, Application, and Research Center, Iğdır University, 76000, Iğdır, Türkiye
| | - Tyler W. LeBaron
- Department of Kinesiology and Outdoor Recreation, Southern Utah University, Cedar City, UT, 84720, USA
- Molecular Hydrogen Institute, Cedar City, UT, 84721, USA
| | - Duried Alwazeer
- Research Center for Redox Applications in Foods (RCRAF), Iğdır University, 76000, Iğdır, Türkiye
- Innovative Food Technologies Development, Application, and Research Center, Iğdır University, 76000, Iğdır, Türkiye
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Iğdır University, 76000, Iğdır, Türkiye
| |
Collapse
|
2
|
Jiang Z, Ainiwaer M, Liu J, Ying B, Luo F, Sun X. Hydrogen therapy: recent advances and emerging materials. Biomater Sci 2024; 12:4136-4154. [PMID: 39021349 DOI: 10.1039/d4bm00446a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Hydrogen therapy, leveraging its selective attenuation of hydroxyl radicals (˙OH) and ONOO-, has emerged as a pivotal pathophysiological modulator with antioxidant, anti-inflammatory, and antiapoptotic attributes. Hydrogen therapy has been extensively studied both preclinically and clinically, especially in diseases with an inflammatory nature. Despite the substantial progress, challenges persist in achieving high hydrogen concentrations in target lesions, especially in cancer treatment. A notable breakthrough lies in water/acid reactive materials, offering enhanced hydrogen generation and sustained release potential. However, limitations include hydrogen termination upon material depletion and reduced bioavailability at targeted lesions. To overcome these challenges, catalytic materials like photocatalytic and sonocatalytic materials have surfaced as promising solutions. With enhanced permeability and retention effects, these materials exhibit targeted delivery and sustained stimuli-reactive hydrogen release. The future of hydrogen therapy hinges on continuous exploration and modification of catalytic materials. Researchers are urged to prioritize improved catalytic efficiency, enhanced lesion targeting effects, and heightened biosafety and biocompatibility in future development.
Collapse
Affiliation(s)
- Zheng Jiang
- Department of Otolaryngology, Head and Neck surgery, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Mailudan Ainiwaer
- Department of Otolaryngology, Head and Neck surgery, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Jun Liu
- Department of Otolaryngology, Head and Neck surgery, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Fengming Luo
- Center for High Altitude Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xuping Sun
- Center for High Altitude Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China
| |
Collapse
|
3
|
Ji H, Zhao Z, Liu Z, Sun R, Li Y, Ding X, Ni T. Real-World Effectiveness and Safety of Hydrogen Inhalation in Chinese Patients with Type 2 Diabetes: A Single-Arm, Retrospective Study. Diabetes Metab Syndr Obes 2023; 16:2039-2050. [PMID: 37431394 PMCID: PMC10329830 DOI: 10.2147/dmso.s412898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/08/2023] [Indexed: 07/12/2023] Open
Abstract
Aim To evaluate the real-life effectiveness and safety of Chinese patients with type 2 diabetes mellitus (T2DM) receiving hydrogen inhalation (HI) treatment as a supplementary treatment. Methods This retrospective, multicenter, observational 6-months clinical study included T2DM patients maintaining HI, visited at 4 time points. The primary outcome is the mean change in glycated hemoglobin (HbA1c) at the end of the study compared to baseline. The secondary outcome is analyzing the mean change of fasting plasma glucose (FPG), weight, lipid profile, insulin dose and homeostasis model assessment. Linear regression and logistics regression are applied to evaluate the effect of HI after the treatment. Results Of the 431 patients comprised, it is observed a significant decrease in HbA1c level (9.04±0.82% at baseline to 8.30±0.99% and 8.00±0.80% at the end, p<0.001), FPG (165.6±40.2 mg/dL at baseline to 157.1±36.3mg/dL and 143.6±32.3mg/dL at the end, p<0.001), weight (74.7±7.1kg at baseline to 74.8±10.0kg and 73.6±8.1kg at the end, p<0.001), insulin dose (49.3±10.8U/d at baseline to 46.7±8.0U/d and 45.2±8.7U/d, p<0.001). The individuals in subgroup with higher baseline HbA1c and longer daily HI time duration gain greater HbA1c decrease after 6 months. Linear regression shows that higher baseline HbA1c level and shorter diabetes duration are significantly in relation to greater HbA1c reduction. Logistics regression reveals that lower weight is associated with a higher possibility of reaching HbA1c<7%. The most common adverse event is hypoglycemia. Conclusion HI therapy significantly improves glycemic control, weight, insulin dose, lipid metabolism, β-cell function and insulin resistance of patients with type 2 diabetes after 6 months. Higher baseline HbA1c level and shorter diabetes duration is related to greater clinical response to HI.
