1
|
Guo K, Tian Q, Yang L, Zhou Z. The Role of Glucagon in Glycemic Variability in Type 1 Diabetes: A Narrative Review. Diabetes Metab Syndr Obes 2021; 14:4865-4873. [PMID: 34992395 PMCID: PMC8710064 DOI: 10.2147/dmso.s343514] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 12/01/2021] [Indexed: 01/20/2023] Open
Abstract
Type 1 diabetes mellitus (T1DM) is a progressive disease as a result of the severe destruction of islet β-cell function, which leads to high glucose variability in patients. However, α-cell function is also compromised in patients with T1DM, characterized by aberrant fasting and postprandial glucagon secretion. According to recent studies, this aberrant glucagon secretion plays an increasing role in hyperglycemia, insulin-induced hypoglycemia and exercise-associated hypoglycemia in patients with T1DM. With application of continuous glucose monitoring system, dozens of metrics enable the assessment of glycemic variability, which is an integral component of glycemic control for patients with T1DM. There is growing evidences to illustrate the contribution of glucagon secretion to the glycemic variability in patients with T1DM, which may promote the development of new treatment strategies aiming to mitigate glycemic variability associated with aberrant glucagon secretion.
Collapse
Affiliation(s)
- Keyu Guo
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, People’s Republic of China
| | - Qi Tian
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, People’s Republic of China
| | - Lin Yang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, People’s Republic of China
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, People’s Republic of China
| |
Collapse
|
2
|
Huang HX, Shen LL, Huang HY, Zhao LH, Xu F, Zhang DM, Zhang XL, Chen T, Wang XQ, Xie Y, Su JB. Associations of Plasma Glucagon Levels with Estimated Glomerular Filtration Rate, Albuminuria and Diabetic Kidney Disease in Patients with Type 2 Diabetes Mellitus. Diabetes Metab J 2021; 45:868-879. [PMID: 33752319 PMCID: PMC8640146 DOI: 10.4093/dmj.2020.0149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 07/30/2020] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is characterized by elevated fasting glucagon and impaired suppression of postprandial glucagon secretion, which may participate in diabetic complications. Therefore, we investigated the associations of plasma glucagon with estimated glomerular filtration rate (eGFR), albuminuria and diabetic kidney disease (DKD) in T2DM patients. METHODS Fasting glucagon and postchallenge glucagon (assessed by area under the glucagon curve [AUCgla]) levels were determined during oral glucose tolerance tests. Patients with an eGFR <60 mL/min/1.73 m2 and/or a urinary albumin-to-creatinine ratio (UACR) ≥30 mg/g who presented with diabetic retinopathy were identified as having DKD. RESULTS Of the 2,436 recruited patients, fasting glucagon was correlated with eGFR and UACR (r=-0.112 and r=0.157, respectively; P<0.001), and AUCgla was also correlated with eGFR and UACR (r=-0.267 and r=0.234, respectively; P<0.001). Moreover, 31.7% (n=771) presented with DKD; the prevalence of DKD was 27.3%, 27.6%, 32.5%, and 39.2% in the first (Q1), second (Q2), third (Q3), and fourth quartile (Q4) of fasting glucagon, respectively; and the corresponding prevalence for AUCgla was 25.9%, 22.7%, 33.7%, and 44.4%, respectively. Furthermore, after adjusting for other clinical covariates, the adjusted odds ratios (ORs; 95% confidence intervals) for DKD in Q2, Q3, and Q4 versus Q1 of fasting glucagon were 0.946 (0.697 to 1.284), 1.209 (0.895 to 1.634), and 1.521 (1.129 to 2.049), respectively; the corresponding ORs of AUCgla were 0.825 (0.611 to 1.114), 1.323 (0.989 to 1.769), and 2.066 (1.546 to 2.760), respectively. Additionally, when we restricted our analysis in patients with glycosylated hemoglobin <7.0% (n=471), we found fasting glucagon and AUCgla were still independently associated with DKD. CONCLUSION Both increased fasting and postchallenge glucagon levels were independently associated with DKD in T2DM patients.
