1
|
Lee M. Variable stressor exposure shapes fitness within and across generations. Sci Rep 2025; 15:3626. [PMID: 39880940 PMCID: PMC11779894 DOI: 10.1038/s41598-025-87334-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 01/17/2025] [Indexed: 01/31/2025] Open
Abstract
Environmental variation has long been considered a key driver of evolutionary change, predicted to shape different strategies, such as genetic specialization, plasticity, or bet-hedging to maintain fitness. However, little evidence is available with regards to how the periodicity of stressors may impact fitness across generations. To address this gap, I conducted a reciprocal split-brood experiment using the freshwater crustacean, Daphnia magna, and an ecologically relevant environmental stressor, ultraviolet radiation (UVR). I exposed one group to constant and another group to fluctuating UVR conditions. Despite receiving the same dose of UVR, the first experimental generation displayed significant treatment-by-genotype interactions with respect to survival and reproductive output, as well as a delayed reproductive maturity under fluctuating UVR conditions. In the following experimental generation individuals exposed to fluctuating UVR exhibited higher fitness than those in a constant UVR regime. The ancestral conditions, i.e., maternal environment, however affected the survival probability and reproductive output, but did not significantly influence the maturation date. Overall, I demonstrate that the delivery of a stressor, not just its intensity, can have profound fitness consequences across generations, with important implications for seasonal succession of genotype-phenotype patterns in natural environments.
Collapse
Affiliation(s)
- Marcus Lee
- Aquatic Ecology, Department of Biology, Lund University, Lund, Sweden.
- Department of Biology, University of Texas at Arlington, Arlington, USA.
| |
Collapse
|
2
|
Li H, Huang X, Zhan A. Context-dependent antioxidant defense system (ADS)-based stress memory in response to recurrent environmental challenges in congeneric invasive species. MARINE LIFE SCIENCE & TECHNOLOGY 2024; 6:315-330. [PMID: 38827126 PMCID: PMC11136907 DOI: 10.1007/s42995-024-00228-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 04/01/2024] [Indexed: 06/04/2024]
Abstract
Marine ecosystems are facing escalating environmental fluctuations owing to climate change and human activities, imposing pressures on marine species. To withstand recurring environmental challenges, marine organisms, especially benthic species lacking behavioral choices to select optimal habitats, have to utilize well-established strategies such as the antioxidant defense system (ADS) to ensure their survival. Therefore, understanding of the mechanisms governing the ADS-based response is essential for gaining insights into adaptive strategies for managing environmental challenges. Here we conducted a comparative analysis of the physiological and transcriptional responses based on the ADS during two rounds of 'hypersalinity-recovery' challenges in two model congeneric invasive ascidians, Ciona robusta and C. savignyi. Our results demonstrated that C. savignyi exhibited higher tolerance and resistance to salinity stresses at the physiological level, while C. robusta demonstrated heightened responses at the transcriptional level. We observed distinct transcriptional responses, particularly in the utilization of two superoxide dismutase (SOD) isoforms. Both Ciona species developed physiological stress memory with elevated total SOD (T-SOD) and glutathione (GSH) responses, while only C. robusta demonstrated transcriptional stress memory. The regulatory distinctions within the Nrf2-Keap1 signalling pathway likely explain the formation disparity of transcriptional stress memory between both Ciona species. These findings support the 'context-dependent stress memory hypothesis', emphasizing the emergence of species-specific stress memory at diverse regulatory levels in response to recurrent environmental challenges. Our results enhance our understanding of the mechanisms of environmental challenge management in marine species, particularly those related to the ADS. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-024-00228-y.
