1
|
Bonato T, Picone M, Beggio G, Vecchiato M, Feltracco M, Pivato A, Piazza R. Fragrance materials affect life history parameters and gene expression in Daphnia magna: An emerging issue for freshwater ecosystems. CHEMOSPHERE 2023; 331:138786. [PMID: 37121283 DOI: 10.1016/j.chemosphere.2023.138786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/04/2023]
Abstract
A chronic toxicity test (21 d exposure) with the model organism Daphnia magna was performed to study the single-compound and combined effects of four fragrance materials (FMs), including musk xylene (MX), Celestolide™ (ADBI), Galaxolide™ (HHCB), and ethylene brassylate (MT). Furthermore, the transcriptional responses of ten target genes related to detoxification, molting and reproduction (DHR96, P-gp, CYP360A8, GST, CYP314, EcRb, Vtg, CAT, GPX, and GCLC) were determined by performing a quantitative real-time polymerase chain reaction (qRT‒PCR) after juvenile D. magna was exposed for 48 h. The results showed that MX, ADBI and HHCB affected development and reproduction after chronic exposure at a concentration of 10 μg L-1. Conversely, MT did not affect reproduction, growth or molting during the 21 d exposure. In juvenile D. magna, gene expression was significantly altered by ADBI (DHR96, CYP260A8, and GCLC) and MX (DHR96, CYP360A8, EcRb, Vtg, CYP314, and GCLC) but not by HHCB. These results suggest that compared to biochemical measures, conventional biological endpoints provide more informative data regarding the effects of this FM. Compared to single substances in the chronic test, the mixture of the four FMs showed effects at lower concentrations and increased gene expression for EcRb and CYP314 during juvenile exposure, indicating a possible additive or synergistic effect of the four FMs compared to single compound exposure.
Collapse
Affiliation(s)
- Tiziano Bonato
- Department of Environmental Sciences, Informatics and Statistics (DAIS), Ca' Foscari University of Venice, Via Torino 155, Venezia Mestre, 30172, Venice, Italy; Società Estense Servizi Ambientali (S.E.S.A. S.p.A.), 35042, Este, Italy.
| | - Marco Picone
- Department of Environmental Sciences, Informatics and Statistics (DAIS), Ca' Foscari University of Venice, Via Torino 155, Venezia Mestre, 30172, Venice, Italy
| | - Giovanni Beggio
- Department of Civil, Environmental and Architectural Engineering, University of Padova, Via Marzolo 9, 35131, Padova, Italy
| | - Marco Vecchiato
- Department of Environmental Sciences, Informatics and Statistics (DAIS), Ca' Foscari University of Venice, Via Torino 155, Venezia Mestre, 30172, Venice, Italy; Institute of Polar Sciences of the National Research Council of Italy (ISP-CNR), Via Torino 155, 30172, Venice, Italy
| | - Matteo Feltracco
- Department of Environmental Sciences, Informatics and Statistics (DAIS), Ca' Foscari University of Venice, Via Torino 155, Venezia Mestre, 30172, Venice, Italy
| | - Alberto Pivato
- Department of Civil, Environmental and Architectural Engineering, University of Padova, Via Marzolo 9, 35131, Padova, Italy
| | - Rossano Piazza
- Department of Environmental Sciences, Informatics and Statistics (DAIS), Ca' Foscari University of Venice, Via Torino 155, Venezia Mestre, 30172, Venice, Italy
| |
Collapse
|
2
|
Jones CLC, Shafer ABA, Frost PC. Characterizing nutritional phenotypes using experimental nutrigenomics: Is there nutrient-specificity to different types of dietary stress? Mol Ecol 2023; 32:1073-1086. [PMID: 36528862 DOI: 10.1111/mec.16825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/05/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
The ability to directly measure and monitor poor nutrition in individual animals and ecological communities is hampered by methodological limitations. In this study, we use nutrigenomics to identify nutritional biomarkers in a freshwater zooplankter, Daphnia pulex, a ubiquitous primary consumer in lakes and a sentinel of environmental change. We grew animals in six ecologically relevant nutritional treatments: nutrient replete, low carbon (food), low phosphorus, low nitrogen, low calcium and high Cyanobacteria. We extracted RNA for transcriptome sequencing to identify genes that were nutrient responsive and capable of predicting nutritional status with a high degree of accuracy. We selected a list of 125 candidate genes, which were subsequently pruned to 13 predictive potential biomarkers. Using a nearest-neighbour classification algorithm, we demonstrate that these potential biomarkers are capable of classifying our samples into the correct nutritional group with 100% accuracy. The functional annotation of the selected biomarkers revealed some specific nutritional pathways and supported our hypothesis that animal responses to poor nutrition are nutrient specific and not simply different presentations of slow growth or energy limitation. This is a key step in uncovering the causes and consequences of nutritional limitation in animal consumers and their responses to small- and large-scale changes in biogeochemical cycles.
