1
|
Ye Z, Wei W, Pfrender ME, Lynch M. Evolutionary Insights from a Large-Scale Survey of Population-Genomic Variation. Mol Biol Evol 2023; 40:msad233. [PMID: 37863047 PMCID: PMC10630549 DOI: 10.1093/molbev/msad233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/11/2023] [Accepted: 10/03/2023] [Indexed: 10/22/2023] Open
Abstract
The field of genomics has ushered in new methods for studying molecular-genetic variation in natural populations. However, most population-genomic studies still rely on small sample sizes (typically, <100 individuals) from single time points, leaving considerable uncertainties with respect to the behavior of relatively young (and rare) alleles and, owing to the large sampling variance of measures of variation, to the specific gene targets of unusually strong selection. Genomic sequences of ∼1,700 haplotypes distributed over a 10-year period from a natural population of the microcrustacean Daphnia pulex reveal evolutionary-genomic features at a refined scale, including previously hidden information on the behavior of rare alleles predicted by recent theory. Background selection, resulting from the recurrent introduction of deleterious alleles, appears to strongly influence the dynamics of neutral alleles, inducing indirect negative selection on rare variants and positive selection on common variants. Temporally fluctuating selection increases the persistence of nonsynonymous alleles with intermediate frequencies, while reducing standing levels of variation at linked silent sites. Combined with the results from an equally large metapopulation survey of the study species, classes of genes that are under strong positive selection can now be confidently identified in this key model organism. Most notable among rapidly evolving Daphnia genes are those associated with ribosomes, mitochondrial functions, sensory systems, and lifespan determination.
Collapse
Affiliation(s)
- Zhiqiang Ye
- Hubei Key Laboratory of Genetic Regulation & Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Wen Wei
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ 85287, USA
| | - Michael E Pfrender
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Michael Lynch
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
2
|
Ye Z, Wei W, Pfrender M, Lynch M. Evolutionary Insights from a Large-scale Survey of Population-genomic Variation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.03.539276. [PMID: 37205430 PMCID: PMC10187179 DOI: 10.1101/2023.05.03.539276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Results from data on > 1000 haplotypes distributed over a nine-year period from a natural population of the microcrustacean Daphnia pulex reveal evolutionary-genomic features at a refined scale, including key population-genetic properties that are obscured in studies with smaller sample sizes. Background selection, resulting from the recurrent introduction of deleterious alleles, appears to strongly influence the dynamics of neutral alleles, inducing indirect negative selection on rare variants and positive selection on common variants. Fluctuating selection increases the persistence of nonsynonymous alleles with intermediate frequencies, while reducing standing levels of variation at linked silent sites. Combined with the results from an equally large metapopulation survey of the study species, regions of gene structure that are under strong purifying selection and classes of genes that are under strong positive selection in this key species can be confidently identified. Most notable among rapidly evolving Daphnia genes are those associated with ribosomes, mitochondrial functions, sensory systems, and lifespan determination.