Collapse
Affiliation(s)
- Hanxi Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Xuena Huang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 China
| | - Aibin Zhan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
3
|
Zhang X, Yang W, Blair D, Hu W, Yin M. RNA-seq analysis reveals changes in mRNA expression during development in Daphnia mitsukuri. BMC Genomics 2024; 25:302. [PMID: 38515024 PMCID: PMC10958850 DOI: 10.1186/s12864-024-10210-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 03/11/2024] [Indexed: 03/23/2024] Open
Abstract
Temporal transcriptional variation is a major contributor to functional evolution and the developmental process. Parthenogenetic water fleas of the genus Daphnia (Cladocera) provide an ideal model to characterize gene expression patterns across distinct developmental stages. Herein, we report RNA-seq data for female Daphnia mitsukuri at three developmental stages: the embryo, juvenile (three timepoints) and adult. Comparisons of gene expression patterns among these three developmental stages and weighted gene co-expression network analysis based on expression data across developmental stages identified sets of genes underpinning each of the developmental stages of D. mitsukuri. Specifically, highly expressed genes (HEGs) at the embryonic developmental stage were associated with cell proliferation, ensuring the necessary foundation for subsequent development; HEGs at the juvenile stages were associated with chemosensory perception, visual perception and neurotransmission, allowing individuals to enhance detection of potential environmental risks; HEGs at the adult stage were associated with antioxidative defensive systems, enabling adults to mount an efficient response to perceived environmental risks. Additionally, we found a significant overlap between expanded gene families of Daphnia species and HEGs at the juvenile stages, and these genes were associated with visual perception and neurotransmission. Our work provides a resource of developmental transcriptomes, and comparative analyses that characterize gene expression dynamics throughout development of Daphnia.
Collapse
Affiliation(s)
- Xiuping Zhang
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Science, Fudan University, Songhu Road 2005, Shanghai, China
| | - Wenwu Yang
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Science, Fudan University, Songhu Road 2005, Shanghai, China
| | - David Blair
- College of Marine and Environmental Sciences, James Cook University, Townsville Qld, 4811, Australia
| | - Wei Hu
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Science, Fudan University, Songhu Road 2005, Shanghai, China
| | - Mingbo Yin
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Science, Fudan University, Songhu Road 2005, Shanghai, China.
| |
Collapse
|
4
|
Sha Y, Hansson L. Ancestral environment determines the current reaction to ultraviolet radiation in Daphnia magna. Evolution 2022; 76:1821-1835. [PMID: 35788927 PMCID: PMC9542806 DOI: 10.1111/evo.14555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 06/08/2022] [Accepted: 06/20/2022] [Indexed: 01/22/2023]
Abstract
An individual's phenotype can be altered by direct contact with its present environment but also by environmental features experienced by previous generations, that is, parental or grandparental effects. However, the strength and direction of these transgenerational effects may be highly variable according to the ecological conditions experienced by ancestral generations. Here, we performed a reciprocal split-brood experiment to compare transgenerational responses to the threat of ultraviolet radiation (UVR) in the zooplankter Daphnia magna, which had, or had not, been exposed to UVR for more than 150 generations. We found that the environment at which parents and grandparents were reared significantly influenced both behavior and life-history traits of their descendants. However, such transgenerational responses differed between D. magna individuals with contrasting ancestral stress history, that is, when exposed to UVR previously unexposed individuals rapidly changed their behavior and life-history traits, whereas individuals previously exposed to UVR showed less pronounced response when the UVR threat level relaxed. Hence, we here demonstrate an asymmetric transgenerational plasticity in response to UVR threat. The findings advance our understanding on the evolutionary ecology of such transgenerational effects and their potential role in response to changes in the local environment.
Collapse
Affiliation(s)
- Yongcui Sha
- Department of Biology, Aquatic EcologyLund UniversityLundSE‐22362Sweden,School of Marine Science and EngineeringQingdao Agricultural UniversityQingdao266109China
| | | |
Collapse
|
5
|
Duan S, Fu Y, Dong S, Ma Y, Meng H, Guo R, Chen J, Liu Y, Li Y. Psychoactive drugs citalopram and mirtazapine caused oxidative stress and damage of feeding behavior in Daphnia magna. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 230:113147. [PMID: 34979307 DOI: 10.1016/j.ecoenv.2021.113147] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
As the emerging contaminants, the environmental risks of drug-derived pollutants have attracted extensive attention. Citalopram (CTP) and mirtazapine (MTP) are commonly used as modern antidepressant drugs. Previous studies had proved that CTP and MTP entered the aquatic environment, but less reported the negative effects of the drugs on aquatic organisms. Herein, the effects on the feeding rate of Daphnia magna (D. magna) induced by psychotropic drugs CTP and MTP were investigated, which the possible mechanisms were analyzed with the oxidative stress and damage. Generally, the feeding rates of exposed D. magna under all concentrations of CTP and 1.03 mg/L of MTP were significantly decreased after exposure (p < 0.05 or p < 0.01). The inhibitory effect of CTP on the feeding rate of D. magna was time- and dose-dependent. The levels of reactive oxygen species (ROS) were particularly increased in D. magna after CTP and MTP exposure (p < 0.05 or p < 0.01). The level of antioxidant molecules glutathione S-transferase (GST) and the activity of scavenging enzymes superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPX) of D. magna were increased (p < 0.05 or p < 0.01). In consequence, the levels of malondialdehyde (MDA), protein carbonyl, and 8-hydroxydeoxyguanosine (8-OHdG) were increased (p < 0.05 or p < 0.01), which indicated oxidative damage caused by MTP and CTP, due to the imbalance of antioxidative stress system. These findings indicated that psychoactive drugs posed a high toxic threat to the aquatic organisms, and the aquatic environmental risks caused by using psychoactive drugs deserve more attention.