Collapse
Affiliation(s)
- Hongxiang Ji
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China
| | - Ziyi Zhao
- Department of Hand and Foot, Microsurgery, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Zeyu Liu
- School of Clinical Medicine, Department of Medicine, Qingdao University, Qingdao, People’s Republic of China
| | - Ruitao Sun
- School of Clinical Medicine, Department of Medicine, Qingdao University, Qingdao, People’s Republic of China
| | - Yuquan Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China
| | - Xiaoheng Ding
- Department of Hand and Foot, Microsurgery, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Tongshang Ni
- Center of Integrated Traditional Chinese and Western Medicine, School of Basic Medicine, Qingdao University, Qingdao, People’s Republic of China
| |
Collapse
|
4
|
Xie F, Song Y, Yi Y, Jiang X, Ma S, Ma C, Li J, Zhanghuang Z, Liu M, Zhao P, Ma X. Therapeutic Potential of Molecular Hydrogen in Metabolic Diseases from Bench to Bedside. Pharmaceuticals (Basel) 2023; 16:ph16040541. [PMID: 37111299 PMCID: PMC10141176 DOI: 10.3390/ph16040541] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/26/2023] [Accepted: 03/29/2023] [Indexed: 04/29/2023] Open
Abstract
Oxidative stress and chronic inflammation have been implicated in the pathophysiology of metabolic diseases, including diabetes mellitus (DM), metabolic syndrome (MS), fatty liver (FL), atherosclerosis (AS), and obesity. Molecular hydrogen (H2) has long been considered a physiologically inert gas. In the last two decades, accumulating evidence from pre-clinical and clinical studies has indicated that H2 may act as an antioxidant to exert therapeutic and preventive effects on various disorders, including metabolic diseases. However, the mechanisms underlying the action of H2 remain unclear. The purpose of this review was to (1) provide an overview of the current research on the potential effects of H2 on metabolic diseases; (2) discuss the possible mechanisms underlying these effects, including the canonical anti-oxidative, anti-inflammatory, and anti-apoptotic effects, as well as suppression of ER stress, activation of autophagy, improvement of mitochondrial function, regulation of gut microbiota, and other possible mechanisms. The potential target molecules of H2 will also be discussed. With more high-quality clinical trials and in-depth mechanism research, it is believed that H2 will eventually be applied to clinical practice in the future, to benefit more patients with metabolic disease.
Collapse
Affiliation(s)
- Fei Xie
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
- Beijing Molecular Hydrogen Research Center, Beijing 100124, China
| | - Yifei Song
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
- Beijing Molecular Hydrogen Research Center, Beijing 100124, China
| | - Yang Yi
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
- Beijing Molecular Hydrogen Research Center, Beijing 100124, China
| | - Xue Jiang
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
- Beijing Molecular Hydrogen Research Center, Beijing 100124, China
| | - Shiwen Ma
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
- Beijing Molecular Hydrogen Research Center, Beijing 100124, China
| | - Chen Ma
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
- Beijing Molecular Hydrogen Research Center, Beijing 100124, China
| | - Junyu Li
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
- Beijing Molecular Hydrogen Research Center, Beijing 100124, China
| | - Ziyi Zhanghuang
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
- Beijing Molecular Hydrogen Research Center, Beijing 100124, China
| | - Mengyu Liu
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
- Beijing Molecular Hydrogen Research Center, Beijing 100124, China
| | - Pengxiang Zhao
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
- Beijing Molecular Hydrogen Research Center, Beijing 100124, China
| | - Xuemei Ma
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
- Beijing Molecular Hydrogen Research Center, Beijing 100124, China
| |
Collapse
|
5
|
Zhao Z, Ji H, Zhao Y, Liu Z, Sun R, Li Y, Ni T. Effectiveness and safety of hydrogen inhalation as an adjunct treatment in Chinese type 2 diabetes patients: A retrospective, observational, double-arm, real-life clinical study. Front Endocrinol (Lausanne) 2023; 13:1114221. [PMID: 36743938 PMCID: PMC9889559 DOI: 10.3389/fendo.2022.1114221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 12/28/2022] [Indexed: 01/20/2023] Open
Abstract
Aim To analyze the effectiveness and safety of hydrogen inhalation (HI) therapy as an adjunct treatment in Chinese type 2 diabetes mellitus (T2DM) patients in a real-life clinical setting. Methods This observational, non-interventional, retrospective, double-arm, 6-month clinical study included T2DM patients receiving conventional anti-diabetes medication with or without HI initiation from 2018 to 2021. Patients were assigned to the HI group or non-HI group (control group) after 1:1 propensity score matching (PSM). The mean change in glycated hemoglobin (HbA1c) after 6 months in different groups was evaluated primarily. The secondary outcome was composed of the mean change of fasting plasma glucose (FPG), weight, lipid profile, and homeostasis model assessment. Logistics regression was performed to evaluate the likelihood of reaching different HbA1c levels after 6-month treatment between the groups. Adverse event (AE) was also evaluated in patients of both groups. Results In total, 1088 patients were selected into the analysis. Compared to the control group, subjects in HI group maintained greater improvement in the level of HbA1c (-0.94% vs -0.46%), FPG (-22.7 mg/dL vs -11.7 mg/dL), total cholesterol (-12.9 mg/dL vs -4.4 mg/dL), HOMA-IR (-0.76 vs -0.17) and HOMA-β (8.2% vs 1.98%) with all p< 0.001 post the treatment. Logistics regression revealed that the likelihood of reaching HbA1c< 7%, ≥ 7% to< 8% and > 1% reduction at the follow-up period was higher in the HI group, while patients in the control group were more likely to attain HbA1c ≥ 9%. Patients in HI group was observed a lower incidence of several AEs including hypoglycemia (2.0% vs 6.8%), vomiting (2.6% vs 7.4%), constipation (1.7% vs 4.4%) and giddiness (3.3% vs 6.3%) with significance in comparison to the control group. Conclusion HI as an adjunct therapy ameliorates glycemic control, lipid metabolism, insulin resistance and AE incidence of T2DM patients after 6-month treatment, presenting a noteworthy inspiration to existing clinical diabetic treatment.
