1
|
Wu L, Luo H, Xu J, Yu L, Xiong J, Liu Y, Huang X, Zou X. Vital role of CYP450 in the biodegradation of antidiabetic drugs in the aerobic activated sludge system and the mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134056. [PMID: 38522208 DOI: 10.1016/j.jhazmat.2024.134056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 02/26/2024] [Accepted: 03/14/2024] [Indexed: 03/26/2024]
Abstract
The extensive use of antidiabetic drugs (ADDs) and their detection in high concentrations in the environment have been extensively documented. However, the mechanism of ADDs dissipation in aquatic environments is still not well understood. This study thoroughly investigates the dissipation behavior of ADDs and the underlying mechanisms in the aerobic activated sludge system. The results indicate that the removal efficiencies of ADDs range from 3.98% to 100% within 48 h, largely due to the biodegradation process. Additionally, the gene expression of cytochrome P450 (CYP450) is shown to be significantly upregulated in most ADDs-polluted samples (P < 0.05), indicating the vital role of CYP450 enzymes in the biodegradation of ADDs. Enzyme inhibition experiments validated this hypothesis. Moreover, molecular docking and simulation results indicate that a strong correlation between the biodegradation of ADDs and the interactions between ADDs and CYP450 (Ebinding). The differences in dissipation behavior among the tested ADDs are possibly due to their electrophilic characteristics. Overall, this study makes the initial contribution to a more profound comprehension of the crucial function of CYP450 enzymes in the dissipation behavior of ADDs in a typical aquatic environment.
Collapse
Affiliation(s)
- Ligui Wu
- School of Life Science, Jinggangshan University, Ji'an 343009, China; College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Hao Luo
- School of Life Science, Jinggangshan University, Ji'an 343009, China
| | - Jingcheng Xu
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ling Yu
- School of Life Science, Jinggangshan University, Ji'an 343009, China
| | - Jiangtao Xiong
- School of Life Science, Jinggangshan University, Ji'an 343009, China
| | - Yizhi Liu
- School of Life Science, Jinggangshan University, Ji'an 343009, China
| | - Xiangfeng Huang
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Xiaoming Zou
- School of Life Science, Jinggangshan University, Ji'an 343009, China.
| |
Collapse
|
2
|
Kistkins S, Moser O, Ankudovičs V, Blizņuks D, Mihailovs T, Lobanovs S, Sourij H, Pfeiffer AFH, Pīrāgs V. From classical dualistic antagonism to hormone synergy: potential of overlapping action of glucagon, insulin and GLP-1 for the treatment of diabesity. Endocr Connect 2024; 13:e230529. [PMID: 38579770 PMCID: PMC11046332 DOI: 10.1530/ec-23-0529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/03/2024] [Indexed: 04/07/2024]
Abstract
The increasing prevalence of 'diabesity', a combination of type 2 diabetes and obesity, poses a significant global health challenge. Unhealthy lifestyle factors, including poor diet, sedentary behaviour, and high stress levels, combined with genetic and epigenetic factors, contribute to the diabesity epidemic. Diabesity leads to various significant complications such as cardiovascular diseases, stroke, and certain cancers. Incretin-based therapies, such as GLP-1 receptor agonists and dual hormone therapies, have shown promising results in improving glycaemic control and inducing weight loss. However, these therapies also come with certain disadvantages, including potential withdrawal effects. This review aims to provide insights into the cross-interactions of insulin, glucagon, and GLP-1, revealing the complex hormonal dynamics during fasting and postprandial states, impacting glucose homeostasis, energy expenditure, and other metabolic functions. Understanding these hormonal interactions may offer novel hypotheses in the development of 'anti-diabesity' treatment strategies. The article also explores the question of the antagonism of insulin and glucagon, providing insights into the potential synergy and hormonal overlaps between these hormones.
