1
|
Freed GS, Martinez IG, Lev A, Anthony Cuadrado A, Pischedda A. Genetic Variation in Male Mate Choice for Large Females in Drosophila melanogaster. Ecol Evol 2025; 15:e70794. [PMID: 39790727 PMCID: PMC11717482 DOI: 10.1002/ece3.70794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/03/2024] [Accepted: 12/16/2024] [Indexed: 01/12/2025] Open
Abstract
Males in many species show courtship and mating preferences for certain females over others when given the choice. One of the most common targets of male mate choice in insects is female body size, with males preferring to court and mate with larger, higher-fecundity females and investing more resources in matings with those females. Although this preference is well-documented at the species level, less is known about how this preference varies within species and whether there is standing genetic variation for male mate choice within populations. We used hemiclonal analysis in the fruit fly, Drosophila melanogaster, to test for heritable genetic variation in pre- and postcopulatory components of male mate choice for large females. We found additive genetic variation for both forms of male choice: Males from different hemiclone lines varied in the strength of their courtship preferences for large females and the degree to which they extended matings with large females. Although males from hemiclone lines with stronger courtship preferences for large females were more likely to mate with those females, there was no genetic correlation between pre- and postcopulatory components of male mate choice, suggesting that they are under independent genetic control. Genetic variation in male mate choice may be widespread, potentially impacting the fitness of both sexes and the adaptive evolution of populations.
Collapse
Affiliation(s)
- Grace S. Freed
- Department of Biology, Barnard CollegeColumbia UniversityNew YorkNew YorkUSA
| | | | - Avigayil Lev
- Department of Biology, Barnard CollegeColumbia UniversityNew YorkNew YorkUSA
| | | | - Alison Pischedda
- Department of Biology, Barnard CollegeColumbia UniversityNew YorkNew YorkUSA
| |
Collapse
|
2
|
Matzke M, Rossi A, Tuni C. Pre- and post-copulatory sexual selection increase offspring quality but impose survival costs to female field crickets. J Evol Biol 2023; 36:296-308. [PMID: 36484616 DOI: 10.1111/jeb.14132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/31/2022] [Accepted: 11/09/2022] [Indexed: 12/14/2022]
Abstract
Whether sexual selection increases or decreases fitness is under ongoing debate. Sexual selection operates before and after mating. Yet, the effects of each episode of selection on individual reproductive success remain largely unexplored. We ask how disentangled pre- and post-copulatory sexual selection contribute to fitness of field crickets Gryllus bimaculatus. Treatments allowed exclusively for (i) pre-copulatory selection, with males fighting and courting one female, and the resulting pair breeding monogamously, (ii) post-copulatory selection, with females mating consecutively to multiple males and (iii) relaxed selection, with enforced pair monogamy. While standardizing the number of matings, we estimated a number of fitness traits across treatments and show that females experiencing sexual selection were more likely to reproduce, their offspring hatched sooner, developed faster and had higher body mass at adulthood, but females suffered survival costs. Interestingly, we found no differences in fitness of females or their offspring from pre- and post-copulatory sexual selection treatments. Our findings highlight the potential for sexual selection in enhancing indirect female fitness while concurrently imposing direct survival costs. By potentially outweighing these costs, increased offspring quality could lead to beneficial population-level consequences of sexual selection.
Collapse
Affiliation(s)
| | - Aurora Rossi
- Ludwig Maximilian University of Munich, Munich, Germany
| | - Cristina Tuni
- Ludwig Maximilian University of Munich, Munich, Germany
| |
Collapse
|
3
|
Dobler R, Charette M, Kaplan K, Turnell BR, Reinhardt K. Divergent natural selection alters male sperm competition success in Drosophila melanogaster. Ecol Evol 2022; 12:e8567. [PMID: 35222953 PMCID: PMC8848461 DOI: 10.1002/ece3.8567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/18/2021] [Accepted: 12/30/2021] [Indexed: 11/20/2022] Open
Abstract
Sexually selected traits may also be subject to non-sexual selection. If optimal trait values depend on environmental conditions, then "narrow sense" (i.e., non-sexual) natural selection can lead to local adaptation, with fitness in a certain environment being highest among individuals selected under that environment. Such adaptation can, in turn, drive ecological speciation via sexual selection. To date, most research on the effect of narrow-sense natural selection on sexually selected traits has focused on precopulatory measures like mating success. However, postcopulatory traits, such as sperm function, can also be under non-sexual selection, and have the potential to contribute to population divergence between different environments. Here, we investigate the effects of narrow-sense natural selection on male postcopulatory success in Drosophila melanogaster. We chose two extreme environments, low oxygen (10%, hypoxic) or high CO2 (5%, hypercapnic) to detect small effects. We measured the sperm defensive (P1) and offensive (P2) capabilities of selected and control males in the corresponding selection environment and under control conditions. Overall, selection under hypoxia decreased both P1 and P2, while selection under hypercapnia had no effect. Surprisingly, P1 for both selected and control males was higher under both ambient hypoxia and ambient hypercapnia, compared to control conditions, while P2 was lower under hypoxia. We found limited evidence for local adaptation: the positive environmental effect of hypoxia on P1 was greater in hypoxia-selected males than in controls. We discuss the implications of our findings for the evolution of postcopulatory traits in response to non-sexual and sexual selection.