Collapse
Affiliation(s)
- Ziyi Zhao
- School of Clinical Medicine, Department of Medicine, Qingdao University, Qingdao, China
| | - Hongxiang Ji
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yunsheng Zhao
- Department of Endocrinology, Qingdao Hospital of Traditional Chinese Medicine (Qingdao Hiser Hospital), Qingdao, China
| | - Zeyu Liu
- School of Clinical Medicine, Department of Medicine, Qingdao University, Qingdao, China
| | - Ruitao Sun
- School of Clinical Medicine, Department of Medicine, Qingdao University, Qingdao, China
| | - Yuquan Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tongshang Ni
- Center of Integrated Traditional Chinese and Western Medicine, Department of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
6
|
Köktürk M, Atalar MN, Odunkıran A, Bulut M, Alwazeer D. Evaluation of the hydrogen-rich water alleviation potential on mercury toxicity in earthworms using ATR-FTIR and LC-ESI-MS/MS spectroscopy. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:19642-19656. [PMID: 34718956 DOI: 10.1007/s11356-021-17230-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
The toxic effects of mercury in earthworms and the potential alleviation effect of hydrogen-rich water (HRW) using ATR-FTIR and LC-MS analysis methods were investigated. Different concentrations of mercury chloride (H1: 5 µg/mL, H2: 10 µg/mL, H3: 20 µg/mL, H4: 40 µg/mL, and C1: control) and mercury chloride prepared in hydrogen-rich water (H5: 5 µg/mL, H6: 10 µg/mL, H7: 20 µg/mL, H8: 40 µg/mL, and C2: control) were injected into earthworms. The changes and reductions in some bands representing proteins, lipids, and polysaccharides (3280 cm-1, 2922 cm-1, 2855 cm-1, 1170 cm-1, and 1047 cm-1) showed that protective effects could occur in groups prepared with hydrogen-rich water. In the FTIR results, it was found that these bands in the H3 group were more affected and decreased by the influence of mercury on earthworms than the H7 group prepared with hydrogen. LC-MS analysis showed that the changes in some ions of the highest dose groups (H4 and H8) were different, and mercury caused oxidative DNA damage in earthworms. When the high-level application groups of mercury, i.e., H4 and H8 were compared with the controls, the ion exchange ([M + H] + ; m/z 283.1) representing the 8-Oxo-dG level in earthworms was higher in the H4 group than the H8 group. This reveals that HRW exhibited the potential ability to alleviate the toxic effects of mercury; however, a longer period of HRW treatment may be necessary to distinguish an obvious effect. The ATR-FTIR spectroscopy provided a rapid and precise method for monitoring the changes in biological tissues caused by a toxic compound at the molecular level.
Collapse
Affiliation(s)
- Mine Köktürk
- Department of Organic Agriculture Management, College of Applied Sciences, Igdir University, 76000, Igdir, Turkey
- Research Laboratory Application and Research Center (ALUM), Iğdır University, 76000, Iğdır, Turkey
| | - Mehmet Nuri Atalar
- Department of Nutrition and Dietetic, Faculty of Health Sciences, Iğdır University, 76000, Iğdır, Turkey
| | - Arzu Odunkıran
- Department of Hotel, Restaurant and Catering Services, Igdir University, 76000, Igdir, Turkey
| | - Menekşe Bulut
- Department of Food Engineering, Faculty of Engineering, Iğdır University, 76000, Iğdır, Turkey
- Research Center for Redox Applications in Foods (RCRAF), Iğdır University, 76000, Iğdır, Turkey
- Innovative Food Technologies Development, Application and Research Center, Igdir University, 76000, Iğdır, Turkey
| | - Duried Alwazeer
- Department of Nutrition and Dietetic, Faculty of Health Sciences, Iğdır University, 76000, Iğdır, Turkey.
- Research Center for Redox Applications in Foods (RCRAF), Iğdır University, 76000, Iğdır, Turkey.
