1
|
Omar DC, Sharon VC, Alejandra MB, M Muñoz-Campos T. How maternal age and environmental cues influence embryonic developmental pathways and diapause dynamics in a North American annual killifish. Dev Dyn 2022; 251:1848-1861. [PMID: 35766167 DOI: 10.1002/dvdy.515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/07/2022] [Accepted: 06/26/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Temporary pools are variable environments with seasonal drought/flood phases. Annual killifish have adapted to life in temporary pools by producing embryos that undergo diapause to traverse the dry phase. To fill existing knowledge gaps about embryo diapause regulation and evolution in annual killifishes, we test the effect of maternal age, incubation temperature, and incubation medium on diapause induction and length in Millerichthys robustus, the only North American fish species that has evolved an annual life history. RESULTS All embryos at extreme temperatures follow a defined developmental pathway: skipping diapause at 30°C, and entering diapause at 18°C, both regardless of maternal age, and incubation medium. However, maternal age, and incubation medium influenced whether diapause is entered, and time arrested in diapause for embryos incubated at 25°C. At 25°C, five-week-old, and 52-week-old females produced more embryos that entered diapause than 26-week-old females. Also, embryos incubated in aqueous medium skipped diapause more frequently at this intermediate temperature. CONCLUSIONS Millerichthys developmental dynamics associated with maternal age under intermediate range of temperatures are likely adapted to the particular patterns of flood/drought in North American temporary pools. Millerichthys also exhibits developmental patterns largely comparable with other annual fishes, probably due to common seasonal patterns in temporary pools.
Collapse
Affiliation(s)
| | - Valdez-Carbajal Sharon
- Licenciatura en Biología, Universidad Autónoma Metropolitana, unidad Xochimilco, CDMX, Mexico
| | - Martínez-Blancas Alejandra
- Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, CDMX, Mexico
| | - Tessy M Muñoz-Campos
- Licenciatura en Biología, Universidad Autónoma Metropolitana, unidad Xochimilco, CDMX, Mexico
| |
Collapse
|
2
|
Rowiński PK, Sowersby W, Näslund J, Eckerström-Liedholm S, Gotthard K, Rogell B. Variation in developmental rates is not linked to environmental unpredictability in annual killifishes. Ecol Evol 2021; 11:8027-8037. [PMID: 34188869 PMCID: PMC8216982 DOI: 10.1002/ece3.7632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 12/28/2022] Open
Abstract
Comparative evidence suggests that adaptive plasticity may evolve as a response to predictable environmental variation. However, less attention has been placed on unpredictable environmental variation, which is considered to affect evolutionary trajectories by increasing phenotypic variation (or bet hedging). Here, we examine the occurrence of bet hedging in egg developmental rates in seven species of annual killifish that originate from a gradient of variation in precipitation rates, under three treatment incubation temperatures (21, 23, and 25°C). In the wild, these species survive regular and seasonal habitat desiccation, as dormant eggs buried in the soil. At the onset of the rainy season, embryos must be sufficiently developed in order to hatch and complete their life cycle. We found substantial differences among species in both the mean and variation of egg development rates, as well as species-specific plastic responses to incubation temperature. Yet, there was no clear relationship between variation in egg development time and variation in precipitation rate (environmental predictability). The exact cause of these differences therefore remains enigmatic, possibly depending on differences in other natural environmental conditions in addition to precipitation predictability. Hence, if species-specific variances are adaptive, the relationship between development and variation in precipitation is complex and does not diverge in accordance with simple linear relationships.