Collapse
Affiliation(s)
- Shengzi Duan
- School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Yourong Fu
- Blood Transfusion Department, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Shanshan Dong
- School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Yunfeng Ma
- School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Hangyu Meng
- School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Ruixin Guo
- School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Jianqiu Chen
- School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Yanhua Liu
- School of Engineering, China Pharmaceutical University, Nanjing 211198, China.
| | - Yang Li
- Blood Transfusion Department, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| |
Collapse
|
6
|
Song Y, Xie L, Lee Y, Tollefsen KE. De Novo Development of a Quantitative Adverse Outcome Pathway (qAOP) Network for Ultraviolet B (UVB) Radiation Using Targeted Laboratory Tests and Automated Data Mining. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:13147-13156. [PMID: 32924456 DOI: 10.1021/acs.est.0c03794] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ultraviolet B (UVB) radiation is a natural nonchemical stressor posing potential hazards to organisms such as planktonic crustaceans. The present study was conducted to revisit the lethal effects of UVB on crustaceans, generate new experimental evidence to fill in knowledge gaps, and develop novel quantitative adverse outcome pathways (qAOPs) for UVB. A combination of laboratory and computational approaches was deployed to achieve the goals. For targeted laboratory tests, Daphnia magna was used as a prototype and exposed to a gradient of artificial UVB. Targeted bioassays were used to quantify the effects of UVB at multiple levels of biological organization. A toxicity pathway network was assembled based on the new experimental evidence and previously published data extracted using a novel computational tool, the NIVA Risk Assessment Database (NIVA RAdb). A network of AOPs was developed, and weight of evidence was assessed based on a combination of the current and existing data. In addition, quantitative key event relationships in the AOPs were developed by fitting the D. magna data to predefined models. A complete workflow for assembly and evaluation of qAOPs has been presented, which may serve as a good example for future de novo qAOP development for chemical and nonchemical stressors.
Collapse
Affiliation(s)
- You Song
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, N-0349 Oslo Norway
- Centre for Environmental Radioactivity (CERAD), Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway
| | - Li Xie
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, N-0349 Oslo Norway
- Centre for Environmental Radioactivity (CERAD), Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway
- Faculty of Environmental Sciences and Natural Resource Management (MINA), Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway
| | - YeonKyeong Lee
- Centre for Environmental Radioactivity (CERAD), Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway
- Faculty of Biosciences, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, N-1432 Ås, Norway
| | - Knut Erik Tollefsen
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, N-0349 Oslo Norway
- Centre for Environmental Radioactivity (CERAD), Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway
- Faculty of Environmental Sciences and Natural Resource Management (MINA), Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway
| |
Collapse
|
7
|
Sha Y, Tesson SVM, Hansson LA. Diverging responses to threats across generations in zooplankton. Ecology 2020; 101:e03145. [PMID: 32740928 PMCID: PMC7685145 DOI: 10.1002/ecy.3145] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 06/08/2020] [Indexed: 11/30/2022]
Abstract
Our understanding on how organisms evolutionarily cope with simultaneously occurring, multiple threats over generations is still elusive. In a long‐term experimental study, we therefore exposed clones of a freshwater cladoceran, Daphnia magna, to threats from predation and ultraviolet radiation (UVR) during three consecutive parthenogenetic generations. We show that Daphnia can adapt to different sets of threats within three generations through modifying morphology, swimming behavior, or life‐history traits. When faced with predator cues, D. magna responded with reduced body size, whereas exposure to UVR induced behavioral tolerance when again exposed to this threat. Such UVR‐tolerant behavior was initially associated with a reduced clutch size, but Daphnia restored the reproductive output gradually through generations. The findings advance our understanding on how those common invertebrates, with a global distribution, are able to persist and rapidly become successful in a changing environment.