Collapse
Affiliation(s)
- Ralph Dobler
- Animal Evolutionary EcologyInstitute of Evolution and EcologyEberhard Karls University of TubingenTübingenGermany
- Applied ZoologyInstitute of ZoologyTechnische Universität DresdenDresdenGermany
| | - Marc Charette
- Department of BiologyUniversity of OttawaOttawaOntarioCanada
| | - Katrin Kaplan
- Animal Evolutionary EcologyInstitute of Evolution and EcologyEberhard Karls University of TubingenTübingenGermany
| | - Biz R. Turnell
- Applied ZoologyInstitute of ZoologyTechnische Universität DresdenDresdenGermany
| | - Klaus Reinhardt
- Animal Evolutionary EcologyInstitute of Evolution and EcologyEberhard Karls University of TubingenTübingenGermany
- Applied ZoologyInstitute of ZoologyTechnische Universität DresdenDresdenGermany
| |
Collapse
|
4
|
Ahmed KA, Yeap HL, Pandey G, Lee SF, Taylor PW, Oakeshott JG. Population differences and domestication effects on mating and remating frequencies in Queensland fruit fly. Sci Rep 2022; 12:153. [PMID: 34997097 PMCID: PMC8741809 DOI: 10.1038/s41598-021-04198-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 12/08/2021] [Indexed: 11/30/2022] Open
Abstract
Females of many insect species are unreceptive to remating for a period following their first mating. This inhibitory effect may be mediated by either the female or her first mate, or both, and often reflects the complex interplay of reproductive strategies between the sexes. Natural variation in remating inhibition and how this phenotype responds to captive breeding are largely unexplored in insects, including many pest species. We investigated genetic variation in remating propensity in the Queensland fruit fly, Bactrocera tryoni, using strains differing in source locality and degree of domestication. We found up to threefold inherited variation between strains from different localities in the level of intra-strain remating inhibition. The level of inhibition also declined significantly during domestication, which implied the existence of genetic variation for this trait within the starting populations as well. Inter-strain mating and remating trials showed that the strain differences were mainly due to the genotypes of the female and, to a lesser extent, the second male, with little effect of the initial male genotype. Implications for our understanding of fruit fly reproductive biology and population genetics and the design of Sterile Insect Technique pest management programs are discussed.
Collapse
Affiliation(s)
- Khandaker Asif Ahmed
- Applied BioSciences, Macquarie University, Macquarie Park, NSW, 2109, Australia. .,CSIRO Land and Water, Black Mountain, ACT, 2601, Australia.
| | - Heng Lin Yeap
- CSIRO Land and Water, Black Mountain, ACT, 2601, Australia
| | - Gunjan Pandey
- CSIRO Land and Water, Black Mountain, ACT, 2601, Australia
| | - Siu Fai Lee
- Applied BioSciences, Macquarie University, Macquarie Park, NSW, 2109, Australia. .,CSIRO Land and Water, Black Mountain, ACT, 2601, Australia.
