1
|
Jay P, Jeffries D, Hartmann FE, Véber A, Giraud T. Why do sex chromosomes progressively lose recombination? Trends Genet 2024; 40:564-579. [PMID: 38677904 DOI: 10.1016/j.tig.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/29/2024]
Abstract
Progressive recombination loss is a common feature of sex chromosomes. Yet, the evolutionary drivers of this phenomenon remain a mystery. For decades, differences in trait optima between sexes (sexual antagonism) have been the favoured hypothesis, but convincing evidence is lacking. Recent years have seen a surge of alternative hypotheses to explain progressive extensions and maintenance of recombination suppression: neutral accumulation of sequence divergence, selection of nonrecombining fragments with fewer deleterious mutations than average, sheltering of recessive deleterious mutations by linkage to heterozygous alleles, early evolution of dosage compensation, and constraints on recombination restoration. Here, we explain these recent hypotheses and dissect their assumptions, mechanisms, and predictions. We also review empirical studies that have brought support to the various hypotheses.
Collapse
Affiliation(s)
- Paul Jay
- Center for GeoGenetics, University of Copenhagen, Copenhagen, Denmark; Université Paris-Saclay, CNRS, AgroParisTech, Laboratoire Ecologie Systématique et Evolution, UMR 8079, Bâtiment 680, 12 route RD128, 91190 Gif-sur-Yvette, France.
| | - Daniel Jeffries
- Division of Evolutionary Ecology, Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
| | - Fanny E Hartmann
- Université Paris-Saclay, CNRS, AgroParisTech, Laboratoire Ecologie Systématique et Evolution, UMR 8079, Bâtiment 680, 12 route RD128, 91190 Gif-sur-Yvette, France
| | - Amandine Véber
- Université Paris Cité, CNRS, MAP5, F-75006 Paris, France
| | - Tatiana Giraud
- Université Paris-Saclay, CNRS, AgroParisTech, Laboratoire Ecologie Systématique et Evolution, UMR 8079, Bâtiment 680, 12 route RD128, 91190 Gif-sur-Yvette, France
| |
Collapse
|
2
|
Behrens KA, Zimmermann H, Blažek R, Reichard M, Koblmüller S, Kocher TD. Turnover of sex chromosomes in the Lake Tanganyika cichlid tribe Tropheini (Teleostei: Cichlidae). Sci Rep 2024; 14:2471. [PMID: 38291228 PMCID: PMC10828463 DOI: 10.1038/s41598-024-53021-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 01/25/2024] [Indexed: 02/01/2024] Open
Abstract
Sex chromosome replacement is frequent in many vertebrate clades, including fish, frogs, and lizards. In order to understand the mechanisms responsible for sex chromosome turnover and the early stages of sex chromosome divergence, it is necessary to study lineages with recently evolved sex chromosomes. Here we examine sex chromosome evolution in a group of African cichlid fishes (tribe Tropheini) which began to diverge from one another less than 4 MYA. We have evidence for a previously unknown sex chromosome system, and preliminary indications of several additional systems not previously reported in this group. We find a high frequency of sex chromosome turnover and estimate a minimum of 14 turnovers in this tribe. We date the origin of the most common sex determining system in this tribe (XY-LG5/19) near the base of one of two major sub-clades of this tribe, about 3.4 MY ago. Finally, we observe variation in the size of one sex-determining region that suggests independent evolution of evolutionary strata in species with a shared sex-determination system. Our results illuminate the rapid rate of sex chromosome turnover in the tribe Tropheini and set the stage for further studies of the dynamics of sex chromosome evolution in this group.