Collapse
Affiliation(s)
- Yongcui Sha
- Department of Biology, Aquatic Ecology, Lund University, Lund, SE-22362, Sweden
| | - Sylvie V M Tesson
- Department of Biology, Aquatic Ecology, Lund University, Lund, SE-22362, Sweden
| | - Lars-Anders Hansson
- Department of Biology, Aquatic Ecology, Lund University, Lund, SE-22362, Sweden
| |
Collapse
|
8
|
Tüzün N, Debecker S, Stoks R. Strong species differences in life history do not predict oxidative stress physiology or sensitivity to an environmental oxidant. J Anim Ecol 2020; 89:1711-1721. [PMID: 32271951 DOI: 10.1111/1365-2656.13235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/30/2020] [Indexed: 11/26/2022]
Abstract
Species typically align along a fast-slow life-history continuum, yet it is not clear to what extent oxidative stress physiology can be integrated with this continuum to form a 'pace-of-life syndrome', especially so in invertebrates. This is important, given the assumed role of oxidative stress in mediating life-history trade-offs, and the prediction that species with a faster pace should be more vulnerable to oxidative stress. We tested whether a species' life-history pace, here represented by its growth rate, can predict species-level differentiation in physiology and sensitivity to oxidative stress. Therefore, we exposed four species of Ischnura damselflies that strongly align along a fast-slow life-history continuum to different levels of ultraviolet (UV) radiation. We measured an extended set of physiological traits linked to the pace-of-life: standard metabolic rate, oxidative stress physiology (antioxidant enzymes and oxidative damage) and defence/condition traits (investment in immune function, energy storage and structural defence). Despite strong species differences in growth rate and physiology, growth rate did not predict species-level differentiation in physiology. Hence there was no support for the integration of metabolic rate, oxidative stress physiology or defence/condition traits into a species-level syndrome. Ultraviolet exposure affected nearly all traits: it reduced growth rate and increased metabolic rate, affected all oxidative stress physiology traits and increased the two defence traits (immune function, and melanin content). Nevertheless, the pace-of-life based on growth rate did not predict sensitivity to UV. Instead, the observed pattern of investment in structural UV defence (melanin) might have reduced the need for enzymatic antioxidant defence, this way potentially decoupling the covariation between the life-history pace and oxidative stress physiology. The absence of an integrated axis of life-history and physiological variation indicates no major constraints for the evolution of these traits among the studied damselfly species. Our study highlights that ecological differences between species may decouple covariation between species' life-history pace and their physiology, as well as their sensitivity to environmental stressors.
Collapse
Affiliation(s)
- Nedim Tüzün
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Leuven, Belgium
| | - Sara Debecker
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Leuven, Belgium
| | - Robby Stoks
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Leuven, Belgium
| |
Collapse
|
9
|
Ulbing CKS, Muuse JM, Miner BE. Melanism protects alpine zooplankton from DNA damage caused by ultraviolet radiation. Proc Biol Sci 2019; 286:20192075. [PMID: 31690236 DOI: 10.1098/rspb.2019.2075] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Melanism is widely observed among animals, and is adaptive in various contexts for its thermoregulatory, camouflaging, mate-attraction or photoprotective properties. Many organisms exposed to ultraviolet radiation show increased fitness resulting from melanin pigmentation; this has been assumed to result in part from reduced UV-induced damage to DNA. However, to effectively test the hypothesis that melanin pigmentation reduces UV-induced DNA damage requires quantification of UV-specific DNA damage lesions following UV exposure under controlled conditions using individuals that vary in pigmentation intensity. We accomplished this using alpine genotypes of the freshwater microcrustacean Daphnia melanica, for which we quantified cyclobutane pyrimide dimers in DNA, a damage structure that can only be generated by UV exposure. For genotypes with carapace melanin pigmentation, we found that individuals with greater melanin content sustained lower levels of UV-induced DNA damage. Individuals with more melanin were also more likely to survive exposure to ecologically relevant levels of UV-B radiation. Parallel experiments with conspecific genotypes that lack carapace melanin pigmentation provide additional support for our conclusion that melanism protects individuals from UV-induced DNA damage. Finally, within-genotype comparisons with asexually produced clonal siblings demonstrate that melanin content influences DNA damage even among genetically identical individuals raised in the same environment.