Collapse
Affiliation(s)
- Zhiqiang Ye
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ 85287
| | - Wen Wei
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ 85287
| | - Michael Pfrender
- Department of Biological Sciences, Notre Dame University, Notre Dame, IN 46556
| | - Michael Lynch
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ 85287
| |
Collapse
|
3
|
Intraspecific competitive interactions rapidly evolve via spontaneous mutations. Evol Ecol 2022. [DOI: 10.1007/s10682-022-10205-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
4
|
Bao K, Melde RH, Sharp NP. Are mutations usually deleterious? A perspective on the fitness effects of mutation accumulation. Evol Ecol 2022; 36:753-766. [DOI: 10.1007/s10682-022-10187-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Davenport ES, Agrelius TC, Harmon KB, Dudycha JL. Fitness effects of spontaneous mutations in a warming world. Evolution 2021; 75:1513-1524. [PMID: 33751559 PMCID: PMC8252619 DOI: 10.1111/evo.14208] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 02/09/2021] [Accepted: 02/16/2021] [Indexed: 12/14/2022]
Abstract
Spontaneous mutations fuel evolutionary processes and differ in consequence, but the consequences depend on the environment. Biophysical considerations of protein thermostability predict that warm temperatures may systematically increase the deleteriousness of mutation. We sought to test whether mutation reduced fitness more when measured in an environment that reflected climate change projections for temperature. We investigated the effects of spontaneous mutations on life history, size, and fitness in 21 mutation accumulation lines and 12 control lines of Daphnia pulex at standard and elevated (+4℃) temperatures. Warmer temperature accelerated life history and reduced body length and clutch sizes. Mutation led to reduced mean clutch sizes and fitness estimates at both temperatures. We found no evidence of a systematic temperature–mutation interaction on trait means, although some lines showed evidence of beneficial mutation at one temperature and deleterious mutation at the other. However, trait variances are also influenced by mutation, and we observed increased variances due to mutation for most traits. For variance of the intrinsic rate of increase and some reproductive traits, we found significant temperature–mutation interactions, with a larger increase due to mutation in the warmer environment. This suggests that selection on new mutations will be more efficient at elevated temperatures.
Collapse
Affiliation(s)
- Elizabeth S Davenport
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, 29208.,Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, 48109
| | - Trenton C Agrelius
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, 29208
| | - Krista B Harmon
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, 29208
| | - Jeffry L Dudycha
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, 29208
| |
Collapse
|
6
|
Weng ML, Ågren J, Imbert E, Nottebrock H, Rutter MT, Fenster CB. Fitness effects of mutation in natural populations of Arabidopsis thaliana reveal a complex influence of local adaptation. Evolution 2020; 75:330-348. [PMID: 33340094 DOI: 10.1111/evo.14152] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 08/21/2020] [Accepted: 09/13/2020] [Indexed: 12/22/2022]
Abstract
Little is empirically known about the contribution of mutations to fitness in natural environments. However, Fisher's Geometric Model (FGM) provides a conceptual foundation to consider the influence of the environment on mutational effects. To quantify mutational properties in the field, we established eight sets of MA lines (7-10 generations) derived from eight founders collected from natural populations of Arabidopsis thaliana from French and Swedish sites, representing the range margins of the species in Europe. We reciprocally planted the MA lines and their founders at French and Swedish sites, allowing us to test predictions of FGM under naturally occurring environmental conditions. The performance of the MA lines relative to each other and to their respective founders confirmed some and contradicted other predictions of the FGM: the contribution of mutation to fitness variance increased when the genotype was in an environment where its fitness was low, that is, in the away environment, but mutations were more likely to be beneficial when the genotype was in its home environment. Consequently, environmental context plays a large role in the contribution of mutations to the evolutionary process and local adaptation does not guarantee that a genotype is at or close to its optimum.
Collapse
Affiliation(s)
- Mao-Lun Weng
- Department of Biology and Microbiology, South Dakota State University, Brookings, South Dakota, USA.,Current address: Department of Biology, Westfield State University, Westfield, Massachusettes, USA
| | - Jon Ågren
- Plant Ecology and Evolution, Department of Ecology and Genetics, EBC, Uppsala University, Uppsala, Sweden
| | - Eric Imbert
- Institut des Sciences de la Évolution, Centre National de la Recherche Scientifique, University of Montpellier, Montpellier, France
| | - Henning Nottebrock
- Department of Biology and Microbiology, South Dakota State University, Brookings, South Dakota, USA.,Current address: Plant Ecology, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Universitätsstrasse 30, Bayreuth, Germany
| | - Matthew T Rutter
- Department of Biology, College of Charleston, South Carolina, USA
| | - Charles B Fenster
- Department of Biology and Microbiology, South Dakota State University, Brookings, South Dakota, USA.,Oak Lake Field Station, South Dakota State University, Brookings, South Dakota, USA
| |
Collapse
|
7
|
Woodruff RC, Balinski MA. Increase in viability due to the accumulation of X chromosome mutations in Drosophila melanogaster males. Genetica 2018; 146:323-328. [PMID: 29744733 DOI: 10.1007/s10709-018-0023-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 05/05/2018] [Indexed: 10/16/2022]
Abstract
To increase our understanding of the role of new X-chromosome mutations in adaptive evolution, single-X Drosophila melanogaster males were mated with attached-X chromosome females, allowing the male X chromosome to accumulate mutations over 28 generations. Contrary to our hypothesis that male viability would decrease over time, due to the accumulation and expression of X-linked recessive deleterious mutations in hemizygous males, viability significantly increased. This increase may be attributed to germinal selection and to new X-linked beneficial or compensatory mutations, possibly supporting the faster-X hypothesis.