Collapse
Affiliation(s)
- Kristen A Behrens
- Department of Biology, University of Maryland, College Park, MD, 20742, USA.
| | - Holger Zimmermann
- Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, 603 00, Brno, Czech Republic
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010, Graz, Austria
| | - Radim Blažek
- Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, 603 00, Brno, Czech Republic
| | - Martin Reichard
- Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, 603 00, Brno, Czech Republic
- Department of Ecology and Vertebrate Zoology, University of Łódź, Łódź, Poland
| | - Stephan Koblmüller
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010, Graz, Austria
| | - Thomas D Kocher
- Department of Biology, University of Maryland, College Park, MD, 20742, USA
| |
Collapse
|
3
|
Yue J, Krasovec M, Kazama Y, Zhang X, Xie W, Zhang S, Xu X, Kan B, Ming R, Filatov DA. The origin and evolution of sex chromosomes, revealed by sequencing of the Silene latifolia female genome. Curr Biol 2023:S0960-9822(23)00678-4. [PMID: 37290443 DOI: 10.1016/j.cub.2023.05.046] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/07/2023] [Accepted: 05/19/2023] [Indexed: 06/10/2023]
Abstract
White campion (Silene latifolia, Caryophyllaceae) was the first vascular plant where sex chromosomes were discovered. This species is a classic model for studies on plant sex chromosomes due to presence of large, clearly distinguishable X and Y chromosomes that originated de novo about 11 million years ago (mya), but lack of genomic resources for this relatively large genome (∼2.8 Gb) remains a significant hurdle. Here we report S. latifolia female genome assembly integrated with sex-specific genetic maps of this species, focusing on sex chromosomes and their evolution. The analysis reveals a highly heterogeneous recombination landscape with strong reduction in recombination rate in the central parts of all chromosomes. Recombination on the X chromosome in female meiosis primarily occurs at the very ends, and over 85% of the X chromosome length is located in a massive (∼330 Mb) gene-poor, rarely recombining pericentromeric region (Xpr). The results indicate that the non-recombining region on the Y chromosome (NRY) initially evolved in a relatively small (∼15 Mb), actively recombining region at the end of the q-arm, possibly as a result of inversion on the nascent X chromosome. The NRY expanded about 6 mya via linkage between the Xpr and the sex-determining region, which may have been caused by expanding pericentromeric recombination suppression on the X chromosome. These findings shed light on the origin of sex chromosomes in S. latifolia and yield genomic resources to assist ongoing and future investigations into sex chromosome evolution.
Collapse
Affiliation(s)
- Jingjing Yue
- Centre for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Marc Krasovec
- Department of Biology, University of Oxford, Oxford OX1 3RB, UK; Sorbonne Université, CNRS, UMR 7232 Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, 66650 Banyuls-sur-Mer, France
| | - Yusuke Kazama
- Department of Bioscience and Biotechnology, Fukui Prefectural University, 4-1-1 Kenjojima, Matsuoka, Eiheiji-cho, Fukui 910-1195, Japan
| | - Xingtan Zhang
- Centre for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518100, China
| | - Wangyang Xie
- Centre for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shencheng Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518100, China
| | - Xiuming Xu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361100, China
| | - Baolin Kan
- Centre for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ray Ming
- Centre for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Dmitry A Filatov
- Department of Biology, University of Oxford, Oxford OX1 3RB, UK.
| |
Collapse
|
4
|
Jay P, Tezenas E, Véber A, Giraud T. Sheltering of deleterious mutations explains the stepwise extension of recombination suppression on sex chromosomes and other supergenes. PLoS Biol 2022; 20:e3001698. [PMID: 35853091 PMCID: PMC9295944 DOI: 10.1371/journal.pbio.3001698] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/03/2022] [Indexed: 12/19/2022] Open
Abstract
Many organisms have sex chromosomes with large nonrecombining regions that have expanded stepwise, generating "evolutionary strata" of differentiation. The reasons for this remain poorly understood, but the principal hypotheses proposed to date are based on antagonistic selection due to differences between sexes. However, it has proved difficult to obtain empirical evidence of a role for sexually antagonistic selection in extending recombination suppression, and antagonistic selection has been shown to be unlikely to account for the evolutionary strata observed on fungal mating-type chromosomes. We show here, by mathematical modeling and stochastic simulation, that recombination suppression on sex chromosomes and around supergenes can expand under a wide range of parameter values simply because it shelters recessive deleterious mutations, which are ubiquitous in genomes. Permanently heterozygous alleles, such as the male-determining allele in XY systems, protect linked chromosomal inversions against the expression of their recessive mutation load, leading to the successive accumulation of inversions around these alleles without antagonistic selection. Similar results were obtained with models assuming recombination-suppressing mechanisms other than chromosomal inversions and for supergenes other than sex chromosomes, including those without XY-like asymmetry, such as fungal mating-type chromosomes. However, inversions capturing a permanently heterozygous allele were found to be less likely to spread when the mutation load segregating in populations was lower (e.g., under large effective population sizes or low mutation rates). This may explain why sex chromosomes remain homomorphic in some organisms but are highly divergent in others. Here, we model a simple and testable hypothesis explaining the stepwise extensions of recombination suppression on sex chromosomes, mating-type chromosomes, and supergenes in general.
