1
|
Cheslock A, Provencher J, Campeau W, MacMillan HA. The impact of microplastics on tissue-specific gene expression in the tropical house cricket, Gryllodes sigillatus. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025:126475. [PMID: 40383478 DOI: 10.1016/j.envpol.2025.126475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 05/14/2025] [Accepted: 05/15/2025] [Indexed: 05/20/2025]
Abstract
Microplastics are ubiquitous in our environment, resulting in animal exposure and consumption via food, water, and air. Animals that consume microplastics may suffer from physiological effects like immunotoxicity or mitochondrial dysfunction, but how specific tissues may differentially respond to plastic consumption is poorly understood, particularly in terrestrial insects. Here, we measured transcriptomic responses of tissues (midgut, hindgut, fat body and ovaries) to microplastic consumption in a generalist ground-dwelling insect, the tropical house cricket, Gryllodes sigillatus. Using this approach, we provide insights on how microplastics may impact specific organ systems. We generated a de novo transcriptome, a useful resource for further studies on this emerging model insect, that we then used to infer differential gene expression due to microplastic consumption in individual organs. Ingestion of microplastics elicited unique changes in gene expression depending on the tissue of focus, with notable differentially-expressed genes related to survival and stress pathways as well as those related to metabolism, immunity, and cancer.
Collapse
Affiliation(s)
- Alexandra Cheslock
- Department of Biology, Carleton University, Ottawa, Ontario, Canada K1S 5B6
| | - Jennifer Provencher
- National Wildlife Research Centre, Environment Canada, Ottawa, Ontario, Canada
| | - Winston Campeau
- Department of Biology, Carleton University, Ottawa, Ontario, Canada K1S 5B6
| | - Heath A MacMillan
- National Wildlife Research Centre, Environment Canada, Ottawa, Ontario, Canada.
| |
Collapse
|
2
|
Zhang X, Blaxter M, Wood JMD, Tracey A, McCarthy S, Thorpe P, Rayner JG, Zhang S, Sikkink KL, Balenger SL, Bailey NW. Temporal genomics in Hawaiian crickets reveals compensatory intragenomic coadaptation during adaptive evolution. Nat Commun 2024; 15:5001. [PMID: 38866741 PMCID: PMC11169259 DOI: 10.1038/s41467-024-49344-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 05/24/2024] [Indexed: 06/14/2024] Open
Abstract
Theory predicts that compensatory genetic changes reduce negative indirect effects of selected variants during adaptive evolution, but evidence is scarce. Here, we test this in a wild population of Hawaiian crickets using temporal genomics and a high-quality chromosome-level cricket genome. In this population, a mutation, flatwing, silences males and rapidly spread due to an acoustically-orienting parasitoid. Our sampling spanned a social transition during which flatwing fixed and the population went silent. We find long-range linkage disequilibrium around the putative flatwing locus was maintained over time, and hitchhiking genes had functions related to negative flatwing-associated effects. We develop a combinatorial enrichment approach using transcriptome data to test for compensatory, intragenomic coevolution. Temporal changes in genomic selection were distributed genome-wide and functionally associated with the population's transition to silence, particularly behavioural responses to silent environments. Our results demonstrate how 'adaptation begets adaptation'; changes to the sociogenetic environment accompanying rapid trait evolution can generate selection provoking further, compensatory adaptation.
Collapse
Affiliation(s)
- Xiao Zhang
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, College of Life Sciences, Tianjin Normal University, Tianjin, China.
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, Fife, UK.
| | - Mark Blaxter
- Tree of Life, Wellcome Sanger Institute, Cambridge, UK
| | | | - Alan Tracey
- Tree of Life, Wellcome Sanger Institute, Cambridge, UK
| | | | - Peter Thorpe
- School of Medicine, University of St Andrews, St Andrews, Fife, UK
- Data Analysis Group, Division of Computational Biology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Jack G Rayner
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, Fife, UK
| | - Shangzhe Zhang
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, Fife, UK
| | | | - Susan L Balenger
- College of Biological Sciences, University of Minnesota, Saint Paul, MN, USA
| | - Nathan W Bailey
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, Fife, UK.