Collapse
Affiliation(s)
- Ronny C Woodruff
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, 43403, USA.
| | - Michael A Balinski
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, 43403, USA
| |
Collapse
|
8
|
Rutter MT, Roles AJ, Fenster CB. Quantifying natural seasonal variation in mutation parameters with mutation accumulation lines. Ecol Evol 2018; 8:5575-5585. [PMID: 29938075 PMCID: PMC6010865 DOI: 10.1002/ece3.4085] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 03/19/2018] [Indexed: 12/13/2022] Open
Abstract
Mutations create novel genetic variants, but their contribution to variation in fitness and other phenotypes may depend on environmental conditions. Furthermore, natural environments may be highly heterogeneous. We assessed phenotypes associated with survival and reproductive success in over 30,000 plants representing 100 mutation accumulation lines of Arabidopsis thaliana across four temporal environments at a single field site. In each of the four assays, environmental variance was substantially larger than mutational variance. For some traits, whether mutational variance was significantly varied between seasons. The founder genotype had mean trait values near the mean of the distribution of the mutation accumulation lines in all field experiments. New mutations also contributed more phenotypic variation than would be predicted, given phenotypic and sequence‐level divergence among natural populations of A. thaliana. The combination of large environmental variance with a mean effect of mutation near zero suggests that mutations could contribute substantially to standing genetic variation.
Collapse
Affiliation(s)
- Matthew T Rutter
- Department of Biology College of Charleston Charleston South Carolina
| | | | - Charles B Fenster
- Department of Biology and Microbiology South Dakota State University Brookings South Dakota
| |
Collapse
|
9
|
McGuigan K, Aw E. How does mutation affect the distribution of phenotypes? Evolution 2017; 71:2445-2456. [PMID: 28884791 DOI: 10.1111/evo.13358] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 08/27/2017] [Accepted: 08/29/2017] [Indexed: 12/14/2022]
Abstract
The potential for mutational processes to influence patterns of neutral or adaptive phenotypic evolution is not well understood. If mutations are directionally biased, shifting trait means in a particular direction, or if mutation generates more variance in some directions of multivariate trait space than others, mutation itself might be a source of bias in phenotypic evolution. Here, we use mutagenesis to investigate the affect of mutation on trait mean and (co)variances in zebrafish, Danio rerio. Mutation altered the relationship between age and both prolonged swimming speed and body shape. These observations suggest that mutational effects on ontogeny or aging have the potential to generate variance across the phenome. Mutations had a far greater effect in males than females, although whether this is a reflection of sex-specific ontogeny or aging remains to be determined. In males, mutations generated positive covariance between swimming speed, size, and body shape suggesting the potential for mutation to affect the evolutionary covariation of these traits. Overall, our observations suggest that mutation does not generate equal variance in all directions of phenotypic space or in each sex, and that pervasive variation in ontogeny or aging within a cohort could affect the variation available to evolution.