Collapse
Affiliation(s)
- Paul Jay
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique et Evolution, 91190, Gif-sur-Yvette, France
| | - Emilie Tezenas
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique et Evolution, 91190, Gif-sur-Yvette, France
- Univ. Lille, CNRS, UMR 8198 –Evo-Eco-Paleo, F-59000 Lille, France
- Université Paris Cité, CNRS, MAP 5, F-75006 Paris, France
| | - Amandine Véber
- Université Paris Cité, CNRS, MAP 5, F-75006 Paris, France
| | - Tatiana Giraud
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique et Evolution, 91190, Gif-sur-Yvette, France
| |
Collapse
|
5
|
Sember A, Nguyen P, Perez MF, Altmanová M, Ráb P, Cioffi MDB. Multiple sex chromosomes in teleost fishes from a cytogenetic perspective: state of the art and future challenges. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200098. [PMID: 34304595 PMCID: PMC8310710 DOI: 10.1098/rstb.2020.0098] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2020] [Indexed: 12/15/2022] Open
Abstract
Despite decades of cytogenetic and genomic research of dynamic sex chromosome evolution in teleost fishes, multiple sex chromosomes have been largely neglected. In this review, we compiled available data on teleost multiple sex chromosomes, identified major trends in their evolution and suggest further trajectories in their investigation. In a compiled dataset of 440 verified records of fish sex chromosomes, we counted 75 multiple sex chromosome systems with 60 estimated independent origins. We showed that male-heterogametic systems created by Y-autosome fusion predominate and that multiple sex chromosomes are over-represented in the order Perciformes. We documented a striking difference in patterns of differentiation of sex chromosomes between male and female heterogamety and hypothesize that faster W sex chromosome differentiation may constrain sex chromosome turnover in female-heterogametic systems. We also found no significant association between the mechanism of multiple sex chromosome formation and percentage of uni-armed chromosomes in teleost karyotypes. Last but not least, we hypothesized that interaction between fish populations, which differ in their sex chromosomes, can drive the evolution of multiple sex chromosomes in fishes. This underlines the importance of broader inter-population sampling in studies of fish sex chromosomes. This article is part of the theme issue 'Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part II)'.
Collapse
Affiliation(s)
- Alexandr Sember
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 277 21 Liběchov, Czech Republic
| | - Petr Nguyen
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 277 21 Liběchov, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic
| | - Manolo F. Perez
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, Rod. Washington Luiz km 235 cep, 13565-905, São Carlos, Brazil
| | - Marie Altmanová
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 277 21 Liběchov, Czech Republic
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, 128 44 Prague, Czech Republic
| | - Petr Ráb
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 277 21 Liběchov, Czech Republic
| | - Marcelo de Bello Cioffi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, Rod. Washington Luiz km 235 cep, 13565-905, São Carlos, Brazil
| |
Collapse
|
6
|
Perrin N. Sex-chromosome evolution in frogs: what role for sex-antagonistic genes? Philos Trans R Soc Lond B Biol Sci 2021; 376:20200094. [PMID: 34247502 PMCID: PMC8273499 DOI: 10.1098/rstb.2020.0094] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2020] [Indexed: 02/07/2023] Open
Abstract
Sex-antagonistic (SA) genes are widely considered to be crucial players in the evolution of sex chromosomes, being instrumental in the arrest of recombination and degeneration of Y chromosomes, as well as important drivers of sex-chromosome turnovers. To test such claims, one needs to focus on systems at the early stages of differentiation, ideally with a high turnover rate. Here, I review recent work on two families of amphibians, Ranidae (true frogs) and Hylidae (tree frogs), to show that results gathered so far from these groups provide no support for a significant role of SA genes in the evolutionary dynamics of their sex chromosomes. The findings support instead a central role for neutral processes and deleterious mutations. This article is part of the theme issue 'Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part I)'.