| |
Collapse
|
3
|
Nakamura T, Ylla G, Extavour CG. Genomics and genome editing techniques of crickets, an emerging model insect for biology and food science. CURRENT OPINION IN INSECT SCIENCE 2022; 50:100881. [PMID: 35123119 DOI: 10.1016/j.cois.2022.100881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/06/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Most tools available for manipulating gene function in insects have been developed for holometabolous species. In contrast, functional genetics tools for the Hemimetabola are highly underdeveloped. This is a barrier both to understanding ancestral insect biology, and to optimizing contemporary study and manipulation of particular large hemimetabolous orders of crucial economic and agricultural importance like the Orthoptera. For orthopteran insects, including crickets, the rapid spread of next-generation sequencing technology has made transcriptome data available for a wide variety of species over the past decade. Furthermore, whole genome sequences of orthopteran insects with relatively large genome sizes are now available. With these new genome assemblies and the development of genome editing technologies such as the CRISPR-Cas9 system, it has become possible to create gene knock-out and knock-in strains in orthopteran insects. As a result, orthopteran species should become increasingly feasible for laboratory study not only in research fields that have traditionally used insects, but also in agricultural fields that use them as food and feed. In this review, we summarize these recent advances and their relevance to such applications.
Collapse
Affiliation(s)
- Taro Nakamura
- Division of Evolutionary Developmental Biology, National Institute for Basic Biology, Okazaki, Japan; Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan.
| | - Guillem Ylla
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge MA, USA; Laboratory of Bioinformatics and Genome Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
| | - Cassandra G Extavour
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge MA, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge MA, USA; Howard Hughes Medical Institute, USA
| |
Collapse
|
4
|
Overcoming Multidrug Resistance of Antibiotics via Nanodelivery Systems. Pharmaceutics 2022; 14:pharmaceutics14030586. [PMID: 35335962 PMCID: PMC8950514 DOI: 10.3390/pharmaceutics14030586] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/27/2022] [Accepted: 03/04/2022] [Indexed: 01/04/2023] Open
Abstract
Antibiotic resistance has become a threat to microbial therapies nowadays. The conventional approaches possess several limitations to combat microbial infections. Therefore, to overcome such complications, novel drug delivery systems have gained pharmaceutical scientists’ interest. Significant findings have validated the effectiveness of novel drug delivery systems such as polymeric nanoparticles, liposomes, metallic nanoparticles, dendrimers, and lipid-based nanoparticles against severe microbial infections and combating antimicrobial resistance. This review article comprises the specific mechanism of antibiotic resistance development in bacteria. In addition, the manuscript incorporated the advanced nanotechnological approaches with their mechanisms, including interaction with the bacterial cell wall, inhibition of biofilm formations, activation of innate and adaptive host immune response, generation of reactive oxygen species, and induction of intracellular effect to fight against antibiotic resistance. A section of this article demonstrated the findings related to the development of delivery systems. Lastly, the role of microfluidics in fighting antimicrobial resistance has been discussed. Overall, this review article is an amalgamation of various strategies to study the role of novel approaches and their mechanism to fight against the resistance developed to the antimicrobial therapies.
Collapse
|
5
|
Bailey NW, Desjonquères C, Drago A, Rayner JG, Sturiale SL, Zhang X. A neglected conceptual problem regarding phenotypic plasticity's role in adaptive evolution: The importance of genetic covariance and social drive. Evol Lett 2021; 5:444-457. [PMID: 34621532 PMCID: PMC8484725 DOI: 10.1002/evl3.251] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 07/12/2021] [Accepted: 07/19/2021] [Indexed: 01/16/2023] Open
Abstract
There is tantalizing evidence that phenotypic plasticity can buffer novel, adaptive genetic variants long enough to permit their evolutionary spread, and this process is often invoked in explanations for rapid adaptive evolution. However, the strength and generality of evidence for it is controversial. We identify a conceptual problem affecting this debate: recombination, segregation, and independent assortment are expected to quickly sever associations between genes controlling novel adaptations and genes contributing to trait plasticity that facilitates the novel adaptations by reducing their indirect fitness costs. To make clearer predictions about this role of plasticity in facilitating genetic adaptation, we describe a testable genetic mechanism that resolves the problem: genetic covariance between new adaptive variants and trait plasticity that facilitates their persistence within populations. We identify genetic architectures that might lead to such a covariance, including genetic coupling via physical linkage and pleiotropy, and illustrate the consequences for adaptation rates using numerical simulations. Such genetic covariances may also arise from the social environment, and we suggest the indirect genetic effects that result could further accentuate the process of adaptation. We call the latter mechanism of adaptation social drive, and identify methods to test it. We suggest that genetic coupling of plasticity and adaptations could promote unusually rapid ‘runaway’ evolution of novel adaptations. The resultant dynamics could facilitate evolutionary rescue, adaptive radiations, the origin of novelties, and other commonly studied processes.