Collapse
Affiliation(s)
| | - Will Sowersby
- Department of Zoology Stockholm University Stockholm Sweden
- Department of Biology Faculty of Science Osaka City University Osaka Japan
| | - Joacim Näslund
- Department of Zoology Stockholm University Stockholm Sweden
- Department of Aquatic Resources Institute of Freshwater Research Swedish University of Agricultural Sciences Drottningholm Sweden
| | | | - Karl Gotthard
- Department of Zoology Stockholm University Stockholm Sweden
| | - Björn Rogell
- Department of Zoology Stockholm University Stockholm Sweden
- Department of Aquatic Resources Institute of Freshwater Research Swedish University of Agricultural Sciences Drottningholm Sweden
| |
Collapse
|
3
|
Polačik M, Vrtílek M, Reichard M, Žák J, Blažek R, Podrabsky J. Embryo ecology: Developmental synchrony and asynchrony in the embryonic development of wild annual fish populations. Ecol Evol 2021; 11:4945-4956. [PMID: 33976861 PMCID: PMC8093744 DOI: 10.1002/ece3.7402] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/05/2021] [Accepted: 02/10/2021] [Indexed: 11/19/2022] Open
Abstract
Embryo-environment interactions are of paramount importance during the development of all organisms, and impacts during this period can echo far into later stages of ontogeny. African annual fish of the genus Nothobranchius live in temporary pools and their eggs survive the dry season in the dry bottom substrate of the pools by entering a facultative developmental arrest termed diapause. Uniquely among animals, the embryos (encased in eggs) may enter diapause at three different developmental stages. Such a system allows for the potential to employ different regulation mechanisms for each diapause. We sampled multiple Nothobranchius embryo banks across the progressing season, species, and populations. We present important baseline field data and examine the role of environmental regulation in the embryonic development of this unique system. We describe the course of embryo development in the wild and find it to be very different from the typical development under laboratory conditions. Development across the embryo banks was synchronized within and across the sampled populations with all embryos entering diapause I during the rainy season and diapause II during the dry season. Asynchrony occurred at transient phases of the habitat, during the process of habitat desiccation, and at the end of the dry season. Our findings reveal the significance of environmental conditions in the serial character of the annual fish diapauses.
Collapse
Affiliation(s)
- Matej Polačik
- Institute of Vertebrate BiologyThe Czech Academy of SciencesBrnoCzech Republic
| | - Milan Vrtílek
- Institute of Vertebrate BiologyThe Czech Academy of SciencesBrnoCzech Republic
| | - Martin Reichard
- Institute of Vertebrate BiologyThe Czech Academy of SciencesBrnoCzech Republic
| | - Jakub Žák
- Institute of Vertebrate BiologyThe Czech Academy of SciencesBrnoCzech Republic
- Department of ZoologyCharles UniversityPragueCzech Republic
| | - Radim Blažek
- Institute of Vertebrate BiologyThe Czech Academy of SciencesBrnoCzech Republic
| | - Jason Podrabsky
- Center for Life in Extreme EnvironmentsPortland State UniversityPortlandORUSA
| |
Collapse
|
4
|
Terzibasi Tozzini E, Cellerino A. Nothobranchius annual killifishes. EvoDevo 2020; 11:25. [PMID: 33323125 PMCID: PMC7739477 DOI: 10.1186/s13227-020-00170-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 11/23/2020] [Indexed: 12/14/2022] Open
Abstract
Annual fishes of the genus Nothobranchius inhabit ephemeral habitats in Eastern and Southeastern Africa. Their life cycle is characterized by very rapid maturation, a posthatch lifespan of a few weeks to months and embryonic diapause to survive the dry season. The species N. furzeri holds the record of the fastest-maturing vertebrate and of the vertebrate with the shortest captive lifespan and is emerging as model organism in biomedical research, evolutionary biology, and developmental biology. Extensive characterization of age-related phenotypes in the laboratory and of ecology, distribution, and demography in the wild are available. Species/populations from habitats differing in precipitation intensity show parallel evolution of lifespan and age-related traits that conform to the classical theories on aging. Genome sequencing and the establishment of CRISPR/Cas9 techniques made this species particularly attractive to investigate the effects genetic and non-genetic intervention on lifespan and aging-related phenotypes. At the same time, annual fishes are a very interesting subject for comparative approaches, including genomics, transcriptomics, and proteomics. The N. furzeri community is highly diverse and rapidly expanding and organizes a biannual meeting.
Collapse
Affiliation(s)
| | - Alessandro Cellerino
- Scuola Normale Superiore, Pisa, Italy. .,Leibniz Institute on Aging-Fritz Lipmann Institute, Jena, Germany.