Collapse
Affiliation(s)
- Hua-Xing Huang
- Department of General Medicine, First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Nephrology, Affiliated Hospital 2 of Nantong University, and First People’s Hospital of Nantong City, Nantong, China
| | - Liang-Lan Shen
- Department of Nephrology, Affiliated Hospital 2 of Nantong University, and First People’s Hospital of Nantong City, Nantong, China
| | - Hai-Yan Huang
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University, and First People’s Hospital of Nantong City, Nantong, China
| | - Li-Hua Zhao
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University, and First People’s Hospital of Nantong City, Nantong, China
| | - Feng Xu
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University, and First People’s Hospital of Nantong City, Nantong, China
| | - Dong-Mei Zhang
- Medical Research Center, Affiliated Hospital 2 of Nantong University, and First People’s Hospital of Nantong City, Nantong, China
| | - Xiu-Lin Zhang
- Department of Clinical Laboratory, Affiliated Hospital 2 of Nantong University, and First People’s Hospital of Nantong City, Nantong, China
| | - Tong Chen
- Department of Clinical Laboratory, Affiliated Hospital 2 of Nantong University, and First People’s Hospital of Nantong City, Nantong, China
| | - Xue-Qin Wang
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University, and First People’s Hospital of Nantong City, Nantong, China
| | - Yan Xie
- Department of General Medicine, First Affiliated Hospital of Soochow University, Suzhou, China
- Corresponding authors: Yan Xie https://orcid.org/0000-0001-8118-7484 Department of General Medicine, First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou 215006, China E-mail:
| | - Jian-Bin Su
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University, and First People’s Hospital of Nantong City, Nantong, China
- Corresponding authors: Yan Xie https://orcid.org/0000-0001-8118-7484 Department of General Medicine, First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou 215006, China E-mail:
| |
Collapse
|
3
|
Lee M. Blood glucose control: Where are we? J Diabetes Investig 2021; 12:1762-1764. [PMID: 34288537 PMCID: PMC8504917 DOI: 10.1111/jdi.13632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/13/2021] [Accepted: 07/19/2021] [Indexed: 11/30/2022] Open
Abstract
Optimal blood glucose control warrants both early intensive therapy and individualization strategies in patients with diabetes mellitus.
Collapse
Affiliation(s)
- Moon‐Kyu Lee
- Division of Endocrinology & MetabolismDepartment of Internal MedicineUijeongbu Eulji Medical CenterEulji University School of MedicineUijeongbuKorea
| |
Collapse
|
4
|
Kawamori D. Beginning of a new era in glucagon research: Breakthrough by the new glucagon assay. J Diabetes Investig 2020; 11:1123-1125. [PMID: 32299149 PMCID: PMC7477516 DOI: 10.1111/jdi.13275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/07/2020] [Accepted: 04/09/2020] [Indexed: 12/01/2022] Open
Abstract
There is a new concept of diabetes as a "comprehensive nutrition disorder", caused due to both insulin and glucagon dysregulation. Dysregulated glucagon secretion in α-cells exacerbates multiple metabolic disorders: glycemic control and amino acid metabolism, together with insulin deficiency.
Collapse
Affiliation(s)
- Dan Kawamori
- Department of Metabolic MedicineGraduate School of MedicineOsaka UniversityOsakaJapan
- Medical Education CenterOsaka University Faculty of MedicineOsakaJapan
| |
Collapse
|
5
|
Komada H, Hirota Y, Ogawa W. Glucagon secretions are impaired in patients with fulminant type 1 diabetes. J Diabetes Investig 2019; 10:866-867. [PMID: 30973681 PMCID: PMC6497602 DOI: 10.1111/jdi.13041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/05/2019] [Accepted: 03/08/2019] [Indexed: 12/31/2022] Open
Abstract
Arginine‐challenge test in various types of diabetes.![]()
Collapse
Affiliation(s)
- Hisako Komada
- Department of Internal Medicine, Division of Diabetes and Endocrinology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yushi Hirota
- Department of Internal Medicine, Division of Diabetes and Endocrinology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Wataru Ogawa
- Department of Internal Medicine, Division of Diabetes and Endocrinology, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
6
|
Adeva-Andany MM, Funcasta-Calderón R, Fernández-Fernández C, Castro-Quintela E, Carneiro-Freire N. Metabolic effects of glucagon in humans. J Clin Transl Endocrinol 2019; 15:45-53. [PMID: 30619718 PMCID: PMC6312800 DOI: 10.1016/j.jcte.2018.12.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 12/13/2018] [Accepted: 12/13/2018] [Indexed: 01/09/2023] Open
Abstract
Diabetes is a common metabolic disorder that involves glucose, amino acids, and fatty acids. Either insulin deficiency or insulin resistance may cause diabetes. Insulin deficiency causes type 1 diabetes and diabetes associated with total pancreatectomy. Glucagon produces insulin resistance. Glucagon-induced insulin resistance promotes type 2 diabetes and diabetes associated with glucagonoma. Further, glucagon-induced insulin resistance aggravates the metabolic consequences of the insulin-deficient state. A major metabolic effect of insulin is the accumulation of glucose as glycogen in the liver. Glucagon opposes hepatic insulin action and enhances the rate of gluconeogenesis, increasing hepatic glucose output. In order to support gluconeogenesis, glucagon promotes skeletal muscle wasting to supply amino acids as gluconeogenic precursors. Glucagon promotes hepatic fatty acid oxidation to supply energy required to sustain gluconeogenesis. Hepatic fatty acid oxidation generates β-hydroxybutyrate and acetoacetate (ketogenesis). Prospective studies reveal that elevated glucagon secretion at baseline occurs in healthy subjects who develop impaired glucose tolerance at follow-up compared with subjects who maintain normal glucose tolerance, suggesting a relationship between elevated glucagon secretion and development of impaired glucose tolerance. Prospective studies have identified animal protein consumption as an independent risk factor for type 2 diabetes and cardiovascular disease. Animal protein intake activates glucagon secretion inducing sustained elevations in plasma glucagon. Glucagon is a major hormone that causes insulin resistance. Insulin resistance is an established cardiovascular risk factor additionally to its pathogenic role in diabetes. Glucagon may be a potential link between animal protein intake and the risk of developing type 2 diabetes and cardiovascular disease.