Collapse
Affiliation(s)
- Nathan W Bailey
- School of Biology University of St Andrews St Andrews KY16 9TH United Kingdom
| | - Camille Desjonquères
- School of Biology University of St Andrews St Andrews KY16 9TH United Kingdom.,Department of Biological Sciences University of Wisconsin-Milwaukee Milwaukee Wisconsin 53201
| | - Ana Drago
- School of Biology University of St Andrews St Andrews KY16 9TH United Kingdom
| | - Jack G Rayner
- School of Biology University of St Andrews St Andrews KY16 9TH United Kingdom
| | - Samantha L Sturiale
- School of Biology University of St Andrews St Andrews KY16 9TH United Kingdom.,Current Address: Department of Biology Georgetown University Washington DC 20057
| | - Xiao Zhang
- School of Biology University of St Andrews St Andrews KY16 9TH United Kingdom
| |
Collapse
|
6
|
Rayner JG, Hitchcock TJ, Bailey NW. Variable dosage compensation is associated with female consequences of an X-linked, male-beneficial mutation. Proc Biol Sci 2021; 288:20210355. [PMID: 33757350 PMCID: PMC8059673 DOI: 10.1098/rspb.2021.0355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022] Open
Abstract
Recent theory has suggested that dosage compensation mediates sexual antagonism over X-linked genes. This process relies on the assumption that dosage compensation scales phenotypic effects between the sexes, which is largely untested. We evaluated this by quantifying transcriptome variation associated with a recently arisen, male-beneficial, X-linked mutation across tissues of the field cricket Teleogryllus oceanicus, and testing the relationship between the completeness of dosage compensation and female phenotypic effects at the level of gene expression. Dosage compensation in T. oceanicus was variable across tissues but usually incomplete, such that relative expression of X-linked genes was typically greater in females. Supporting the assumption that dosage compensation scales phenotypic effects between the sexes, we found tissues with incomplete dosage compensation tended to show female-skewed effects of the X-linked allele. In gonads, where expression of X-linked genes was most strongly female-biased, ovaries-limited genes were much more likely to be X-linked than were testes-limited genes, supporting the view that incomplete dosage compensation favours feminization of the X. Our results support the expectation that sex chromosome dosage compensation scales phenotypic effects of X-linked genes between sexes, substantiating a key assumption underlying the theoretical role of dosage compensation in determining the dynamics of sexual antagonism on the X.
Collapse
Affiliation(s)
- Jack G. Rayner
- Centre for Biological Diversity, University of St Andrews, St Andrews KY16 9TH, UK
| | - Thomas J. Hitchcock
- Centre for Biological Diversity, University of St Andrews, St Andrews KY16 9TH, UK
| | - Nathan W. Bailey
- Centre for Biological Diversity, University of St Andrews, St Andrews KY16 9TH, UK
| |
Collapse
|
7
|
Richardson J, Heinen-Kay JL, Zuk M. Sex-specific associations between life-history traits and a novel reproductive polymorphism in the Pacific field cricket. J Evol Biol 2021; 34:549-557. [PMID: 33484624 DOI: 10.1111/jeb.13758] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/23/2020] [Accepted: 12/22/2020] [Indexed: 11/29/2022]
Abstract
Associations between heritable polymorphisms and life-history traits, such as development time or reproductive investment, may play an underappreciated role in maintaining polymorphic systems. This is because selection acting on a particular morph could be bolstered or disrupted by correlated changes in life history or vice versa. In a Hawaiian population of the Pacific field cricket (Teleogryllus oceanicus), a novel mutation (flatwing) on the X-chromosome is responsible for a heritable polymorphism in male wing structure. We used laboratory cricket colonies fixed for male wing morph to investigate whether males and females bearing the flatwing or normal-wing (wild-type) allele differed in their life-history traits. We found that flatwing males developed faster and had heavier testes than normal-wings, whereas flatwing homozygous females developed slower and had lighter reproductive tissues than normal-wing homozygous females. Our results advance our understanding of the evolution of polymorphisms by demonstrating that the genetic change responsible for a reproductive polymorphism can also have consequences for fundamental life-history traits in both males and females.
Collapse
Affiliation(s)
- Jon Richardson
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - Justa L Heinen-Kay
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN, USA
| | - Marlene Zuk
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN, USA
| |
Collapse
|
8
|
Zhang X, Rayner JG, Blaxter M, Bailey NW. Rapid parallel adaptation despite gene flow in silent crickets. Nat Commun 2021; 12:50. [PMID: 33397914 PMCID: PMC7782688 DOI: 10.1038/s41467-020-20263-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 11/23/2020] [Indexed: 12/13/2022] Open
Abstract
Gene flow is predicted to impede parallel adaptation via de novo mutation, because it can introduce pre-existing adaptive alleles from population to population. We test this using Hawaiian crickets (Teleogryllus oceanicus) in which 'flatwing' males that lack sound-producing wing structures recently arose and spread under selection from an acoustically-orienting parasitoid. Morphometric and genetic comparisons identify distinct flatwing phenotypes in populations on three islands, localized to different loci. Nevertheless, we detect strong, recent and ongoing gene flow among the populations. Using genome scans and gene expression analysis we find that parallel evolution of flatwing on different islands is associated with shared genomic hotspots of adaptation that contain the gene doublesex, but the form of selection differs among islands and corresponds to known flatwing demographics in the wild. We thus show how parallel adaptation can occur on contemporary timescales despite gene flow, indicating that it could be less constrained than previously appreciated.