Collapse
Affiliation(s)
- Katrina McGuigan
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland 4072
| | - Ernest Aw
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland 4072
| |
Collapse
|
10
|
The Fitness Effects of Spontaneous Mutations Nearly Unseen by Selection in a Bacterium with Multiple Chromosomes. Genetics 2016; 204:1225-1238. [PMID: 27672096 DOI: 10.1534/genetics.116.193060] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 09/06/2016] [Indexed: 12/18/2022] Open
Abstract
Mutation accumulation (MA) experiments employ the strategy of minimizing the population size of evolving lineages to greatly reduce effects of selection on newly arising mutations. Thus, most mutations fix within MA lines independently of their fitness effects. This approach, more recently combined with genome sequencing, has detailed the rates, spectra, and biases of different mutational processes. However, a quantitative understanding of the fitness effects of mutations virtually unseen by selection has remained an untapped opportunity. Here, we analyzed the fitness of 43 sequenced MA lines of the multi-chromosome bacterium Burkholderia cenocepacia that had each undergone 5554 generations of MA and accumulated an average of 6.73 spontaneous mutations. Most lineages exhibited either neutral or deleterious fitness in three different environments in comparison with their common ancestor. The only mutational class that was significantly overrepresented in lineages with reduced fitness was the loss of the plasmid, though nonsense mutations, missense mutations, and coding insertion-deletions were also overrepresented in MA lineages whose fitness had significantly declined. Although the overall distribution of fitness effects was similar between the three environments, the magnitude and even the sign of the fitness of a number of lineages changed with the environment, demonstrating that the fitness of some genotypes was environmentally dependent. These results present an unprecedented picture of the fitness effects of spontaneous mutations in a bacterium with multiple chromosomes and provide greater quantitative support for the theory that the vast majority of spontaneous mutations are neutral or deleterious.
Collapse
|
11
|
Fitness Effects of Spontaneous Mutations in Picoeukaryotic Marine Green Algae. G3-GENES GENOMES GENETICS 2016; 6:2063-71. [PMID: 27175016 PMCID: PMC4938659 DOI: 10.1534/g3.116.029769] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Estimates of the fitness effects of spontaneous mutations are important for understanding the adaptive potential of species. Here, we present the results of mutation accumulation experiments over 265–512 sequential generations in four species of marine unicellular green algae, Ostreococcus tauri RCC4221, Ostreococcus mediterraneus RCC2590, Micromonas pusilla RCC299, and Bathycoccus prasinos RCC1105. Cell division rates, taken as a proxy for fitness, systematically decline over the course of the experiment in O. tauri, but not in the three other species where the MA experiments were carried out over a smaller number of generations. However, evidence of mutation accumulation in 24 MA lines arises when they are exposed to stressful conditions, such as changes in osmolarity or exposure to herbicides. The selection coefficients, estimated from the number of cell divisions/day, varies significantly between the different environmental conditions tested in MA lines, providing evidence for advantageous and deleterious effects of spontaneous mutations. This suggests a common environmental dependence of the fitness effects of mutations and allows the minimum mutation/genome/generation rates to be inferred at 0.0037 in these species.
Collapse
|
12
|
Roles AJ, Rutter MT, Dworkin I, Fenster CB, Conner JK. Field measurements of genotype by environment interaction for fitness caused by spontaneous mutations in Arabidopsis thaliana. Evolution 2016; 70:1039-50. [PMID: 27061194 DOI: 10.1111/evo.12913] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 03/24/2016] [Indexed: 12/24/2022]
Abstract
As the ultimate source of genetic diversity, spontaneous mutation is critical to the evolutionary process. The fitness effects of spontaneous mutations are almost always studied under controlled laboratory conditions rather than under the evolutionarily relevant conditions of the field. Of particular interest is the conditionality of new mutations-that is, is a new mutation harmful regardless of the environment in which it is found? In other words, what is the extent of genotype-environment interaction for spontaneous mutations? We studied the fitness effects of 25 generations of accumulated spontaneous mutations in Arabidopsis thaliana in two geographically widely separated field environments, in Michigan and Virginia. At both sites, mean total fitness of mutation accumulation lines exceeded that of the ancestors, contrary to the expected decrease in the mean due to new mutations but in accord with prior work on these MA lines. We observed genotype-environment interactions in the fitness effects of new mutations, such that the effects of mutations in Michigan were a poor predictor of their effects in Virginia and vice versa. In particular, mutational variance for fitness was much larger in Virginia compared to Michigan. This strong genotype-environment interaction would increase the amount of genetic variation maintained by mutation-selection balance.