Collapse
Affiliation(s)
- Catriona L C Jones
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario, Canada
| | - Aaron B A Shafer
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario, Canada.,Department of Forensic Science, Trent University, Peterborough, Ontario, Canada
| | - Paul C Frost
- Department of Biology, Trent University, Peterborough, Ontario, Canada
| |
Collapse
|
3
|
Plaistow SJ, Brunner FS, O’Connor M. Quantifying population and clone-specific non-linear reaction norms to food gradients in Daphnia magna. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.982697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Phenotypic plasticity is normally quantified as a reaction norm which details how trait expression changes across an environmental gradient. Sometime reaction norms are linear, but often reaction norms are assumed to be linear because plasticity is typically quantified as the difference in trait expression measured in two environments. This simplification limits how plastic responses vary between genotypes and may also bias the predictions of models investigating how plasticity influences a population’s ability to adapt to a changing environment. Consequently, there is a pressing need to characterize the real shape of reaction norms and their genetic variability across ecologically relevant environmental gradients. To address this knowledge gap we measured the multi-trait plastic response of 7 Daphnia magna clones from the same population across a broad resource gradient. We used a Random Regression Mixed Model approach to characterize and quantify average and clone-specific responses to resource variation. Our results demonstrate that non-linear models outperformed a linear model for all 4 of the life-history traits we measured. The plastic reaction norms of all 4 traits were similar in shape and were often best described by a non-linear asymptotic model. Clonal variation in non-linear plastic responses was detectable for 3 out of the 4 traits that we measured although the nature and magnitude of variation across the resource gradient was trait-specific. We interpret our findings with respect to the impact that plasticity has on the evolutionary potential of a population in different resource environments.
Collapse
|
5
|
Campos B, Fletcher D, Piña B, Tauler R, Barata C. Differential gene transcription across the life cycle in Daphnia magna using a new all genome custom-made microarray. BMC Genomics 2018; 19:370. [PMID: 29776339 PMCID: PMC5960145 DOI: 10.1186/s12864-018-4725-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/25/2018] [Indexed: 11/23/2022] Open
Abstract
Background Unravelling the link between genes and environment across the life cycle is a challenging goal that requires model organisms with well-characterized life-cycles, ecological interactions in nature, tractability in the laboratory, and available genomic tools. Very few well-studied invertebrate model species meet these requirements, being the waterflea Daphnia magna one of them. Here we report a full genome transcription profiling of D. magna during its life-cycle. The study was performed using a new microarray platform designed from the complete set of gene models representing the whole transcribed genome of D. magna. Results Up to 93% of the existing 41,317 D. magna gene models showed differential transcription patterns across the developmental stages of D. magna, 59% of which were functionally annotated. Embryos showed the highest number of unique transcribed genes, mainly related to DNA, RNA, and ribosome biogenesis, likely related to cellular proliferation and morphogenesis of the several body organs. Adult females showed an enrichment of transcripts for genes involved in reproductive processes. These female-specific transcripts were essentially absent in males, whose transcriptome was enriched in specific genes of male sexual differentiation genes, like doublesex. Conclusion Our results define major characteristics of transcriptional programs involved in the life-cycle, differentiate males and females, and show that large scale gene-transcription data collected in whole animals can be used to identify genes involved in specific biological and biochemical processes. Electronic supplementary material The online version of this article (10.1186/s12864-018-4725-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bruno Campos
- IDAEA-CSIC: Institute of Environmental Diagnosis and Water Research, CSIC, Barcelona, Spain.