Collapse
Affiliation(s)
- Xiao Zhang
- School of Biology, University of St Andrews, St Andrews, Fife, KY16 9TH, UK.
| | - Jack G Rayner
- School of Biology, University of St Andrews, St Andrews, Fife, KY16 9TH, UK
| | - Mark Blaxter
- Tree of Life, Wellcome Sanger Institute, Cambridge, CB10 1SA, UK
| | - Nathan W Bailey
- School of Biology, University of St Andrews, St Andrews, Fife, KY16 9TH, UK.
| |
Collapse
|
9
|
Rayner JG, Pascoal S, Bailey NW. Release from intralocus sexual conflict? Evolved loss of a male sexual trait demasculinizes female gene expression. Proc Biol Sci 2020; 286:20190497. [PMID: 31014218 DOI: 10.1098/rspb.2019.0497] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The loss of sexual ornaments is observed across taxa, and pleiotropic effects of such losses provide an opportunity to gain insight into underlying dynamics of sex-biased gene expression and intralocus sexual conflict (IASC). We investigated this in a Hawaiian field cricket, Teleogryllus oceanicus, in which an X-linked genotype ( flatwing) feminizes males' wings and eliminates their ability to produce sexually selected songs. We profiled adult gene expression across somatic and reproductive tissues of both sexes. Despite the feminizing effect of flatwing on male wings, we found no evidence of feminized gene expression in males. Instead, female transcriptomes were more strongly affected by flatwing than males', and exhibited demasculinized gene expression. These findings are consistent with a relaxation of IASC constraining female gene expression through loss of a male sexual ornament. In a follow-up experiment, we found reduced testes mass in flatwing males, whereas female carriers showed no reduction in egg production. By contrast, female carriers exhibited greater measures of body condition. Our results suggest sex-limited phenotypic expression offers only partial resolution to IASC, owing to pleiotropic effects of the loci involved. Benefits conferred by release from intralocus conflict could help explain widespread loss of sexual ornaments across taxa.
Collapse
Affiliation(s)
- Jack G Rayner
- 1 School of Biology, University of St Andrews , St Andrews, Fife KY16 9TH , UK
| | - Sonia Pascoal
- 2 Department of Zoology, University of Cambridge , Cambridge CB2 3EJ , UK
| | - Nathan W Bailey
- 1 School of Biology, University of St Andrews , St Andrews, Fife KY16 9TH , UK
| |
Collapse
|
10
|
Oppert B, Perkin LC, Lorenzen M, Dossey AT. Transcriptome analysis of life stages of the house cricket, Acheta domesticus, to improve insect crop production. Sci Rep 2020; 10:3471. [PMID: 32103047 PMCID: PMC7044300 DOI: 10.1038/s41598-020-59087-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 12/04/2019] [Indexed: 12/20/2022] Open
Abstract
To develop genetic resources for the improvement of insects as food, we sequenced transcripts from embryos, one-day hatchlings, three nymphal stages, and male and female adults of the house cricket, Acheta domesticus. A draft transcriptome was assembled from more than 138 million sequences combined from all life stages and sexes. The draft transcriptome assembly contained 45,866 contigs, and more than half were similar to sequences at NCBI (e value < e−3). The highest sequence identity was found in sequences from the termites Cryptotermes secundus and Zootermopsis nevadensis. Sequences with identity to Gregarina niphandrodes suggest that these crickets carry the parasite. Among all life stages, there were 5,042 genes with differential expression between life stages (significant at p < 0.05). An enrichment analysis of gene ontology terms from each life stage or sex highlighted genes that were important to biological processes in cricket development. We further characterized genes that may be important in future studies of genetically modified crickets for improved food production, including those involved in RNA interference, and those encoding prolixicin and hexamerins. The data represent an important first step in our efforts to provide genetically improved crickets for human consumption and livestock feed.