- Innovative Food Technologies Development, Application and Research Center, Igdir University, 76000, Iğdır, Turkey.
| |
Collapse
|
7
|
A Preliminary Study on the Effect of Hydrogen Gas on Alleviating Early CCl 4-Induced Chronic Liver Injury in Rats. Antioxidants (Basel) 2021; 10:antiox10121933. [PMID: 34943036 PMCID: PMC8750042 DOI: 10.3390/antiox10121933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/28/2021] [Accepted: 11/30/2021] [Indexed: 11/16/2022] Open
Abstract
As a small-molecule reductant substance, hydrogen gas has an obvious antioxidant function. It can selectively neutralize hydroxyl radicals (•OH) and peroxynitrite (ONOO•) in cells, reducing oxidative stress damage. The purpose of this study was to investigate the effect of hydrogen gas (3%) on early chronic liver injury (CLI) induced by CCl4 and to preliminarily explore the protective mechanism of hydrogen gas on hepatocytes by observing the expression of uncoupling protein 2 (UCP2) in liver tissue. Here, 32 rats were divided into four groups: the control group, CCl4 group, H2 (hydrogen gas) group, and CCl4 + H2 group. The effect of hydrogen gas on early CLI was observed by serological tests, ELISA, hematoxylin and eosin staining, and oil red O staining. Immunohistochemical staining and Western blotting were used to observe the expression of UCP2 in liver tissues. We found that CCl4 can induce significant steatosis in hepatocytes. When the hydrogen gas was inhaled, hepatocyte steatosis was reduced, and the UCP2 expression level in liver tissue was increased. These results suggest that hydrogen gas might upregulate UCP2 expression levels, reduce the generation of intracellular oxygen free radicals, affect lipid metabolism in liver cells, and play a protective role in liver cells.
Collapse
|
8
|
Nie C, Zou R, Pan S, A R, Gao Y, Yang H, Bai J, Xi S, Wang X, Hong X, Yang W. Hydrogen gas inhalation ameliorates cardiac remodelling and fibrosis by regulating NLRP3 inflammasome in myocardial infarction rats. J Cell Mol Med 2021; 25:8997-9010. [PMID: 34402164 PMCID: PMC8435412 DOI: 10.1111/jcmm.16863] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/19/2021] [Accepted: 08/05/2021] [Indexed: 12/14/2022] Open
Abstract
It is noteworthy that prolonged cardiac structural changes and excessive fibrosis caused by myocardial infarction (MI) seriously interfere with the treatment of heart failure in clinical practice. Currently, there are no effective and practical means of either prevention or treatment. Thus, novel therapeutic approaches are critical for the long‐term quality of life of individuals with myocardial ischaemia. Herein, we aimed to explore the protective effect of H2, a novel gas signal molecule with anti‐oxidative stress and anti‐inflammatory effects, on cardiac remodelling and fibrosis in MI rats, and to explore its possible mechanism. First, we successfully established MI model rats, which were then exposed to H2 inhalation with 2% concentration for 28 days (3 hours/day). The results showed that hydrogen gas can significantly improve cardiac function and reduce the area of cardiac fibrosis. In vitro experiments further proved that H2 can reduce the hypoxia‐induced damage to cardiomyocytes and alleviate angiotensin II‐induced migration and activation of cardiac fibroblasts. In conclusion, herein, we illustrated for the first time that inhalation of H2 ameliorates myocardial infarction‐induced cardiac remodelling and fibrosis in MI rats and exert its protective effect mainly through inhibiting NLRP3‐mediated pyroptosis.
Collapse
Affiliation(s)
- Chaoqun Nie
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Rentong Zou
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shuang Pan
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Rong A
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC, Harbin Medical University, Harbin, China
| | - Yunan Gao
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongxiao Yang
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Juncai Bai
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shuiqing Xi
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xue Wang
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaojian Hong
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wei Yang
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
9
|
Molecular Hydrogen as a Potential Clinically Applicable Radioprotective Agent. Int J Mol Sci 2021; 22:ijms22094566. [PMID: 33925430 PMCID: PMC8123813 DOI: 10.3390/ijms22094566] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/15/2021] [Accepted: 04/22/2021] [Indexed: 02/07/2023] Open
Abstract
Although ionizing radiation (radiation) is commonly used for medical diagnosis and cancer treatment, radiation-induced damages cannot be avoided. Such damages can be classified into direct and indirect damages, caused by the direct absorption of radiation energy into DNA and by free radicals, such as hydroxyl radicals (•OH), generated in the process of water radiolysis. More specifically, radiation damage concerns not only direct damages to DNA, but also secondary damages to non-DNA targets, because low-dose radiation damage is mainly caused by these indirect effects. Molecular hydrogen (H2) has the potential to be a radioprotective agent because it can selectively scavenge •OH, a reactive oxygen species with strong oxidizing power. Animal experiments and clinical trials have reported that H2 exhibits a highly safe radioprotective effect. This paper reviews previously reported radioprotective effects of H2 and discusses the mechanisms of H2, not only as an antioxidant, but also in intracellular responses including anti-inflammation, anti-apoptosis, and the regulation of gene expression. In doing so, we demonstrate the prospects of H2 as a novel and clinically applicable radioprotective agent.
Collapse
|
10
|
Qin S. Role of Hydrogen in Atherosclerotic Disease: From Bench to Bedside. Curr Pharm Des 2021; 27:713-722. [PMID: 33234094 DOI: 10.2174/1381612826666201124112152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 08/22/2020] [Indexed: 12/08/2022]
Abstract
Atherosclerotic cardiovascular and cerebrovascular diseases are among the leading causes of morbidity and mortality worldwide. Given our recent understanding of its role as a small-molecule antioxidant and anti- inflammatory agent, hydrogen may play an important role in preventing and treating atherosclerotic cardiovascular and cerebrovascular disease. In the past decade, more than 50 publications in the English language literature considered the role of hydrogen as an anti-atherosclerotic agent. In this review, we summarized the pathophysiological characteristics and risk factors associated with atherosclerosis (AS) and the laboratory research data that focuses on hydrogen to prevent and treat this condition, including the responses observed in both animal models and human studies. We will also consider the molecular mechanisms underlying the efficacy of hydrogen molecules with respect to atherosclerotic disease. Future studies might include clinical trials with larger sample populations as well as experiments designed to explore the molecular mechanisms associated with hydrogen treatment in greater depth.