| | | | - Benjamín Piña
- IDAEA-CSIC: Institute of Environmental Diagnosis and Water Research, CSIC, Barcelona, Spain
| | - Romà Tauler
- IDAEA-CSIC: Institute of Environmental Diagnosis and Water Research, CSIC, Barcelona, Spain
| | - Carlos Barata
- IDAEA-CSIC: Institute of Environmental Diagnosis and Water Research, CSIC, Barcelona, Spain
| |
Collapse
|
6
|
Rahi ML, Amin S, Mather PB, Hurwood DA. Candidate genes that have facilitated freshwater adaptation by palaemonid prawns in the genus Macrobrachium: identification and expression validation in a model species ( M. koombooloomba). PeerJ 2017; 5:e2977. [PMID: 28194319 PMCID: PMC5301973 DOI: 10.7717/peerj.2977] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 01/10/2017] [Indexed: 11/20/2022] Open
Abstract
Background The endemic Australian freshwater prawn, Macrobrachium koombooloomba, provides a model for exploring genes involved with freshwater adaptation because it is one of the relatively few Macrobrachium species that can complete its entire life cycle in freshwater. Methods The present study was conducted to identify potential candidate genes that are likely to contribute to effective freshwater adaptation by M. koombooloomba using a transcriptomics approach. De novo assembly of 75 bp paired end 227,564,643 high quality Illumina raw reads from 6 different cDNA libraries revealed 125,917 contigs of variable lengths (200–18,050 bp) with an N50 value of 1597. Results In total, 31,272 (24.83%) of the assembled contigs received significant blast hits, of which 27,686 and 22,560 contigs were mapped and functionally annotated, respectively. CEGMA (Core Eukaryotic Genes Mapping Approach) based transcriptome quality assessment revealed 96.37% completeness. We identified 43 different potential genes that are likely to be involved with freshwater adaptation in M. koombooloomba. Identified candidate genes included: 25 genes for osmoregulation, five for cell volume regulation, seven for stress tolerance, three for body fluid (haemolymph) maintenance, eight for epithelial permeability and water channel regulation, nine for egg size control and three for larval development. RSEM (RNA-Seq Expectation Maximization) based abundance estimation revealed that 6,253, 5,753 and 3,795 transcripts were expressed (at TPM value ≥10) in post larvae, juveniles and adults, respectively. Differential gene expression (DGE) analysis showed that 15 genes were expressed differentially in different individuals but these genes apparently were not involved with freshwater adaptation but rather were involved in growth, development and reproductive maturation. Discussion The genomic resources developed here will be useful for better understanding the molecular basis of freshwater adaptation in Macrobrachium prawns and other crustaceans more broadly.
Collapse
Affiliation(s)
- Md Lifat Rahi
- Science and Engineering Faculty, School of Earth Environment and Biological Sciences, Queensland University of Technology (QUT) , Brisbane , Queensland , Australia
| | - Shorash Amin
- Science and Engineering Faculty, School of Biomedical Sciences, Queensland University of Technology , Brisbane , Queensland , Australia
| | - Peter B Mather
- Science and Engineering Faculty, School of Earth Environment and Biological Sciences, Queensland University of Technology (QUT) , Brisbane , Queensland , Australia
| | - David A Hurwood
- Science and Engineering Faculty, School of Earth Environment and Biological Sciences, Queensland University of Technology (QUT) , Brisbane , Queensland , Australia
| |
Collapse
|