Collapse
Affiliation(s)
- Cynthia K S Ulbing
- Department of Biology, Ithaca College, 953 Danby Rd., Ithaca, NY 14850, USA
| | - Julia M Muuse
- Department of Biology, Ithaca College, 953 Danby Rd., Ithaca, NY 14850, USA
| | - Brooks E Miner
- Department of Biology, Ithaca College, 953 Danby Rd., Ithaca, NY 14850, USA
| |
Collapse
|
10
|
Wang SP, Althoff DM. Phenotypic plasticity facilitates initial colonization of a novel environment. Evolution 2019; 73:303-316. [DOI: 10.1111/evo.13676] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 11/30/2018] [Accepted: 12/21/2018] [Indexed: 01/07/2023]
Affiliation(s)
- Sheng Pei Wang
- Department of Biology Syracuse University Syracuse NY 13244
| | - David M. Althoff
- Department of Biology Syracuse University Syracuse NY 13244
- Archbold Biological Station Venus FL 33960
| |
Collapse
|
11
|
Russo D, Siciliano A, Guida M, Galdiero E, Amoresano A, Andreozzi R, Reis NM, Li Puma G, Marotta R. Photodegradation and ecotoxicology of acyclovir in water under UV 254 and UV 254/H 2O 2 processes. WATER RESEARCH 2017; 122:591-602. [PMID: 28628881 DOI: 10.1016/j.watres.2017.06.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 06/05/2017] [Accepted: 06/07/2017] [Indexed: 05/25/2023]
Abstract
The photochemical and ecotoxicological fate of acyclovir (ACY) through UV254 direct photolysis and in the presence of hydroxyl radicals (UV254/H2O2 process) were investigated in a microcapillary film (MCF) array photoreactor, which provided ultrarapid and accurate photochemical reaction kinetics. The UVC phototransformation of ACY was found to be unaffected by pH in the range from 4.5 to 8.0 and resembled an apparent autocatalytic reaction. The proposed mechanism included the formation of a photochemical intermediate (ϕACY = (1.62 ± 0.07)·10-3 mol ein-1) that further reacted with ACY to form by-products (k' = (5.64 ± 0.03)·10-3 M-1 s-1). The photolysis of ACY in the presence of hydrogen peroxide accelerated the removal of ACY as a result of formation of hydroxyl radicals. The kinetic constant for the reaction of OH radicals with ACY (kOH/ACY) determined with the kinetic modeling method was (1.23 ± 0.07)·109 M-1 s-1 and with the competition kinetics method was (2.30 ± 0.11)·109 M-1 s-1 with competition kinetics. The acute and chronic effects of the treated aqueous mixtures on different living organisms (Vibrio fischeri, Raphidocelis subcapitata, D. magna) revealed significantly lower toxicity for the samples treated with UV254/H2O2 in comparison to those collected during UV254 treatment. This result suggests that the addition of moderate quantity of hydrogen peroxide (30-150 mg L-1) might be a useful strategy to reduce the ecotoxicity of UV254 based sanitary engineered systems for water reclamation.