Collapse
Affiliation(s)
- Angela J Roles
- Biology Department, Oberlin College, Oberlin, Ohio, 44074. .,Kellogg Biological Station, Michigan State University, East Lansing, Michigan, 48824. .,Department of Integrative Biology, Michigan State University, East Lansing, Michigan, 48824.
| | - Matthew T Rutter
- Department of Biology, College of Charleston, Charleston, South Carolina, 29401.,Department of Biology, University of Maryland, College Park, Maryland, 20742
| | - Ian Dworkin
- Department of Integrative Biology, Michigan State University, East Lansing, Michigan, 48824.,Department of Biology, McMaster University, Hamilton, Ontario, L8S 4L8, Canada
| | - Charles B Fenster
- Department of Biology, University of Maryland, College Park, Maryland, 20742
| | - Jeffrey K Conner
- Kellogg Biological Station, Michigan State University, East Lansing, Michigan, 48824.,Department of Plant Biology, Michigan State University, East Lansing, Michigan, 48824
| |
Collapse
|
13
|
Accelerating Mutational Load Is Not Due to Synergistic Epistasis or Mutator Alleles in Mutation Accumulation Lines of Yeast. Genetics 2015; 202:751-63. [PMID: 26596348 DOI: 10.1534/genetics.115.182774] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 11/20/2015] [Indexed: 11/18/2022] Open
Abstract
Much of our knowledge about the fitness effects of new mutations has been gained from mutation accumulation (MA) experiments. Yet the fitness effect of single mutations is rarely measured in MA experiments. This raises several issues, notably for inferring epistasis for fitness. The acceleration of fitness decline in MA lines has been taken as evidence for synergistic epistasis, but establishing the role of epistasis requires measuring the fitness of genotypes carrying known numbers of mutations. Otherwise, accelerating fitness loss could be explained by increased genetic mutation rates. Here we segregated mutations accumulated over 4800 generations in haploid and diploid MA lines of the yeast Saccharomyces cerevisiae. We found no correspondence between an accelerated fitness decline and synergistic epistasis among deleterious mutations in haploid lines. Pairs of mutations showed no overall epistasis. Furthermore, several lines of evidence indicate that genetic mutation rates did not increase in the MA lines. Crucially, segregant fitness analyses revealed that MA accelerated in both haploid and diploid lines, even though the fitness of diploid lines was nearly constant during the MA experiment. This suggests that the accelerated fitness decline in haploids was caused by cryptic environmental factors that increased mutation rates in all lines during the last third of the lines' transfers. In addition, we provide new estimates of deleterious mutation rates, including lethal mutations, and highlight that nearly all the mutational load we observed was due to one or two mutations having a large effect on fitness.
Collapse
|
14
|
Collet JM, Blows MW, McGuigan K. Transcriptome-wide effects of sexual selection on the fate of new mutations. Evolution 2015; 69:2905-16. [DOI: 10.1111/evo.12778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 09/03/2015] [Accepted: 09/08/2015] [Indexed: 12/20/2022]
Affiliation(s)
- Julie M. Collet
- School of Biological Sciences; The University of Queensland; Queensland 4072 Australia
| | - Mark W. Blows
- School of Biological Sciences; The University of Queensland; Queensland 4072 Australia
| | - Katrina McGuigan
- School of Biological Sciences; The University of Queensland; Queensland 4072 Australia
| |
Collapse
|
15
|
Latta LC, Peacock M, Civitello DJ, Dudycha JL, Meik JM, Schaack S. The phenotypic effects of spontaneous mutations in different environments. Am Nat 2015; 185:243-52. [PMID: 25616142 DOI: 10.1086/679501] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Understanding the context dependence of mutation represents the current frontier of mutation research. In particular, understanding how traits vary in their abilities to accrue mutational variation and how the environment influences expression of mutant phenotypes yields insight into evolutionary processes. We conducted phenotypic assays in four environments using a set of Daphnia pulex mutation accumulation lines to examine the context dependence of mutation. Life-history traits accrued mutational variance faster than morphological traits when considered in individual environments. Across environments, the mutational variance in plasticity was also greater for life-history traits than for morphological traits, although this pattern was less robust. In addition, the expression of mutational variance depended on the environment, which resulted in changes in the rank order of genotype performance across environments in some cases. Such cryptic genetic variation resulting from mutation may maintain genetic diversity and allow for rapid adaptation in spatially or temporally variable environments.