Collapse
Affiliation(s)
- Nicolas Perrin
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
7
|
Meisel RP. The maintenance of polygenic sex determination depends on the dominance of fitness effects which are predictive of the role of sexual antagonism. G3 (BETHESDA, MD.) 2021; 11:6261074. [PMID: 33930135 PMCID: PMC8496315 DOI: 10.1093/g3journal/jkab149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/23/2021] [Indexed: 12/18/2022]
Abstract
In species with polygenic sex determination (PSD), multiple male- and female-determining loci on different proto-sex chromosomes segregate as polymorphisms within populations. The extent to which these polymorphisms are at stable equilibria is not yet resolved. Previous work demonstrated that PSD is most likely to be maintained as a stable polymorphism when the proto-sex chromosomes have opposite (sexually antagonistic) fitness effects in males and females. However, these models usually consider PSD systems with only two proto-sex chromosomes, or they do not broadly consider the dominance of the alleles under selection. To address these shortcomings, I used forward population genetic simulations to identify selection pressures that can maintain PSD under different dominance scenarios in a system with more than two proto-sex chromosomes (modeled after the house fly). I found that overdominant fitness effects of male-determining proto-Y chromosomes are more likely to maintain PSD than dominant, recessive, or additive fitness effects. The overdominant fitness effects that maintain PSD tend to have proto-Y chromosomes with sexually antagonistic effects (male-beneficial and female-detrimental). In contrast, dominant fitness effects that maintain PSD tend to have sexually antagonistic multi-chromosomal genotypes, but the individual proto-sex chromosomes do not have sexually antagonistic effects. These results demonstrate that sexual antagonism can be an emergent property of the multi-chromosome genotype without individual sexually antagonistic chromosomes. My results further illustrate how the dominance of fitness effects has consequences for both the likelihood that PSD will be maintained as well as the role sexually antagonistic selection is expected to play in maintaining the polymorphism.
Collapse
Affiliation(s)
- Richard P Meisel
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
8
|
Martinez-Ruiz C, Pracana R, Stolle E, Paris CI, Nichols RA, Wurm Y. Genomic architecture and evolutionary antagonism drive allelic expression bias in the social supergene of red fire ants. eLife 2020; 9:55862. [PMID: 32773032 PMCID: PMC7476760 DOI: 10.7554/elife.55862] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 08/07/2020] [Indexed: 11/17/2022] Open
Abstract
Supergene regions maintain alleles of multiple genes in tight linkage through suppressed recombination. Despite their importance in determining complex phenotypes, our empirical understanding of early supergene evolution is limited. Here we focus on the young ‘social’ supergene of fire ants, a powerful system for disentangling the effects of evolutionary antagonism and suppressed recombination. We hypothesize that gene degeneration and social antagonism shaped the evolution of the fire ant supergene, resulting in distinct patterns of gene expression. We test these ideas by identifying allelic differences between supergene variants, characterizing allelic expression across populations, castes and body parts, and contrasting allelic expression biases with differences in expression between social forms. We find strong signatures of gene degeneration and gene-specific dosage compensation. On this background, a small portion of the genes has the signature of adaptive responses to evolutionary antagonism between social forms. Red fire ants (Solenopsis invicta) are native to South America, but the species has spread to North America, Australia and New Zealand where it can be an invasive pest. A reason for this species’ invasiveness types of colonies : one with a single egg-laying queen and another with several queens. However, it is not possible to simply add more queens to a colony with one queen. Instead, the number of queens in a colony is controlled genetically, by a chromosome known as the ‘social chromosome’. Like many other animals, red fire ants are diploid: their cells have two copies of each chromosome, which can carry two different versions of each gene. The social chromosome is no different, and it comes in two variants, SB and Sb. Each ant can therefore have either two SB chromosomes, leading to a colony with a