Collapse
Affiliation(s)
- Brenda Oppert
- USDA ARS Center for Grain and Animal Health Research, 1515 College Ave, Manhattan, KS, 66502, USA.
| | - Lindsey C Perkin
- USDA ARS Center for Grain and Animal Health Research, 1515 College Ave, Manhattan, KS, 66502, USA
| | - Marcé Lorenzen
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Aaron T Dossey
- All Things Bugs LLC, 755 Research Parkway, Suite 465, Oklahoma City, OK, 73104, USA
| |
Collapse
|
11
|
Pascoal S, Risse JE, Zhang X, Blaxter M, Cezard T, Challis RJ, Gharbi K, Hunt J, Kumar S, Langan E, Liu X, Rayner JG, Ritchie MG, Snoek BL, Trivedi U, Bailey NW. Field cricket genome reveals the footprint of recent, abrupt adaptation in the wild. Evol Lett 2019; 4:19-33. [PMID: 32055408 PMCID: PMC7006468 DOI: 10.1002/evl3.148] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/21/2019] [Accepted: 11/13/2019] [Indexed: 12/31/2022] Open
Abstract
Evolutionary adaptation is generally thought to occur through incremental mutational steps, but large mutational leaps can occur during its early stages. These are challenging to study in nature due to the difficulty of observing new genetic variants as they arise and spread, but characterizing their genomic dynamics is important for understanding factors favoring rapid adaptation. Here, we report genomic consequences of recent, adaptive song loss in a Hawaiian population of field crickets (Teleogryllus oceanicus). A discrete genetic variant, flatwing, appeared and spread approximately 15 years ago. Flatwing erases sound‐producing veins on male wings. These silent flatwing males are protected from a lethal, eavesdropping parasitoid fly. We sequenced, assembled and annotated the cricket genome, produced a linkage map, and identified a flatwing quantitative trait locus covering a large region of the X chromosome. Gene expression profiling showed that flatwing is associated with extensive genome‐wide effects on embryonic gene expression. We found that flatwing male crickets express feminized chemical pheromones. This male feminizing effect, on a different sexual signaling modality, is genetically associated with the flatwing genotype. Our findings suggest that the early stages of evolutionary adaptation to extreme pressures can be accompanied by greater genomic and phenotypic disruption than previously appreciated, and highlight how abrupt adaptation might involve suites of traits that arise through pleiotropy or genomic hitchhiking.
Collapse
Affiliation(s)
- Sonia Pascoal
- Department of Zoology University of Cambridge Cambridge CB2 3EJ United Kingdom
| | - Judith E Risse
- Division of Bioinformatics, Department of Plant Sciences Wageningen University & Research Wageningen 6708 PB The Netherlands.,Animal Ecology Netherlands Institute of Ecology Wageningen 6700 AB The Netherlands
| | - Xiao Zhang
- School of Biology University of St Andrews St Andrews Fife KY16 9TH United Kingdom
| | - Mark Blaxter
- Edinburgh Genomics University of Edinburgh Edinburgh EH9 3JT United Kingdom.,Institute of Evolutionary Biology University of Edinburgh Edinburgh EH9 3JT United Kingdom
| | - Timothee Cezard
- Edinburgh Genomics University of Edinburgh Edinburgh EH9 3JT United Kingdom
| | - Richard J Challis
- Edinburgh Genomics University of Edinburgh Edinburgh EH9 3JT United Kingdom
| | - Karim Gharbi
- Edinburgh Genomics University of Edinburgh Edinburgh EH9 3JT United Kingdom.,Earlham Institute Norwich Research Park Norwich NR4 7UZ United Kingdom
| | - John Hunt
- School of Science and Health and the Hawkesbury Institute for the Environment Western Sydney University Penrith NSW 2751 Australia.,Centre for Ecology and Conservation University of Exeter Penryn TR10 9FE United Kingdom
| | - Sujai Kumar
- Edinburgh Genomics University of Edinburgh Edinburgh EH9 3JT United Kingdom
| | - Emma Langan
- Edinburgh Genomics University of Edinburgh Edinburgh EH9 3JT United Kingdom.,School of Environmental Sciences University of East Anglia Norwich NR4 7UZ United Kingdom
| | - Xuan Liu
- Centre for Genomic Research University of Liverpool Liverpool L69 7ZB United Kingdom
| | - Jack G Rayner
- School of Biology University of St Andrews St Andrews Fife KY16 9TH United Kingdom
| | - Michael G Ritchie
- School of Biology University of St Andrews St Andrews Fife KY16 9TH United Kingdom
| | - Basten L Snoek
- Theoretical Biology and Bioinformatics Utrecht University Utrecht 3584 CH The Netherlands.,Terrestrial Ecology Netherlands Institute of Ecology Wageningen 6700 AB The Netherlands
| | - Urmi Trivedi
- Edinburgh Genomics University of Edinburgh Edinburgh EH9 3JT United Kingdom
| | - Nathan W Bailey
- School of Biology University of St Andrews St Andrews Fife KY16 9TH United Kingdom
| |
Collapse
|
12
|