Collapse
Affiliation(s)
- Leigh C Latta
- Department of Biology, Reed College, Portland, Oregon 97202
| | | | | | | | | | | |
Collapse
|
16
|
Morgan AD, Ness RW, Keightley PD, Colegrave N. Spontaneous mutation accumulation in multiple strains of the green alga, Chlamydomonas reinhardtii. Evolution 2014; 68:2589-602. [PMID: 24826801 PMCID: PMC4277324 DOI: 10.1111/evo.12448] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 04/28/2014] [Indexed: 12/11/2022]
Abstract
Estimates of mutational parameters, such as the average fitness effect of a new mutation and the rate at which new genetic variation for fitness is created by mutation, are important for the understanding of many biological processes. However, the causes of interspecific variation in mutational parameters and the extent to which they vary within species remain largely unknown. We maintained multiple strains of the unicellular eukaryote Chlamydomonas reinhardtii, for approximately 1000 generations under relaxed selection by transferring a single cell every ∼10 generations. Mean fitness of the lines tended to decline with generations of mutation accumulation whereas mutational variance increased. We did not find any evidence for differences among strains in any of the mutational parameters estimated. The overall change in mean fitness per cell division and rate of input of mutational variance per cell division were more similar to values observed in multicellular organisms than to those in other single-celled microbes. However, after taking into account differences in genome size among species, estimates from multicellular organisms and microbes, including our new estimates from C. reinhardtii, become substantially more similar. Thus, we suggest that variation in genome size is an important determinant of interspecific variation in mutational parameters.
Collapse
Affiliation(s)
- Andrew D Morgan
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, King's Buildings, Edinburgh, EH9 3JT, United Kingdom
| | | | | | | |
Collapse
|
17
|
Ledon-Rettig CC, Pfennig DW, Chunco AJ, Dworkin I. Cryptic Genetic Variation in Natural Populations: A Predictive Framework. Integr Comp Biol 2014; 54:783-93. [DOI: 10.1093/icb/icu077] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
18
|
Abstract
The assumption that pleiotropic mutations are more deleterious than mutations with more restricted phenotypic effects is an important premise in models of evolution. However, empirical evidence supporting this assumption is limited. Here, we estimated the strength of stabilizing selection on mutations affecting gene expression in male Drosophila serrata. We estimated the mutational variance (VM) and the standing genetic variance (VG) from two well-matched panels of inbred lines: a panel of mutation accumulation (MA) lines derived from a single inbred ancestral line and a panel of inbred lines derived from an outbred population. For 855 gene-expression traits, we estimated the strength of stabilizing selection as s = VM/VG. Selection was observed to be relatively strong, with 17% of traits having s > 0.02, a magnitude typically associated with life-history traits. Randomly assigning expression traits to five-trait sets, we used factor analytic mixed modeling in the MA data set to identify covarying traits that shared pleiotropic mutations. By assigning traits to the same trait sets in the outbred line data set, we then estimated s for the combination of traits affected by pleiotropic mutation. For these pleiotropic combinations, the median s was three times greater than s acting on the individual component traits, and 46% of the pleiotropic trait combinations had s > 0.02. Although our analytical approach was biased toward detecting mutations with relatively large effects, likely overestimating the average strength of selection, our results provide widespread support for the prediction that stronger selection can act against mutations with pleiotropic effects.
Collapse
|