single queen; or one SB chromosome and one Sb chromosome, leading to a colony with multiple queens. Ants with two copies of the Sb variant die when they are young, so the Sb version is inherited in a similar way to how the Y chromosome is passed on in humans. However, the social chromosome in red fire ants appeared less than one million years ago, making it much younger than the human Y chromosome, which is 180 million years old. This makes the social chromosome a good candidate for examining the early evolution of special chromosome variants that are only inherited. How differences between the SB and the Sb chromosomes are evolving is an open question, however. Perhaps each version of the social chromosome has been optimised through natural selection to one colony type. Another suggestion is that the Sb chromosome has degenerated over time because its genes cannot be ‘reshuffled’ as they would be on normal chromosomes. Martinez-Ruiz et al. compared genetic variants on the SB and Sb chromosomes, along with their expression in different types of ant colonies. The analysis showed that the Sb variant is in fact breaking down because of the lack of gene shuffling. This loss is compensated by intact copies of the same genes found on the SB variant, which explains why ants with the Sb variant can only survive if they also carry the SB version. Only a handful of genes on the social chromosomes appear to have been optimised by natural selection. Therefore Martinez-Ruiz et al. concluded the differences between the two chromosomes that lead to different colony types are collateral effects of Sb’s inability to reshuffle its genes. This work reveals how a special chromosome similar to the Y chromosome in humans evolved. It also shows how multiple complex evolutionary forces can shape a species’ genetic makeup and social forms.
Collapse
Affiliation(s)
- Carlos Martinez-Ruiz
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Rodrigo Pracana
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Eckart Stolle
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Carolina Ivon Paris
- Departamento Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, Buenos Aires, Argentina
| | - Richard A Nichols
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Yannick Wurm
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom.,Alan Turing Institute, London, United Kingdom
| |
Collapse
|
9
|
Sember A, Pappová M, Forman M, Nguyen P, Marec F, Dalíková M, Divišová K, Doležálková-Kaštánková M, Zrzavá M, Sadílek D, Hrubá B, Král J. Patterns of Sex Chromosome Differentiation in Spiders: Insights from Comparative Genomic Hybridisation. Genes (Basel) 2020; 11:E849. [PMID: 32722348 PMCID: PMC7466014 DOI: 10.3390/genes11080849] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 01/21/2023] Open
Abstract
Spiders are an intriguing model to analyse sex chromosome evolution because of their peculiar multiple X chromosome systems. Y chromosomes were considered rare in this group, arising after neo-sex chromosome formation by X chromosome-autosome rearrangements. However, recent findings suggest that Y chromosomes are more common in spiders than previously thought. Besides neo-sex chromosomes, they are also involved in the ancient X1X2Y system of haplogyne spiders, whose origin is unknown. Furthermore, spiders seem to exhibit obligatorily one or two pairs of cryptic homomorphic XY chromosomes (further cryptic sex chromosome pairs, CSCPs), which could represent the ancestral spider sex chromosomes. Here, we analyse the molecular differentiation of particular types of spider Y chromosomes in a representative set of ten species by comparative genomic hybridisation (CGH). We found a high Y chromosome differentiation in haplogyne species with X1X2Y system except for Loxosceles spp. CSCP chromosomes exhibited generally low differentiation. Possible mechanisms and factors behind the observed patterns are discussed. The presence of autosomal regions marked predominantly or exclusively with the male or female probe was also recorded. We attribute this pattern to intraspecific variability in the copy number and distribution of certain repetitive DNAs in spider genomes, pointing thus to the limits of CGH in this arachnid group. In addition, we confirmed nonrandom association of chromosomes belonging to particular CSCPs at spermatogonial mitosis and spermatocyte meiosis and their association with multiple Xs throughout meiosis. Taken together, our data suggest diverse evolutionary pathways of molecular differentiation in different types of spider Y chromosomes.