| | - Phillip W Taylor
- Applied BioSciences, Macquarie University, Macquarie Park, NSW, 2109, Australia
| | - John G Oakeshott
- Applied BioSciences, Macquarie University, Macquarie Park, NSW, 2109, Australia.,CSIRO Land and Water, Black Mountain, ACT, 2601, Australia
| |
Collapse
|
5
|
Measuring Pre- and Post-Copulatory Sexual Selection and Their Interaction in Socially Monogamous Species with Extra-Pair Paternity. Cells 2021; 10:cells10030620. [PMID: 33799610 PMCID: PMC7999480 DOI: 10.3390/cells10030620] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/03/2021] [Accepted: 03/09/2021] [Indexed: 01/08/2023] Open
Abstract
When females copulate with multiple males, pre- and post-copulatory sexual selection may interact synergistically or in opposition. Studying this interaction in wild populations is complex and potentially biased, because copulation and fertilization success are often inferred from offspring parentage rather than being directly measured. Here, I simulated 15 species of socially monogamous birds with varying levels of extra-pair paternity, where I could independently cause a male secondary sexual trait to improve copulation success, and a sperm trait to improve fertilization success. By varying the degree of correlation between the male and sperm traits, I show that several common statistical approaches, including univariate selection gradients and paired t-tests comparing extra-pair males to the within-pair males they cuckolded, can give highly biased results for sperm traits. These tests should therefore be avoided for sperm traits in socially monogamous species with extra-pair paternity, unless the sperm trait is known to be uncorrelated with male trait(s) impacting copulation success. In contrast, multivariate selection analysis and a regression of the proportion of extra-pair brood(s) sired on the sperm trait of the extra-pair male (including only broods where the male sired ≥1 extra-pair offspring) were unbiased, and appear likely to be unbiased under a broad range of conditions for this mating system. In addition, I investigated whether the occurrence of pre-copulatory selection impacted the strength of post-copulatory selection, and vice versa. I found no evidence of an interaction under the conditions simulated, where the male trait impacted only copulation success and the sperm trait impacted only fertilization success. Instead, direct selection on each trait was independent of whether the other trait was under selection. Although pre- and post-copulatory selection strength was independent, selection on the two traits was positively correlated across species because selection on both traits increased with the frequency of extra-pair copulations in these socially monogamous species.
Collapse
|
6
|
Zajitschek S, Zajitschek F, Josway S, Al Shabeeb R, Weiner H, Manier MK. Costs and benefits of giant sperm and sperm storage organs in
Drosophila melanogaster. J Evol Biol 2019; 32:1300-1309. [DOI: 10.1111/jeb.13529] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/06/2019] [Accepted: 08/22/2019] [Indexed: 11/28/2022]
Affiliation(s)
- Susanne Zajitschek
- Department of Biological Sciences George Washington University Washington DC USA
- School of Biological, Earth and Environmental Sciences University of New South Wales Sydney NSW Australia
| | - Felix Zajitschek
- Department of Biological Sciences George Washington University Washington DC USA
- School of Biological, Earth and Environmental Sciences University of New South Wales Sydney NSW Australia
| | - Sarah Josway
- Department of Biological Sciences George Washington University Washington DC USA
| | - Reem Al Shabeeb
- Department of Biological Sciences George Washington University Washington DC USA
| | - Halli Weiner
- Department of Biological Sciences George Washington University Washington DC USA
| | - Mollie K. Manier
- Department of Biological Sciences George Washington University Washington DC USA
| |
Collapse
|
7
|
Duffy E, Archer CR, Sharma MD, Prus M, Joag RA, Radwan J, Wedell N, Hosken DJ. Wolbachia infection can bias estimates of intralocus sexual conflict. Ecol Evol 2019; 9:328-338. [PMID: 30680117 PMCID: PMC6342094 DOI: 10.1002/ece3.4744] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/30/2018] [Accepted: 11/01/2018] [Indexed: 12/19/2022] Open
Abstract
Males and females share most of their genome and develop many of the same traits. However, each sex frequently has different optimal values for these shared traits, creating intralocus sexual conflict. This conflict has been observed in wild and laboratory populations of insects and affects important evolutionary processes such as sexual selection, the maintenance of genetic variation, and possibly even speciation. Given the broad impacts of intralocus conflict, accurately detecting and measuring it is important. A common way to detect intralocus sexual conflict is to calculate the intersexual genetic correlation for fitness, with negative values suggesting conflict. Here, we highlight a potential confounder of this measure-cytoplasmic incompatibility caused by the intracellular parasite Wolbachia. Infection with Wolbachia can generate negative intersexual genetic correlations for fitness in insects, suggestive of intralocus sexual conflict. This is because cytoplasmic incompatibility reduces the fitness of uninfected females mated to infected males, while uninfected males will not suffer reductions in fitness if they mate with infected females and may even be fitter than infected males. This can lead to strong negative intersexual genetic correlations for fitness, mimicking intralocus conflict. We illustrate this issue using simulations and then present Drosophila simulans data that show how reproductive incompatibilities caused by Wolbachia infection can generate signals of intralocus sexual conflict. Given that Wolbachia infection in insect populations is pervasive, but populations usually contain both infected and uninfected individuals providing scope for cytoplasmic incompatibility, this is an important consideration for sexual conflict research but one which, to date, has been largely underappreciated.