Rayner JG, Bailey NW. Testing the role of same-sex sexual behaviour in the evolution of alternative male reproductive phenotypes. Anim Behav 2019. [DOI: 10.1016/j.anbehav.2019.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
13
|
Heinen‐Kay JL, Strub DB, Balenger SL, Zuk M. Direct and indirect effects of sexual signal loss on female reproduction in the Pacific field cricket (Teleogryllus oceanicus). J Evol Biol 2019; 32:1382-1390. [DOI: 10.1111/jeb.13534] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 08/20/2019] [Accepted: 08/27/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Justa L. Heinen‐Kay
- Department of Ecology, Evolution & Behavior University of Minnesota St. Paul MN USA
| | - Daina B. Strub
- Department of Ecology, Evolution & Behavior University of Minnesota St. Paul MN USA
| | | | - Marlene Zuk
- Department of Ecology, Evolution & Behavior University of Minnesota St. Paul MN USA
| |
Collapse
|
14
|
Ehrlich RL, Zuk M. The role of sex and temperature in melanin-based immune function. CAN J ZOOL 2019. [DOI: 10.1139/cjz-2018-0323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sex differences in immunity have been observed across a wide range of species. Still, it remains unclear how sex-specific interactions with the environment are linked to sex differences in immunity. We studied the plasticity of immunological sex differences by focusing on melanin-based traits in the Pacific field cricket (Teleogryllus oceanicus (Le Guillou, 1841)). Insects rely on the pigment melanin for both immune function and coloration of the cuticle; therefore, changes in melanin production for one of these traits may indirectly affect the other. Male crickets use melanized wing structures to chirp. These cuticular structures are missing in females and a songless male morph. Given that the thermal environment influences cuticle melanization, we investigated the interactive effects of sex and developmental temperature on melanin-based immunity. Both immunity and wing cuticle melanism were reduced in individuals that developed under warmer temperatures. Rearing temperature also mediated the extent to which the sexes differed in immune traits. Males had darker cuticles, whereas females expressed greater immune activity, suggesting that sex-specific investment in melanin corresponds with sex differences in immunity. However, the lack of immunological differences between the two male morphs does not support the hypothesis that investment in cuticle melanism affects investment in immunity.
Collapse
Affiliation(s)
- Rebecca L. Ehrlich
- Department of Ecology, Evolution, and Behavior, University of Minnesota-Twin Cities, 1987 Upper Buford Circle, St. Paul, MN 55108, USA
- Department of Ecology, Evolution, and Behavior, University of Minnesota-Twin Cities, 1987 Upper Buford Circle, St. Paul, MN 55108, USA
| | - Marlene Zuk
- Department of Ecology, Evolution, and Behavior, University of Minnesota-Twin Cities, 1987 Upper Buford Circle, St. Paul, MN 55108, USA
- Department of Ecology, Evolution, and Behavior, University of Minnesota-Twin Cities, 1987 Upper Buford Circle, St. Paul, MN 55108, USA
| |
Collapse
|
15
|
Heinen-Kay JL, Urquhart EM, Zuk M. Obligately silent males sire more offspring than singers in a rapidly evolving cricket population. Biol Lett 2019; 15:20190198. [PMID: 31362608 PMCID: PMC6684975 DOI: 10.1098/rsbl.2019.0198] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 07/09/2019] [Indexed: 11/12/2022] Open
Abstract
How sexual traits are gained and lost in the wild remains an important question in evolutionary biology. Pacific field crickets (Teleogryllus oceanicus) in Hawaii provide an unprecedented opportunity to investigate the factors facilitating evolutionary loss of a sexual signal in real time. Natural selection from an acoustically orienting parasitoid fly drove rapid evolution of a novel, silent male morph. While silent (flatwing) males enjoy protection from the fly, they face difficulty attracting mates. We tested how offspring production varies in association with three male attributes affected by the spread of flatwing: wing morph (flatwing or normal-wing), age (flatwings should survive longer than singers) and exposure to calling song during rearing (wild populations with many flatwings lack ambient calling song). Per mating event, flatwings sired more offspring than singers and older males were mounted more quickly by females when presented with standard courtship song. Despite prior work showing that male age and acoustic experience influence sperm characteristics associated with fertilization, age and song exposure had no influence on male offspring production per mating. This represents the first evidence that the silent male morph possesses a reproductive advantage that may help compensate for precopulatory barriers to mate attraction.