Collapse
Affiliation(s)
- Alexandr Sember
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 277 21 Liběchov, Czech Republic;
- Laboratory of Arachnid Cytogenetics, Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague, Czech Republic; (M.P.); (M.F.); (K.D.); (D.S.); (B.H.); (J.K.)
| | - Michaela Pappová
- Laboratory of Arachnid Cytogenetics, Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague, Czech Republic; (M.P.); (M.F.); (K.D.); (D.S.); (B.H.); (J.K.)
| | - Martin Forman
- Laboratory of Arachnid Cytogenetics, Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague, Czech Republic; (M.P.); (M.F.); (K.D.); (D.S.); (B.H.); (J.K.)
| | - Petr Nguyen
- Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic; (P.N.); (M.D.); (M.Z.)
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 31, 370 05 České Budějovice, Czech Republic;
| | - František Marec
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 31, 370 05 České Budějovice, Czech Republic;
| | - Martina Dalíková
- Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic; (P.N.); (M.D.); (M.Z.)
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 31, 370 05 České Budějovice, Czech Republic;
| | - Klára Divišová
- Laboratory of Arachnid Cytogenetics, Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague, Czech Republic; (M.P.); (M.F.); (K.D.); (D.S.); (B.H.); (J.K.)
| | - Marie Doležálková-Kaštánková
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 277 21 Liběchov, Czech Republic;
- Laboratory of Arachnid Cytogenetics, Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague, Czech Republic; (M.P.); (M.F.); (K.D.); (D.S.); (B.H.); (J.K.)
| | - Magda Zrzavá
- Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic; (P.N.); (M.D.); (M.Z.)
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 31, 370 05 České Budějovice, Czech Republic;
| | - David Sadílek
- Laboratory of Arachnid Cytogenetics, Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague, Czech Republic; (M.P.); (M.F.); (K.D.); (D.S.); (B.H.); (J.K.)
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 44 Prague, Czech Republic
| | - Barbora Hrubá
- Laboratory of Arachnid Cytogenetics, Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague, Czech Republic; (M.P.); (M.F.); (K.D.); (D.S.); (B.H.); (J.K.)
| | - Jiří Král
- Laboratory of Arachnid Cytogenetics, Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague, Czech Republic; (M.P.); (M.F.); (K.D.); (D.S.); (B.H.); (J.K.)
| |
Collapse
|
10
|
Xu L, Wa Sin SY, Grayson P, Edwards SV, Sackton TB. Evolutionary Dynamics of Sex Chromosomes of Paleognathous Birds. Genome Biol Evol 2020; 11:2376-2390. [PMID: 31329234 PMCID: PMC6735826 DOI: 10.1093/gbe/evz154] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2019] [Indexed: 12/20/2022] Open
Abstract
Standard models of sex chromosome evolution propose that recombination suppression leads to the degeneration of the heterogametic chromosome, as is seen for the Y chromosome in mammals and the W chromosome in most birds. Unlike other birds, paleognaths (ratites and tinamous) possess large nondegenerate regions on their sex chromosomes (PARs or pseudoautosomal regions). It remains unclear why these large PARs are retained over >100 Myr, and how this retention impacts the evolution of sex chromosomes within this system. To address this puzzle, we analyzed Z chromosome evolution and gene expression across 12 paleognaths, several of whose genomes have recently been sequenced. We confirm at the genomic level that most paleognaths retain large PARs. As in other birds, we find that all paleognaths have incomplete dosage compensation on the regions of the Z chromosome homologous to degenerated portions of the W (differentiated regions), but we find no evidence for enrichments of male-biased genes in PARs. We find limited evidence for increased evolutionary rates (faster-Z) either across the chromosome or in differentiated regions for most paleognaths with large PARs, but do recover signals of faster-Z evolution in tinamou species with mostly degenerated W chromosomes, similar to the pattern seen in neognaths. Unexpectedly, in some species, PAR-linked genes evolve faster on average than genes on autosomes, suggested by diverse genomic features to be due to reduced efficacy of selection in paleognath PARs. Our analysis shows that paleognath Z chromosomes are atypical at the genomic level, but the evolutionary forces maintaining largely homomorphic sex chromosomes in these species remain elusive.