Collapse
Affiliation(s)
- Shucun Qin
- The Institute of Atherosclerosis and Taishan Institute for Hydrogen Biomedicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian 271000, China
| |
Collapse
|
11
|
Zhou G, Liu L, Li X, Hou X, Wang L, Sun R, Huang H, Li Z, Li W, Wang C, Ba Y. ESRα Promoter Methylation May Modify the Association Between Lipid Metabolism and Type 2 Diabetes in Chinese Farmers. Front Public Health 2021; 9:578134. [PMID: 33748055 PMCID: PMC7969800 DOI: 10.3389/fpubh.2021.578134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 02/08/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: This study is aimed to explore the potential association among the estrogen receptor alpha (ESRα) promoter methylation, lipid metabolism and the risk of type 2 diabetes mellitus (T2DM). Methods: A total of 1143 rural residents were recruited randomly from Henan Province, China. The circulating methylation levels in ESRα promoter region were determined by quantitative methylation-specific polymerase chain reaction. Serum high density lipoprotein cholesterol (HDL-C), low density lipoprotein cholesterol (LDL-C), triglyceride (TG), total cholesterol (TC) and fasting plasma-glucose (FPG) were measured. Results: The ESRα promoter methylation levels were negatively associated with HDL-C levels whether gender stratification was performed (P < 0.05) and positively correlated with LDL-C in men (P < 0.05). Each unit standard deviation (SD) increment in TG was associated with a 43% increase (95% CI: 1.25, 1.64) in the risks of T2DM in all participants, a 36% increase (95% CI: 1.13, 1.64) in the risks of T2DM in men and a 49% increase (95% CI: 1.21, 1.83) in the risks of T2DM in women. Furthermore, each SD increment in HDL-C was associated with a reduction of 25% (OR = 0.75, 95% CI: 0.58, 0.97) in the risks of T2DM in men, and the risk of T2DM in men may be more susceptible to HDL-C than that in women (P for interaction < 0.05). Additionally, we found that the risk of T2DM in participants with lower methylation levels (≤4.07%) were more susceptible to HDL-C (P for interaction < 0.05). Conclusions: These findings suggested that lipid metabolism was associated with ESRα promoter methylation levels and the risk of T2DM. Besides, the levels of ESRα promoter methylation and gender can modify the association of HDL-C and T2DM.
Collapse
Affiliation(s)
- Guoyu Zhou
- Department of Environment Health & Environment and Health Innovation Team, School of Public Health, Zhengzhou University, Zhengzhou, China.,Yellow River Institute for Ecological Protection & Regional Coordinated Development, Zhengzhou University, Zhengzhou, China
| | - Lihua Liu
- Department of Environment Health & Environment and Health Innovation Team, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xing Li
- Department of Nutrition and Food Health, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xiangbo Hou
- Department of Environment Health & Environment and Health Innovation Team, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Ling Wang
- Department of Nutrition and Food Health, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Renjie Sun
- Department of Environment Health & Environment and Health Innovation Team, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Hui Huang
- Department of Environment Health & Environment and Health Innovation Team, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Zhiyuan Li
- Department of Environment Health & Environment and Health Innovation Team, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Wenjie Li
- Department of Nutrition and Food Health, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Chongjian Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yue Ba
- Department of Environment Health & Environment and Health Innovation Team, School of Public Health, Zhengzhou University, Zhengzhou, China.,Yellow River Institute for Ecological Protection & Regional Coordinated Development, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
12
|
Potential Therapeutic Applications of Hydrogen in Chronic Inflammatory Diseases: Possible Inhibiting Role on Mitochondrial Stress. Int J Mol Sci 2021; 22:ijms22052549. [PMID: 33806292 PMCID: PMC7961517 DOI: 10.3390/ijms22052549] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 01/10/2023] Open
Abstract
Mitochondria are the largest source of reactive oxygen species (ROS) and are intracellular organelles that produce large amounts of the most potent hydroxyl radical (·OH). Molecular hydrogen (H2) can selectively eliminate ·OH generated inside of the mitochondria. Inflammation is induced by the release of proinflammatory cytokines produced by macrophages and neutrophils. However, an uncontrolled or exaggerated response often occurs, resulting in severe inflammation that can lead to acute or chronic inflammatory diseases. Recent studies have reported that ROS activate NLRP3 inflammasomes, and that this stimulation triggers the production of proinflammatory cytokines. It has been shown in literature that H2 can be based on the mechanisms that inhibit mitochondrial ROS. However, the ability for H2 to inhibit NLRP3 inflammasome activation via mitochondrial oxidation is poorly understood. In this review, we hypothesize a possible mechanism by which H2 inhibits mitochondrial oxidation. Medical applications of H2 may solve the problem of many chronic inflammation-based diseases, including coronavirus disease 2019 (COVID-19).