Collapse
Affiliation(s)
- Justa L. Heinen-Kay
- Department of Ecology, Evolution and Behavior, University of Minnesota, St Paul, MN 55108, USA
| | | | | |
Collapse
|
16
|
Tanner JC, Swanger E, Zuk M. Sexual signal loss in field crickets maintained despite strong sexual selection favoring singing males. Evolution 2019; 73:1482-1489. [PMID: 31243769 DOI: 10.1111/evo.13761] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 04/25/2019] [Indexed: 01/09/2023]
Abstract
Evolutionary biologists commonly seek explanations for how selection drives the emergence of novel traits. Although trait loss is also predicted to occur frequently, few contemporary examples exist. In Hawaii, the Pacific field cricket (Teleogryllus oceanicus) is undergoing adaptive sexual signal loss due to natural selection imposed by eavesdropping parasitoids. Mutant male crickets ("flatwings") cannot sing. We measured the intensity of sexual selection on wing phenotype in a wild population. First, we surveyed the relative abundance of flatwings and "normal-wings" (nonmutants) on Oahu. Then, we bred wild-mated females' offspring to determine both female genotype with respect to the flatwing mutation and the proportion of flatwing males that sired their offspring. We found evidence of strong sexual selection favoring the production of song: females were predominantly homozygous normal-wing, their offspring were sired disproportionately by singing males, and at the population level, flatwing males became less common following a single sexual selection event. We report a selection coefficient describing the total (pre- and postcopulatory) sexual selection favoring normal-wing males in nature. Given the maintenance of the flatwing phenotype in Hawaii in recent years, this substantial sexual selection additionally suggests an approximate strength of opposing natural selection that favors silent males.
Collapse
Affiliation(s)
- Jessie C Tanner
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, Minnesota, 55108.,Current Address: Centre for Evolutionary Biology, University of Western Australia, Crawley, Western Australia, Australia, 6009
| | - Elizabeth Swanger
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, Minnesota, 55108
| | - Marlene Zuk
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, Minnesota, 55108
| |
Collapse
|
17
|
Bailey NW, Pascoal S, Montealegre-Z F. Testing the role of trait reversal in evolutionary diversification using song loss in wild crickets. Proc Natl Acad Sci U S A 2019; 116:8941-8949. [PMID: 30992379 PMCID: PMC6500131 DOI: 10.1073/pnas.1818998116] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The mechanisms underlying rapid macroevolution are controversial. One largely untested hypothesis that could inform this debate is that evolutionary reversals might release variation in vestigial traits, which then facilitates subsequent diversification. We evaluated this idea by testing key predictions about vestigial traits arising from sexual trait reversal in wild field crickets. In Hawaiian Teleogryllus oceanicus, the recent genetic loss of sound-producing and -amplifying structures on male wings eliminates their acoustic signals. Silence protects these "flatwing" males from an acoustically orienting parasitoid and appears to have evolved independently more than once. Here, we report that flatwing males show enhanced variation in vestigial resonator morphology under varied genetic backgrounds. Using laser Doppler vibrometry, we found that these vestigial sound-producing wing features resonate at highly variable acoustic frequencies well outside the normal range for this species. These results satisfy two important criteria for a mechanism driving rapid evolutionary diversification: Sexual signal loss was accompanied by a release of vestigial morphological variants, and these could facilitate the rapid evolution of novel signal values. Widespread secondary trait losses have been inferred from fossil and phylogenetic evidence across numerous taxa, and our results suggest that such reversals could play a role in shaping historical patterns of diversification.