| |
Collapse
|
5
|
Dolfi L, Ripa R, Antebi A, Valenzano DR, Cellerino A. Cell cycle dynamics during diapause entry and exit in an annual killifish revealed by FUCCI technology. EvoDevo 2019; 10:29. [PMID: 31728179 PMCID: PMC6842169 DOI: 10.1186/s13227-019-0142-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 10/17/2019] [Indexed: 12/31/2022] Open
Abstract
Background Annual killifishes are adapted to surviving and reproducing over alternating dry and wet seasons. During the dry season, all adults die and desiccation-resistant embryos remain encased in dry mud for months or years in a state of diapause where their development is halted in anticipation of the months that have to elapse before their habitats are flooded again. Embryonic development of annual killifishes deviates from canonical teleost development. Epiblast cells disperse during epiboly, and a “dispersed phase” precedes gastrulation. In addition, annual fish have the ability to enter diapause and block embryonic development at the dispersed phase (diapause I), mid-somitogenesis (diapause II) and the final phase of development (diapause III). Developmental transitions associated with diapause entry and exit can be linked with cell cycle events. Here we set to image this transition in living embryos. Results To visibly explore cell cycle dynamics during killifish development in depth, we created a stable transgenic line in Nothobranchius furzeri that expresses two fluorescent reporters, one for the G1 phase and one for the S/G2 phases of the cell cycle, respectively (Fluorescent Ubiquitination-based Cell Cycle Indicator, FUCCI). Using this tool, we observed that, during epiboly, epiblast cells progressively become quiescent and exit the cell cycle. All embryos transit through a phase where dispersed cells migrate, without showing any mitotic activity, possibly blocked in the G1 phase (diapause I). Thereafter, exit from diapause I is synchronous and cells enter directly into the S phase without transiting through G1. The developmental trajectories of embryos entering diapause and of those that continue to develop are different. In particular, embryos entering diapause have reduced growth along the medio-lateral axis. Finally, exit from diapause II is synchronous for all cells and is characterized by a burst of mitotic activity and growth along the medio-lateral axis such that, by the end of this phase, the morphology of the embryos is identical to that of direct-developing embryos. Conclusions Our study reveals surprising levels of coordination of cellular dynamics during diapause and provides a reference framework for further developmental analyses of this remarkable developmental quiescent state.
Collapse
Affiliation(s)
- Luca Dolfi
- 1Max Planck Institute for the Biology of Ageing, Cologne, Germany
| | - Roberto Ripa
- 2Bio@SNS, Scuola Normale Superiore, Pisa, Italy.,4Present Address: Max Planck Institute for the Biology of Ageing, Cologne, Germany
| | - Adam Antebi
- 1Max Planck Institute for the Biology of Ageing, Cologne, Germany
| | | | - Alessandro Cellerino
- 2Bio@SNS, Scuola Normale Superiore, Pisa, Italy.,3Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| |
Collapse
|
6
|
Reichard M, Polačik M. Nothobranchius furzeri, an 'instant' fish from an ephemeral habitat. eLife 2019; 8:41548. [PMID: 30616713 PMCID: PMC6324871 DOI: 10.7554/elife.41548] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 12/11/2018] [Indexed: 12/12/2022] Open
Abstract
The turquoise killifish, Nothobranchius furzeri, is a promising vertebrate model in ageing research and an emerging model organism in genomics, regenerative medicine, developmental biology and ecotoxicology. Its lifestyle is adapted to the ephemeral nature of shallow pools on the African savannah. Its rapid and short active life commences when rains fill the pool: fish hatch, grow rapidly and mature in as few as two weeks, and then reproduce daily until the pool dries out. Its embryos then become inactive, encased in the dry sediment and protected from the harsh environment until the rains return. This invertebrate-like life cycle (short active phase and long developmental arrest) combined with a vertebrate body plan provide the ideal attributes for a laboratory animal.
Collapse
Affiliation(s)
- Martin Reichard
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Matej Polačik
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| |
Collapse
|
7
|
Van Dooren TJM, Varela‐Lasheras I. Embryonal life histories: Desiccation plasticity and diapause in the Argentinean pearlfish Austrolebias bellottii. Ecol Evol 2018; 8:11246-11260. [PMID: 30519441 PMCID: PMC6262906 DOI: 10.1002/ece3.4599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/11/2018] [Accepted: 09/13/2018] [Indexed: 11/07/2022] Open
Abstract
Embryos of annual killifish diapause in soil egg banks while ponds are dry. Their rates of development and survival in different developmental stages determine the numbers and stages of embryos at rewetting. In the Argentinean pearlfish Austrolebias bellottii, we investigated plasticity for desiccation in such embryonal life history components across phases of mild desiccation and rewetting and also effects of life history on hatching. In comparison with nonannuals, our data suggest that incidences of diapause have become relatively independent of the occurrence of desiccation, as if they have become genetically assimilated. We found limited survival effects of desiccation, limited developmental delays, and an acceleration of development into the prehatching stage. This response can be adaptive when desiccation informs that an opportunity to hatch approaches. Embryos arrest development in the prehatching stage (diapause DIII) or in the dispersed-cell phase (diapause DI). Parental pair variation in rates of development and survival in the earliest developmental stages affects the fraction of embryos that are in DI at rewetting and the number surviving. Given such effects on life history fitness components, rates during embryonal development seem "visible" to selection and the developmental system can thus adapt when pair variation contains a heritable component. In agreement with expectations for the presence of diversified bet-hedging, some embryos hatched and others not in over half of the clutches with several developed embryos at the moment of rewetting. Hatching probabilities increased for eggs produced later in the experiment, and they increased when embryos were rewetted a second time after two months. This response is opposite of what is expected when age-dependent hatching would be adapted to exploit opportunities for completing another generation before the dry season.