Collapse
|
13
|
Abstract
Hydrogen (H2) is promising as an energy source for the next generation. Medical applications using H2 gas can be also considered as a clean and economical technology. Since the H2 gas based on electrolysis of water production has potential to expand the medical applications, the technology has been developed in order to safely dilute it and to supply it to the living body by inhalation, respectively. H2 is an inert molecule which can scavenge the highly active oxidants including hydroxyl radical (·OH) and peroxynitrite (ONOO−), and which can convert them into water. H2 is clean and causes no adverse effects in the body. The mechanism of H2 is different from that of traditional drugs because it works on the root of many diseases. Since H2 has extensive and various effects, it may be called a “wide spectrum molecule” on diseases. In this paper, we reviewed the current medical applications of H2 including its initiation and development, and we also proposed its prospective medical applications. Due to its marked efficacy and no adverse effects, H2 will be a next generation therapy candidate for medical applications.
Collapse
|
14
|
Effects of long-term hydrogen intervention on the physiological function of rats. Sci Rep 2020; 10:18509. [PMID: 33116163 PMCID: PMC7595097 DOI: 10.1038/s41598-020-75492-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 10/12/2020] [Indexed: 11/09/2022] Open
Abstract
The potential therapeutic effects of molecular hydrogen (H2) have now been confirmed in various human and animal-disease models. However, the effects of H2 on the physiological function in a normal state have been largely neglected. Hydrogen-rich water (HRW) intake and hydrogen inhalation (HI) are the most common used methods for hydrogen administration, the difference in the effects between HRW intake and HI remains elusive. In the present study, the body weight and 13 serum biochemical parameters were monitored during the six-month hydrogen intervention, all these parameters were significantly altered by oral intake of HRW or HI. Among the 13 parameters, the most striking alterations induced by hydrogen treatment were observed in serum myocardial enzymes spectrum. The results also showed that the changes in these parameters occurred at different time points, and the alterations in most of the parameters were much more significant in HI than HRW. The results of this study provides the basic data for the mechanism research and application of molecular hydrogen in the future.
Collapse
|
15
|
Hydrogen: A Novel Option in Human Disease Treatment. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8384742. [PMID: 32963703 PMCID: PMC7495244 DOI: 10.1155/2020/8384742] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/06/2020] [Accepted: 07/13/2020] [Indexed: 02/08/2023]
Abstract
H2 has shown anti-inflammatory and antioxidant ability in many clinical trials, and its application is recommended in the latest Chinese novel coronavirus pneumonia (NCP) treatment guidelines. Clinical experiments have revealed the surprising finding that H2 gas may protect the lungs and extrapulmonary organs from pathological stimuli in NCP patients. The potential mechanisms underlying the action of H2 gas are not clear. H2 gas may regulate the anti-inflammatory and antioxidant activity, mitochondrial energy metabolism, endoplasmic reticulum stress, the immune system, and cell death (apoptosis, autophagy, pyroptosis, ferroptosis, and circadian clock, among others) and has therapeutic potential for many systemic diseases. This paper reviews the basic research and the latest clinical applications of H2 gas in multiorgan system diseases to establish strategies for the clinical treatment for various diseases.
Collapse
|
16
|
Hydrogen gas protects against ovariectomy-induced osteoporosis by inhibiting NF-κB activation. Menopause 2020; 26:785-792. [PMID: 31083022 DOI: 10.1097/gme.0000000000001310] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVES Osteoporosis is a prevalent condition among postmenopausal women, and lacks satisfactory therapeutic options. Hydrogen (H2) has been shown to be effective in alleviating many diseases. This study aimed to investigate the effects of H2 on inhibiting osteoclastogenesis and bone loss in ovariectomized mice. METHODS Osteoclast differentiation from Raw264.7 cells was induced with receptor activator NF-κB ligand (RANKL) with or without 60% H2. The number and resorption activity of osteocalsts were assessed by tartrate-resistant acid phosphatase staining and pit formation assay, respectively. The expression of osteoclast markers and NF-κB phosphorylation were detected by western blot. NF-κB nuclear translocation was assessed by immunofluorescence. NF-κB transcriptional activity was analyzed by luciferase assay. Bone loss in mice was induced by ovariectomy (OVX). OVX mice were given either regular air or 60% H2. Bone structure was analyzed by micro-computed tomography and hematoxylin and eosin staining. Cytokine levels were measured by enzyme-linked immunosorbent assay. The data were analyzed with one-way or two-way ANOVA followed by Bonferroni post hoc tests. RESULTS H2 did not have any measurable effect on the proliferation of Raw264.7 cells. The number of osteoclasts and size of resorption pits of RANKL+H2-treated cells were 3 to 4 times less than RANKL treated cells. The expression of osteoclast marker genes of RANKL+H2-treated cells was 30% to 60% lower than RANKL-treated cells (P < 0.05). H2 markedly inhibited RANKL-induced activation, nuclear translocation, and transcriptional activity of NF-κB (P < 0.05, RANKL+H2 vs RANKL). The amount and density of trabecular bone and bone mineral density of ovariectomized mice were significantly less than sham-operated mice (P < 0.05 OVX vs sham). The amount of trabecular bone and bone mineral density of OVX mice that inhaled H2 were more than 40% higher, whereas the levels of serum proinflammatory cytokine interleukin 1β, IL-6, and tumor necrosis factor-α were more than 50% lower than those of OVX mice (P < 0.05). CONCLUSIONS These results demonstrated that H2 could be an effective therapeutic agent of postmenopausal osteoporosis.