Collapse
Affiliation(s)
- Eoin Duffy
- Institute of Environmental SciencesJagiellonian UniversityKrakowPoland
- Science and Engineering Research Support Facility (SERSF)University of ExeterPenrynUK
| | - C. Ruth Archer
- Science and Engineering Research Support Facility (SERSF)University of ExeterPenrynUK
| | - Manmohan Dev Sharma
- Science and Engineering Research Support Facility (SERSF)University of ExeterPenrynUK
| | - Monika Prus
- Institute of Environmental SciencesJagiellonian UniversityKrakowPoland
| | - Richa A. Joag
- Institute of Environmental SciencesJagiellonian UniversityKrakowPoland
- Science and Engineering Research Support Facility (SERSF)University of ExeterPenrynUK
| | - Jacek Radwan
- Institute of Environmental SciencesJagiellonian UniversityKrakowPoland
- Faculty of BiologyAdam Mickiewicz UniversityPoznańPoland
| | - Nina Wedell
- Science and Engineering Research Support Facility (SERSF)University of ExeterPenrynUK
| | - David J. Hosken
- Science and Engineering Research Support Facility (SERSF)University of ExeterPenrynUK
| |
Collapse
|
8
|
Ålund M, Persson Schmiterlöw S, McFarlane SE, Qvarnström A. Optimal sperm length for high siring success depends on forehead patch size in collared flycatchers. Behav Ecol 2018. [DOI: 10.1093/beheco/ary115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Murielle Ålund
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Norbyvägen, Uppsala, Sweden
| | - Siri Persson Schmiterlöw
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Norbyvägen, Uppsala, Sweden
| | - S Eryn McFarlane
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Norbyvägen, Uppsala, Sweden
| | - Anna Qvarnström
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Norbyvägen, Uppsala, Sweden
| |
Collapse
|
9
|
Vellnow N, Marie-Orleach L, Zadesenets KS, Schärer L. Bigger testes increase paternity in a simultaneous hermaphrodite, independently of the sperm competition level. J Evol Biol 2017; 31:180-196. [DOI: 10.1111/jeb.13212] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 10/31/2017] [Accepted: 11/14/2017] [Indexed: 12/12/2022]
Affiliation(s)
- N. Vellnow
- Zoological Institute, Evolutionary Biology; University of Basel; Basel Switzerland
| | | | | | - L. Schärer
- Zoological Institute, Evolutionary Biology; University of Basel; Basel Switzerland
| |
Collapse
|
10
|
McDiarmid CS, Friesen CR, Ballen C, Olsson M. Sexual coloration and sperm performance in the Australian painted dragon lizard,
Ctenophorus pictus. J Evol Biol 2017; 30:1303-1312. [DOI: 10.1111/jeb.13092] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 04/12/2017] [Indexed: 12/16/2022]
Affiliation(s)
- C. S. McDiarmid
- School of Life and Environmental Sciences University of Sydney Sydney NSW Australia
| | - C. R. Friesen
- School of Life and Environmental Sciences University of Sydney Sydney NSW Australia
| | - C. Ballen
- College of Biological Sciences University of Minnesota Minneapolis MN USA
| | - M. Olsson
- Department of Biological and Environmental Sciences Göteborg University Göteborg Sweden
| |
Collapse
|
11
|
Evans JP, Garcia-Gonzalez F. The total opportunity for sexual selection and the integration of pre- and post-mating episodes of sexual selection in a complex world. J Evol Biol 2016; 29:2338-2361. [PMID: 27520979 DOI: 10.1111/jeb.12960] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 08/05/2016] [Accepted: 08/05/2016] [Indexed: 12/30/2022]
Abstract
It is well known that sexual selection can target reproductive traits during successive pre- and post-mating episodes of selection. A key focus of recent studies has been to understand and quantify how these episodes of sexual selection interact to determine overall variance in reproductive success. In this article, we review empirical developments in this field but also highlight the considerable variability in patterns of pre- and post-mating sexual selection, attributable to variation in patterns of resource acquisition and allocation, ecological and social factors, genotype-by-environment interaction and possible methodological factors that might obscure such patterns. Our aim is to highlight how (co)variances in pre- and post-mating sexually selected traits can be sensitive to changes in a range of ecological and environmental variables. We argue that failure to capture this variation when quantifying the opportunity for sexual selection may lead to erroneous conclusions about the strength, direction or form of sexual selection operating on pre- and post-mating traits. Overall, we advocate for approaches that combine measures of pre- and post-mating selection across contrasting environmental or ecological gradients to better understand the dynamics of sexual selection in polyandrous species. We also discuss some directions for future research in this area.
Collapse
Affiliation(s)
- J P Evans
- Centre for Evolutionary Biology, School of Animal Biology (M092), University of Western Australia, Crawley, WA, Australia
| | - F Garcia-Gonzalez
- Centre for Evolutionary Biology, School of Animal Biology (M092), University of Western Australia, Crawley, WA, Australia.,Doñana Biological Station, Spanish Research Council CSIC, Sevilla, Spain
| |
Collapse
|