Collapse
Affiliation(s)
- Nathan W Bailey
- School of Biology, University of St. Andrews, St. Andrews KY16 9TH, United Kingdom;
| | - Sonia Pascoal
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom
| | | |
Collapse
|
18
|
Lammers M, Kraaijeveld K, Mariën J, Ellers J. Gene expression changes associated with the evolutionary loss of a metabolic trait: lack of lipogenesis in parasitoids. BMC Genomics 2019; 20:309. [PMID: 31014246 PMCID: PMC6480896 DOI: 10.1186/s12864-019-5673-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 04/08/2019] [Indexed: 12/24/2022] Open
Abstract
Background Trait loss is a pervasive phenomenon in evolution, yet the underlying molecular causes have been identified in only a handful of cases. Most of these cases involve loss-of-function mutations in one or more trait-specific genes. However, in parasitoid insects the evolutionary loss of a metabolic trait is not associated with gene decay. Parasitoids have lost the ability to convert dietary sugars into fatty acids. Earlier research suggests that lack of lipogenesis in the parasitoid wasp Nasonia vitripennis is caused by changes in gene regulation. Results We compared transcriptomic responses to sugar-feeding in the non-lipogenic parasitoid species Nasonia vitripennis and the lipogenic Drosophila melanogaster. Both species adjusted their metabolism within 4 hours after sugar-feeding, but there were sharp differences between the expression profiles of the two species, especially in the carbohydrate and lipid metabolic pathways. Several genes coding for key enzymes in acetyl-CoA metabolism, such as malonyl-CoA decarboxylase (mcd) and HMG-CoA synthase (hmgs) differed in expression between the two species. Their combined action likely blocks lipogenesis in the parasitoid species. Network-based analysis showed connectivity of genes to be negatively correlated to the fold change of gene expression. Furthermore, genes involved in the fatty acid metabolic pathway were more connected than the set of genes of all metabolic pathways combined. Conclusion High connectivity of lipogenesis genes is indicative of pleiotropic effects and could explain the absence of gene degradation. We conclude that modification of expression levels of only a few little-connected genes, such as mcd, is sufficient to enable complete loss of lipogenesis in N. vitripennis. Electronic supplementary material The online version of this article (10.1186/s12864-019-5673-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mark Lammers
- Department of Ecological Sciences, Section Animal Ecology, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands.
| | - Ken Kraaijeveld
- Department of Ecological Sciences, Section Animal Ecology, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - Janine Mariën
- Department of Ecological Sciences, Section Animal Ecology, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - Jacintha Ellers
- Department of Ecological Sciences, Section Animal Ecology, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
19
|
Schneider WT, Rutz C, Hedwig B, Bailey NW. Vestigial singing behaviour persists after the evolutionary loss of song in crickets. Biol Lett 2018; 14:rsbl.2017.0654. [PMID: 29445043 DOI: 10.1098/rsbl.2017.0654] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 01/19/2018] [Indexed: 11/12/2022] Open
Abstract
The evolutionary loss of sexual traits is widely predicted. Because sexual signals can arise from the coupling of specialized motor activity with morphological structures, disruption to a single component could lead to overall loss of function. Opportunities to observe this process and characterize any remaining signal components are rare, but could provide insight into the mechanisms, indirect costs and evolutionary consequences of signal loss. We investigated the recent evolutionary loss of a long-range acoustic sexual signal in the Hawaiian field cricket Teleogryllus oceanicus Flatwing males carry mutations that remove sound-producing wing structures, eliminating all acoustic signalling and affording protection against an acoustically-orientating parasitoid fly. We show that flatwing males produce wing movement patterns indistinguishable from those that generate sonorous calling song in normal-wing males. Evolutionary song loss caused by the disappearance of structural components of the sound-producing apparatus has left behind the energetically costly motor behaviour underlying normal singing. These results provide a rare example of a vestigial behaviour and raise the possibility that such traits could be co-opted for novel functions.
Collapse
Affiliation(s)
- Will T Schneider
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, Fife KY16 9TH, UK
| | - Christian Rutz
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, Fife KY16 9TH, UK
| | - Berthold Hedwig
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Nathan W Bailey
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, Fife KY16 9TH, UK
| |
Collapse
|
20
|
Pascoal S, Liu X, Fang Y, Paterson S, Ritchie MG, Rockliffe N, Zuk M, Bailey NW. Increased socially mediated plasticity in gene expression accompanies rapid adaptive evolution. Ecol Lett 2018; 21:546-556. [DOI: 10.1111/ele.12920] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/11/2017] [Accepted: 01/01/2018] [Indexed: 11/29/2022]
Affiliation(s)
- Sonia Pascoal
- Department of Zoology; University of Cambridge; CB2 3EJ UK
| | - Xuan Liu
- Centre for Genomic Research; University of Liverpool; Liverpool L69 7ZB UK
| | - Yongxiang Fang
- Centre for Genomic Research; University of Liverpool; Liverpool L69 7ZB UK
| | - Steve Paterson
- Centre for Genomic Research; University of Liverpool; Liverpool L69 7ZB UK
| | - Michael G. Ritchie
- Centre for Biological Diversity; University of St Andrews; St Andrews KY16 9TH UK
| | - Nichola Rockliffe
- Centre for Genomic Research; University of Liverpool; Liverpool L69 7ZB UK
| | - Marlene Zuk
- Department of Ecology, Evolution and Behavior; University of Minnesota; St Paul MN 55108 USA
| | - Nathan W. Bailey
- Centre for Biological Diversity; University of St Andrews; St Andrews KY16 9TH UK
| |
Collapse
|