Collapse
|
17
|
Hydrogen Attenuates Allergic Inflammation by Reversing Energy Metabolic Pathway Switch. Sci Rep 2020; 10:1962. [PMID: 32029879 PMCID: PMC7005324 DOI: 10.1038/s41598-020-58999-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 01/23/2020] [Indexed: 01/16/2023] Open
Abstract
Mechanisms mediating the protective effects of molecular hydrogen (H2) are not well understood. This study explored the possibility that H2 exerts its anti-inflammatory effect by modulating energy metabolic pathway switch. Activities of glycolytic and mitochondrial oxidative phosphorylation systems were assessed in asthmatic patients and in mouse model of allergic airway inflammation. The effects of hydrogen treatment on airway inflammation and on changes in activities of these two pathways were evaluated. Monocytes from asthmatic patients and lungs from ovalbumin-sensitized and challenged mice had increased lactate production and glycolytic enzyme activities (enhanced glycolysis), accompanied by decreased ATP production and mitochondrial respiratory chain complex I and III activities (suppressed mitochondrial oxidative phosphorylation), indicating an energy metabolic pathway switch. Treatment of ovalbumin-sensitized and challenged mice with hydrogen reversed the energy metabolic pathway switch, and mitigated airway inflammation. Hydrogen abrogated ovalbumin sensitization and challenge-induced upregulation of glycolytic enzymes and hypoxia-inducible factor-1α, and downregulation of mitochondrial respiratory chain complexes and peroxisome proliferator activated receptor-γ coactivator-1α. Hydrogen abrogated ovalbumin sensitization and challenge-induced sirtuins 1, 3, 5 and 6 downregulation. Our data demonstrates that allergic airway inflammation is associated with an energy metabolic pathway switch from oxidative phosphorylation to aerobic glycolysis. Hydrogen inhibits airway inflammation by reversing this switch. Hydrogen regulates energy metabolic reprogramming by acting at multiple levels in the energy metabolism regulation pathways.
Collapse
|
18
|
Li L, Liu T, Liu L, Li S, Zhang Z, Zhang R, Zhou Y, Liu F. Effect of hydrogen-rich water on the Nrf2/ARE signaling pathway in rats with myocardial ischemia-reperfusion injury. J Bioenerg Biomembr 2019; 51:393-402. [DOI: 10.1007/s10863-019-09814-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 11/13/2019] [Indexed: 12/21/2022]
|
19
|
Li S, Liao R, Sheng X, Luo X, Zhang X, Wen X, Zhou J, Peng K. Hydrogen Gas in Cancer Treatment. Front Oncol 2019; 9:696. [PMID: 31448225 PMCID: PMC6691140 DOI: 10.3389/fonc.2019.00696] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/15/2019] [Indexed: 12/14/2022] Open
Abstract
Gas signaling molecules (GSMs), composed of oxygen, carbon monoxide, nitric oxide, hydrogen sulfide, etc., play critical roles in regulating signal transduction and cellular homeostasis. Interestingly, through various administrations, these molecules also exhibit potential in cancer treatment. Recently, hydrogen gas (formula: H2) emerges as another GSM which possesses multiple bioactivities, including anti-inflammation, anti-reactive oxygen species, and anti-cancer. Growing evidence has shown that hydrogen gas can either alleviate the side effects caused by conventional chemotherapeutics, or suppress the growth of cancer cells and xenograft tumor, suggesting its broad potent application in clinical therapy. In the current review, we summarize these studies and discuss the underlying mechanisms. The application of hydrogen gas in cancer treatment is still in its nascent stage, further mechanistic study and the development of portable instruments are warranted.