Collapse
Affiliation(s)
- Tom J. M. Van Dooren
- Centre for Biodiversity NaturalisLeidenThe Netherlands
- CNRS/UPMC/UPEC/UPD/IRD/INRA – UMR 7618, Institute for Ecological and Environmental Sciences Paris (iEES)Sorbonne UniversityParisFrance
| | | |
Collapse
|
8
|
Api M, Biondi P, Olivotto I, Terzibasi E, Cellerino A, Carnevali O. Effects of Parental Aging During Embryo Development and Adult Life: The Case of Nothobranchius furzeri. Zebrafish 2018; 15:112-123. [PMID: 29304310 DOI: 10.1089/zeb.2017.1494] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Studies on parental aging are a very attractive field, although it is poorly understood how parental age affects embryonic development and adult traits of the offspring. In this study, we used the turquoise killifish Nothobranchius furzeri, as is the vertebrate with shortest captive lifespan and an interesting model. The embryos of N. furzeri can follow two distinct developmental pathways either entering diapause or proceeding through direct development. Thus, this embryonic plasticity allows this model to be used to study different factors that could affect their embryonic development, including parental age. The first goal of the present study was to investigate whether parental aging could affect the embryo development. To do this, we collected F1 embryos from two breeder groups (old parents and young parents). We monitored the duration of embryonic development and analyzed genes involved in dorsalization process. The second goal was to investigate if embryonic developmental plasticity could be modulated by an epigenetic process. To this end, the expression of DNMTs genes was examined. Our data support the hypothesis that diapause, occurring more frequently in embryos from old parents, is associated with increased expression of DNMT3A and DNMT3B suggesting an epigenetic control. Finally, we analyzed whether parental age could affect metabolism and growth during adult life. Morphometric results and qPCR analysis of genes from IGF system showed a slower growth in adults from old breeders. Moreover, a gender-specificity effect on growth emerged. In conclusion, these results may contribute to the better understanding of the complex mechanism of aging.
Collapse
Affiliation(s)
- Martina Api
- 1 Department of Life and Environmental Sciences, Università Politecnica delle Marche , Ancona, Italy
| | - Piera Biondi
- 1 Department of Life and Environmental Sciences, Università Politecnica delle Marche , Ancona, Italy
| | - Ike Olivotto
- 1 Department of Life and Environmental Sciences, Università Politecnica delle Marche , Ancona, Italy
| | | | | | - Oliana Carnevali
- 1 Department of Life and Environmental Sciences, Università Politecnica delle Marche , Ancona, Italy
| |
Collapse
|
9
|
Vrtílek M, Polačik M, Reichard M. The role of energetic reserves during embryonic development of an annual killifish. Dev Dyn 2017; 246:838-847. [DOI: 10.1002/dvdy.24528] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 05/04/2017] [Accepted: 05/25/2017] [Indexed: 01/20/2023] Open
Affiliation(s)
- Milan Vrtílek
- Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic; Brno Czech Republic
| | - Matej Polačik
- Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic; Brno Czech Republic
| | - Martin Reichard
- Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic; Brno Czech Republic
| |
Collapse
|
10
|
Reichard M, Blažek R, Polačik M, Vrtílek M. Hatching date variability in wild populations of four coexisting species of African annual fishes. Dev Dyn 2017; 246:827-837. [DOI: 10.1002/dvdy.24500] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/17/2017] [Accepted: 03/11/2017] [Indexed: 12/21/2022] Open
Affiliation(s)
- Martin Reichard
- Institute of Vertebrate Biology; Academy of Sciences of the Czech Republic; Czech Republic
| | - Radim Blažek
- Institute of Vertebrate Biology; Academy of Sciences of the Czech Republic; Czech Republic
| | - Matej Polačik
- Institute of Vertebrate Biology; Academy of Sciences of the Czech Republic; Czech Republic
| | - Milan Vrtílek
- Institute of Vertebrate Biology; Academy of Sciences of the Czech Republic; Czech Republic
| |
Collapse
|