Collapse
Affiliation(s)
- Danilo Russo
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università di Napoli Federico II, p.le V. Tecchio 80, Napoli, Italy
| | - Antonietta Siciliano
- Dipartimento di Biologia, Università di Napoli Federico II, Complesso Universitario Monte Sant'Angelo, via Cinthia 4, Napoli, Italy
| | - Marco Guida
- Dipartimento di Biologia, Università di Napoli Federico II, Complesso Universitario Monte Sant'Angelo, via Cinthia 4, Napoli, Italy
| | - Emilia Galdiero
- Dipartimento di Biologia, Università di Napoli Federico II, Complesso Universitario Monte Sant'Angelo, via Cinthia 4, Napoli, Italy
| | - Angela Amoresano
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte Sant'Angelo, via Cinthia 4, Napoli, Italy
| | - Roberto Andreozzi
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università di Napoli Federico II, p.le V. Tecchio 80, Napoli, Italy
| | - Nuno M Reis
- Department of Chemical Engineering, University of Bath, Claverton Down, Bath, BA2 7AY, UK; Environmental Nanocatalysis & Photoreaction Engineering Department of Chemical Engineering, Loughborough University, Loughborough, LE11 3TU, UK
| | - Gianluca Li Puma
- Environmental Nanocatalysis & Photoreaction Engineering Department of Chemical Engineering, Loughborough University, Loughborough, LE11 3TU, UK.
| | - Raffaele Marotta
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università di Napoli Federico II, p.le V. Tecchio 80, Napoli, Italy.
| |
Collapse
|
12
|
Coggins BL, Collins JW, Holbrook KJ, Yampolsky LY. Antioxidant capacity, lipid peroxidation, and lipid composition changes during long-term and short-term thermal acclimation in Daphnia. J Comp Physiol B 2017; 187:1091-1106. [DOI: 10.1007/s00360-017-1090-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 03/02/2017] [Accepted: 03/15/2017] [Indexed: 11/28/2022]
|
13
|
Pedrosa J, Gravato C, Campos D, Cardoso P, Figueira E, Nowak C, Soares AMVM, Barata C, Pestana JLT. Investigating heritability of cadmium tolerance in Chironomus riparius natural populations: A physiological approach. CHEMOSPHERE 2017; 170:83-94. [PMID: 28006760 DOI: 10.1016/j.chemosphere.2016.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 11/06/2016] [Accepted: 12/03/2016] [Indexed: 06/06/2023]
Abstract
Physiological responses allow populations to cope with metal contamination and can be involved in the evolution of tolerance under historical metal contamination scenarios. Here we investigate physiological aspects that might be underlying the heritable high tolerance to cadmium (Cd) in two Chironomus riparius populations collected from historically metal contaminated sites in comparison to two populations from reference sites. To evaluate differences in the physiological response to short-term Cd exposure, protein expression profiles, metallothioneins [MTs] and several antioxidant defences such as total glutathione (GSHt), catalase (CAT) and glutathione-S-transferases [GSTs], were measured in all four populations reared for at least 8 generations under laboratory clean conditions. Cd-induced oxidative damage in lipids and energy related parameters (energy consumption and energy reserves) were also assessed. Results showed two major gradients of protein profiles according to Cd concentration and population tolerance. Furthermore, Cd-tolerant populations showed higher baseline levels of MTs and GSHt while Cd-sensitive populations, collected from reference sites, showed significant induction of GSHt levels with Cd exposure that were nonetheless insufficient to avoid increased oxidative damage to lipids. Cd exposure had no clear effects on the antioxidant enzymes or energy reserves but triggered a general increase in energy consumption. Finally, energy consumption was higher in Cd-tolerant populations across experimental conditions. Altogether, results demonstrate that inherited Cd-tolerance in these midge populations is related, at least in part, with different constitutive levels and plasticity of different defence mechanisms confirming the validity of using multiple physiological traits when studying evolution of tolerance.
Collapse
Affiliation(s)
- João Pedrosa
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal; Conservation Genetics Group, Senckenberg Research Institute and Natural History Museum of Frankfurt, Clamecystrasse 12, 63571 Gelnhausen, Germany.
| | - Carlos Gravato
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Diana Campos
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Paulo Cardoso
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Etelvina Figueira
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Carsten Nowak
- Conservation Genetics Group, Senckenberg Research Institute and Natural History Museum of Frankfurt, Clamecystrasse 12, 63571 Gelnhausen, Germany
| | - Amadeu M V M Soares
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Carlos Barata
- Department of Environmental Chemistry (IDAEA-CSIC), Jordi Girona, 18-26, 08034 Barcelona, Spain
| | - João L T Pestana
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|