Collapse
Affiliation(s)
- Sai Li
- Department of Pharmacy, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Rongrong Liao
- Nursing Department, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xiaoyan Sheng
- Nursing Department, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xiaojun Luo
- The Centre of Preventive Treatment of Disease, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xin Zhang
- Department of Pharmacy, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xiaomin Wen
- The Centre of Preventive Treatment of Disease, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jin Zhou
- Nursing Department, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Kang Peng
- Department of Pharmacy, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,The Centre of Preventive Treatment of Disease, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
20
|
Han Y, Qu P, Zhang K, Bi Y, Zhou L, Xie D, Song H, Dong J, Qi J. Storage solution containing hydrogen improves the preservation effect of osteochondral allograft. Cell Tissue Bank 2019; 20:201-208. [DOI: 10.1007/s10561-019-09758-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 02/21/2019] [Indexed: 12/26/2022]
|
21
|
Fu J, Zou J, Chen C, Li H, Wang L, Zhou Y. Hydrogen molecules (H2) improve perfusion recovery via antioxidant effects in experimental peripheral arterial disease. Mol Med Rep 2018; 18:5009-5015. [PMID: 30320393 PMCID: PMC6236306 DOI: 10.3892/mmr.2018.9546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 09/03/2018] [Indexed: 11/24/2022] Open
Abstract
Reactive oxygen species (ROS) impair neovascularization and perfusion recovery following limb ischemia in patients with peripheral arterial disease (PAD). Hydrogen molecules (H2) comprise an antioxidant gas that has been reported to neutralize cytotoxic ROS. The present study investigated whether H2 may serve as a novel therapeutic strategy for PAD. H2-saturated water or dehydrogenized water was supplied to mice with experimental PAD. Laser Doppler perfusion imaging demonstrated that H2-saturated water improved perfusion recovery, decreased the rate of necrosis, increased the capillary density in the gastrocnemius muscle and increased the artery density in the abductor muscle in the ischemic limbs, at 14 and 21 days post-hindlimb ischemia. Ischemic muscle tissue was harvested 7 days after experimental PAD for biochemical testing and H2 was observed to reduce the levels of malondialdehyde and increase the levels of cyclic guanine monophosphate (cGMP). In cultured endothelial cells, H2-saturated culture medium resulted in reduced ROS levels, increased tube formation and increased cGMP levels. In macrophages, H2 decreased cellular ROS levels and promoted M2 polarization. H2-saturated water increases angiogenesis and arteriogenesis and subsequently improves perfusion recovery in a mouse PAD model via reduction of ROS levels.
Collapse
Affiliation(s)
- Jinrong Fu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jinjing Zou
- Department of Respiratory Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Cheng Chen
- Department of Respiratory Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Hongying Li
- Department of Gynecology, Hubei Maternal and Child Hospital, Wuhan, Hubei 430070, P.R. China
| | - Lei Wang
- Department of Cardiology, Hubei University of Chinese Medicine, Wuhan, Hubei 430060, P.R. China
| | - Yanli Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
22
|
Abstract
Hydrogen is the most abundant chemical element in the universe, and has been used as an inert gas for a long time. More recent studies have shown that molecular hydrogen as a kind of antioxidant, anti-inflammatory, anti-apoptosis, gene expression and signal modulation molecule, can be used for the treatment of many diseases. This review mainly focuses on the research progresses of hydrogen in various medical fields and the possible action mechanisms.
Collapse
Affiliation(s)
- Hong-Mei Li
- Department of Cardiothoracic Surgery, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Li Shen
- Department of Cardiothoracic Surgery, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jun-Wen Ge
- Department of Cardiothoracic Surgery, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ru-Fang Zhang
- Department of Cardiothoracic Surgery, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
23
|
Zhang X, Liu J, Jin K, Xu H, Wang C, Zhang Z, Kong M, Zhang Z, Wang Q, Wang F. Subcutaneous injection of hydrogen gas is a novel effective treatment for type 2 diabetes. J Diabetes Investig 2017; 9:83-90. [PMID: 28390099 PMCID: PMC5754517 DOI: 10.1111/jdi.12674] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 03/11/2017] [Accepted: 04/03/2017] [Indexed: 02/06/2023] Open
Abstract
Aims/Introduction In previous studies, hydrogen gas (H2) administration has clearly shown effectiveness in inhibiting diabetes. Here, we evaluated whether subcutaneous injection of H2 shows enhanced efficacy against type 2 diabetes mellitus induced in mice by a high‐fat diet and low‐dose streptozotocin treatment. Material and Methods H2 was injected subcutaneously at a dose of 1 mL/mouse/week for 4 weeks. Type 2 diabetes mellitus‐associated parameters were then evaluated to determine the effectiveness of subcutaneous H2 administration. Results The bodyweight of H2‐treated mice did not change over the course of the experiment. Compared with the untreated control animals, glucose, insulin, low‐density lipoprotein and triglyceride levels in the serum were significantly lower in treated mice, whereas high‐density lipoprotein cholesterol in the serum was significantly higher. Glucose tolerance and insulin sensitivity were both improved in H2‐treated mice. Diabetic nephropathy analysis showed significant reductions in urine volume, urinary total protein and β2‐microglobulin, kidney/bodyweight ratio, and kidney fibrosis associated with subcutaneous injection of H2. Conclusions Subcutaneous injection of H2 significantly improves type 2 diabetes mellitus and diabetic nephropathy‐related outcomes in a mouse model, supporting further consideration of subcutaneous injection as a novel and effective route of clinical H2 administration.
Collapse
Affiliation(s)
- Xiaolong Zhang
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jiaming Liu
- Department of Preventive Medicine, School of Environmental Science and Management, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Keke Jin
- Department of Pathophysiology, School of Basic Medicine Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Haifeng Xu
- Department of Pathophysiology, School of Basic Medicine Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Chuang Wang
- Ningbo Key Laboratory of Behavioral Neuroscience, Ningbo University School of Medicine, Ningbo, Zhejiang Province, China
| | - Zhuang Zhang
- Department of Pathophysiology, School of Basic Medicine Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Mimi Kong
- Department of Pathophysiology, School of Basic Medicine Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Zhengzheng Zhang
- Department of Pathophysiology, School of Basic Medicine Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Qingyi Wang
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Fangyan Wang
- Department of Pathophysiology, School of Basic Medicine Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| |
Collapse
|