Collapse
Affiliation(s)
| | - Othmar Moser
- Division of Exercise Physiology and Metabolism, Institute of Sport Science, University of Bayreuth, Bayreuth, Germany
| | | | - Dmitrijs Blizņuks
- Institute of Smart Computing Technologies, Riga Technical University, Riga, Latvia
| | - Timurs Mihailovs
- Institute of Smart Computing Technologies, Riga Technical University, Riga, Latvia
| | | | - Harald Sourij
- Trials Unit for Interdisciplinary Metabolic Medicine, Division of Endocrinology and Diabetolgoy, Medical University of Graz, Graz, Austria
| | - Andreas F H Pfeiffer
- Department of Endocrinology and Metabolic Medicine, Campus Benjamin Franklin, Charité University Medicine, Hindenburgdamm, Berlin, Germany
| | - Valdis Pīrāgs
- Pauls Stradiņš Clinical University Hospital, Riga, Latvia
- Faculty of Medicine, University of Latvia, Riga, Latvia
| |
Collapse
|
3
|
Banerjee Y, Patti AM, Giglio RV, Ciaccio M, Vichithran S, Faisal S, Stoian AP, Rizvi AA, Rizzo M. The role of atherogenic lipoproteins in diabetes: Molecular aspects and clinical significance. J Diabetes Complications 2023; 37:108517. [PMID: 37329706 DOI: 10.1016/j.jdiacomp.2023.108517] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/21/2023] [Accepted: 05/21/2023] [Indexed: 06/19/2023]
Abstract
Dyslipidaemia plays a prominent role in the genesis of atherosclerotic plaque and the increased cardiovascular risk in diabetes. Macrophages readily take up atherogenic lipoproteins, transforming into foam cells and amplifying vascular damage in the presence of endothelial dysfunction. We discuss the importance of distinct lipoprotein subclasses in atherogenic diabetic dyslipidaemia as well as the effects of novel anti-diabetic agents on lipoprotein fractions and ultimately on cardiovascular risk prevention. In patients with diabetes, lipid abnormalities should be aggressively identified and treated in conjunction with therapeutical agents used to prevent cardiovascular disease. The use of drugs that improve diabetic dyslipidaemia plays a prominent role in conferring cardiovascular benefit in individuals with diabetes.
Collapse
Affiliation(s)
- Yajnavalka Banerjee
- Department of Basic Sciences, College of Medicine and Health Sciences, Mohammed Bin Rashid University (MBRU), Dubai, United Arab Emirates.
| | - Angelo M Patti
- Internal Medicine Unit, "Vittorio Emanuele II" Hospital, Castelvetrano, Trapani, Italy
| | - Rosaria V Giglio
- Department of Biomedicine, Neuroscience, and Advanced Diagnostics, Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Laboratory Medicine, University of Palermo, Palermo, Italy; Department of Laboratory Medicine, University Hospital "P. Giaccone", Palermo, Italy
| | - Marcello Ciaccio
- Department of Biomedicine, Neuroscience, and Advanced Diagnostics, Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Laboratory Medicine, University of Palermo, Palermo, Italy; Department of Laboratory Medicine, University Hospital "P. Giaccone", Palermo, Italy
| | - Suhina Vichithran
- Department of Basic Sciences, College of Medicine and Health Sciences, Mohammed Bin Rashid University (MBRU), Dubai, United Arab Emirates
| | - Shemima Faisal
- Department of Basic Sciences, College of Medicine and Health Sciences, Mohammed Bin Rashid University (MBRU), Dubai, United Arab Emirates
| | - Anca Panta Stoian
- Department of Diabetes, Nutrition, and Metabolic Diseases, Carol Davila University of Medicine, Bucharest, Romania; "Prof. Dr.N.C.Paulescu" National Institute of Diabetes, Nutrition and Metabolic Diseases, Bucharest, Romania
| | - Ali Abbas Rizvi
- Department of Medicine, University of Central Florida College of Medicine, Orlando, FL, USA
| | - Manfredi Rizzo
- Department of Basic Sciences, College of Medicine and Health Sciences, Mohammed Bin Rashid University (MBRU), Dubai, United Arab Emirates; Department of Diabetes, Nutrition, and Metabolic Diseases, Carol Davila University of Medicine, Bucharest, Romania; "Prof. Dr.N.C.Paulescu" National Institute of Diabetes, Nutrition and Metabolic Diseases, Bucharest, Romania; School of Medicine, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (Promise), University of Palermo, Italy
| |
Collapse
|