Collapse
Affiliation(s)
- María M. Adeva-Andany
- Internal Medicine Department, Hospital General Juan Cardona, c/ Pardo Bazán s/n, 15406 Ferrol, Spain
| | | | | | | | | |
Collapse
|
7
|
Takahashi N, Chujo D. Response to "Preserved" glucagon secretion in fulminant type 1 diabetes. J Diabetes Investig 2019; 10:188-189. [PMID: 30520259 PMCID: PMC6319494 DOI: 10.1111/jdi.12972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 11/04/2018] [Indexed: 02/06/2023] Open
Abstract
We compared the glucagon responses to arginine stimulation in five patients with fulminant type 1 diabetes and five age- and diabetes duration-matched acute-onset type 1 diabetes, and the curves of the glucagon responses were similar. In our study, we measured the glucagon levels by not only radioimmunoassay, but also novel enzyme-linked immunosorbent assay.
Collapse
Affiliation(s)
- Nobuyuki Takahashi
- Department of Diabetes, Endocrinology and MetabolismCenter HospitalNational Center for Global Health and Medicine
- Department of Molecular DiabetologyGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Daisuke Chujo
- Department of Diabetes, Endocrinology and MetabolismCenter HospitalNational Center for Global Health and Medicine
| |
Collapse
|
8
|
D'Angeli F, Scalia M, Cirnigliaro M, Satriano C, Barresi V, Musso N, Trovato-Salinaro A, Barbagallo D, Ragusa M, Di Pietro C, Purrello M, Spina-Purrello V. PARP-14 Promotes Survival of Mammalian α but Not β Pancreatic Cells Following Cytokine Treatment. Front Endocrinol (Lausanne) 2019; 10:271. [PMID: 31130919 PMCID: PMC6509146 DOI: 10.3389/fendo.2019.00271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/12/2019] [Indexed: 12/13/2022] Open
Abstract
PARP-14 (poly-ADP Ribose Polymerase-14), a member of the PARP family, belongs to the group of Bal proteins (B Aggressive Lymphoma). PARP-14 has recently appeared to be involved in the transduction pathway mediated by JNKs (c Jun N terminal Kinases), among which JNK2 promotes cancer cell survival. Several pharmacological PARP inhibitors are currently used as antitumor agents, even though they have also proved to be effective in many inflammatory diseases. Cytokine release from immune system cells characterizes many autoimmune inflammatory disorders, including type I diabetes, in which the inflammatory state causes β cell loss. Nevertheless, growing evidence supports a concomitant implication of glucagon secreting α cells in type I diabetes progression. Here, we provide evidence on the activation of a survival pathway, mediated by PARP-14, in pancreatic α cells, following treatment of αTC1.6 glucagonoma and βTC1 insulinoma cell lines with a cytokine cocktail: interleukin 1 beta (IL-1β), interferon gamma (IFN-γ) and tumor necrosis factor alpha (TNF-α). Through qPCR, western blot and confocal analysis, we demonstrated higher expression levels of PARP-14 in αTC1.6 cells with respect to βTC1 cells under inflammatory stimuli. By cytofluorimetric and caspase-3 assays, we showed the higher resistance of α cells compared to β cells to apoptosis induced by cytokines. Furthermore, the ability of PJ-34 to modulate the expression of the proteins involved in the survival pathway suggests a protective role of PARP-14. These data shed light on a poorly characterized function of PARP-14 in αTC1.6 cells in inflammatory contexts, widening the potential pharmacological applications of PARP inhibitors.
Collapse
Affiliation(s)
- Floriana D'Angeli
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, Catania, Italy
| | - Marina Scalia
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics, University of Catania, Catania, Italy
| | - Matilde Cirnigliaro
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics, University of Catania, Catania, Italy
| | - Cristina Satriano
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | - Vincenza Barresi
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, Catania, Italy
| | - Nicolò Musso
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, Catania, Italy
| | - Angela Trovato-Salinaro
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, Catania, Italy
| | - Davide Barbagallo
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics, University of Catania, Catania, Italy
| | - Marco Ragusa
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics, University of Catania, Catania, Italy
| | - Cinzia Di Pietro
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics, University of Catania, Catania, Italy
| | - Michele Purrello
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics, University of Catania, Catania, Italy
| | - Vittoria Spina-Purrello
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, Catania, Italy
- *Correspondence: Vittoria Spina-Purrello
| |
Collapse
|