1
|
Watanabe N, Kaneko YK, Ishihara H, Shizu R, Yoshinari K, Yamaguchi M, Kimura T, Ishikawa T. Diacylglycerol kinase ζ is a positive insulin secretion regulator in pancreatic β-cell line MIN6. Biochem Biophys Res Commun 2025; 742:151109. [PMID: 39644605 DOI: 10.1016/j.bbrc.2024.151109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/28/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
Some isoforms of diacylglycerol (DAG) kinase (DGK), an enzyme converting DAG into phosphatidic acid, i.e., DGKα, γ and δ, have been reportedly involved in the regulation of pancreatic β-cell function. DGKζ has also been reported to be expressed in rat pancreatic β-cells. However, its function in pancreatic β-cells remains unknown. The present study aimed to elucidate the function of DGKζ in pancreatic β-cells. The expression of DGKζ was detected in the β-cell line MIN6B and mouse pancreatic islets and in the cytoplasmic fraction from MIN6B cells. The knockdown of DGKζ with siRNA significantly decreased glucose-induced insulin secretion in MIN6B cells. The induction of DGKζ expression in MIN6CEon1 cells with a doxycycline-inducible stable expression system significantly increased glucose-induced insulin secretion. In contrast, glucose-induced insulin secretion was not changed when a kinase-dead DGKζ mutant (G356D) was overexpressed in MIN6CEon1 cells, indicating that a mechanism dependent on its kinase activity mediates the facilitatory effect of DGKζ on glucose-induced insulin secretion. Additionally, we revealed that DGKζ overexpression exhibited no effect on cell cycle of MIN6 cells. These results suggest that DGKζ plays a facilitatory role in insulin secretion in pancreatic β-cells.
Collapse
Affiliation(s)
- Naoya Watanabe
- Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka, 422-8526, Japan
| | - Yukiko K Kaneko
- Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka, 422-8526, Japan.
| | - Hisamitsu Ishihara
- Division of Diabetes and Metabolic Diseases, Nihon University School of Medicine, 30-1 Oyaguchikami-cho, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Ryota Shizu
- Department of Molecular Biology and Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka, 422-8526, Japan
| | - Kouichi Yoshinari
- Department of Molecular Biology and Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka, 422-8526, Japan
| | - Momoka Yamaguchi
- Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka, 422-8526, Japan
| | - Toshihide Kimura
- Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka, 422-8526, Japan
| | - Tomohisa Ishikawa
- Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka, 422-8526, Japan
| |
Collapse
|
2
|
Tanaka A, Kosuda M, Yamana M, Furukawa A, Nagasawa A, Fujishiro M, Kohno G, Ishihara H. A large-scale functional analysis of genes expressed differentially in insulin secreting MIN6 sublines with high versus mildly reduced glucose-responsiveness. Sci Rep 2023; 13:5654. [PMID: 37024560 PMCID: PMC10079668 DOI: 10.1038/s41598-023-32589-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 03/29/2023] [Indexed: 04/08/2023] Open
Abstract
Molecular mechanisms of glucose-stimulated insulin secretion (GSIS) from pancreatic β-cells are not fully understood. GSIS deteriorations are believed to underlie the pathogenesis of type 2 diabetes mellitus. By comparing transcript levels of 3 insulin secreting MIN6 cell sublines with strong glucose-responsiveness and 3 with mildly reduced responsiveness, we identified 630 differentially expressed genes. Using our recently developed system based on recombinase-mediated cassette exchange, we conducted large-scale generation of stable clones overexpressing such genes in the doxycycline-regulated manner. We found that overexpressions of 18, out of 83, genes altered GSIS. Sox11 ((sex determining region Y)-box 11) was selected to confirm its roles in regulating insulin secretion, and the gene was subjected to shRNA-mediated suppression. While Sox11 overexpression decreased GSIS, its suppression increased GSIS, confirming the role of Sox11 as a negative regulator of insulin secretion. Furthermore, metabolic experiments using radiolabelled glucose showed Sox11 to participate in regulating glucose metabolism. Our data suggested that overexpression screening is a feasible option for systemic functional testing to identify important genes in GSIS.
Collapse
Affiliation(s)
- Aya Tanaka
- Division of Diabetes and Metabolic Diseases, Nihon University School of Medicine, 30-1 Oyaguchikami-cho, Itabashi, 173-8610, Japan
| | - Minami Kosuda
- Division of Diabetes and Metabolic Diseases, Nihon University School of Medicine, 30-1 Oyaguchikami-cho, Itabashi, 173-8610, Japan
| | - Midori Yamana
- Division of Diabetes and Metabolic Diseases, Nihon University School of Medicine, 30-1 Oyaguchikami-cho, Itabashi, 173-8610, Japan
| | - Asami Furukawa
- Division of Diabetes and Metabolic Diseases, Nihon University School of Medicine, 30-1 Oyaguchikami-cho, Itabashi, 173-8610, Japan
| | - Akiko Nagasawa
- Division of Diabetes and Metabolic Diseases, Nihon University School of Medicine, 30-1 Oyaguchikami-cho, Itabashi, 173-8610, Japan
| | - Midori Fujishiro
- Division of Diabetes and Metabolic Diseases, Nihon University School of Medicine, 30-1 Oyaguchikami-cho, Itabashi, 173-8610, Japan
| | - Genta Kohno
- Division of Diabetes and Metabolic Diseases, Nihon University School of Medicine, 30-1 Oyaguchikami-cho, Itabashi, 173-8610, Japan
| | - Hisamitsu Ishihara
- Division of Diabetes and Metabolic Diseases, Nihon University School of Medicine, 30-1 Oyaguchikami-cho, Itabashi, 173-8610, Japan.
| |
Collapse
|
3
|
Three-in-one customized bioink for islet organoid: GelMA/ECM/PRP orchestrate pro-angiogenic and immunoregulatory function. Colloids Surf B Biointerfaces 2022; 221:113017. [DOI: 10.1016/j.colsurfb.2022.113017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/30/2022] [Accepted: 11/10/2022] [Indexed: 11/15/2022]
|