Collapse
Affiliation(s)
- Luohao Xu
- Department of Molecular Evolution and Development, University of Vienna, Austria
| | - Simon Yung Wa Sin
- Department of Organismic and Evolutionary Biology, Harvard University
- Museum of Comparative Zoology, Harvard University
- School of Biological Sciences, The University of Hong Kong, Hong Kong
| | - Phil Grayson
- Department of Organismic and Evolutionary Biology, Harvard University
- Museum of Comparative Zoology, Harvard University
| | - Scott V Edwards
- Department of Organismic and Evolutionary Biology, Harvard University
- Museum of Comparative Zoology, Harvard University
| | - Timothy B Sackton
- Informatics Group, Division of Science, Harvard University
- Corresponding author: E-mail:
| |
Collapse
|
11
|
Neuenschwander S, Michaud F, Goudet J. QuantiNemo 2: a Swiss knife to simulate complex demographic and genetic scenarios, forward and backward in time. Bioinformatics 2019; 35:886-888. [PMID: 30816926 PMCID: PMC6394393 DOI: 10.1093/bioinformatics/bty737] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/28/2018] [Accepted: 08/22/2018] [Indexed: 01/25/2023] Open
Abstract
Summary QuantiNemo 2 is a stochastic simulation program for quantitative population genetics. It was developed to investigate the effects of selection, mutation, recombination and drift on quantitative traits and neutral markers in structured populations connected by migration and located in heterogeneous habitats. A specific feature is that it allows to switch between an individual-based full-featured mode and a population-based faster mode. Several demographic, genetic and selective parameters can be fine-tuned in QuantiNemo 2: population, selection, trait(s) architecture, genetic map for QTL and/or markers, environment, demography and mating system are the main features. Availability and implementation QuantiNemo 2 is a C++ program with a source code available under the GNU General Public License version 3. Executables are provided for Windows, MacOS and Linux platforms, together with a comprehensive manual and tutorials illustrating its flexibility. The executable, manual and tutorial can be found on the website www2.unil.ch/popgen/softwares/quantinemo/, while the source code and user support are given through GitHub: github.com/jgx65/quantinemo. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Samuel Neuenschwander
- Vital-IT, Swiss Institute of Bioinformatics, Lausanne, Switzerland.,Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Frédéric Michaud
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Jérôme Goudet
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| |
Collapse
|
12
|
Pearse DE, Barson NJ, Nome T, Gao G, Campbell MA, Abadía-Cardoso A, Anderson EC, Rundio DE, Williams TH, Naish KA, Moen T, Liu S, Kent M, Moser M, Minkley DR, Rondeau EB, Brieuc MSO, Sandve SR, Miller MR, Cedillo L, Baruch K, Hernandez AG, Ben-Zvi G, Shem-Tov D, Barad O, Kuzishchin K, Garza JC, Lindley ST, Koop BF, Thorgaard GH, Palti Y, Lien S. Sex-dependent dominance maintains migration supergene in rainbow trout. Nat Ecol Evol 2019; 3:1731-1742. [DOI: 10.1038/s41559-019-1044-6] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 10/18/2019] [Indexed: 11/09/2022]
Abstract
AbstractMales and females often differ in their fitness optima for shared traits that have a shared genetic basis, leading to sexual conflict. Morphologically differentiated sex chromosomes can resolve this conflict and protect sexually antagonistic variation, but they accumulate deleterious mutations. However, how sexual conflict is resolved in species that lack differentiated sex chromosomes is largely unknown. Here we present a chromosome-anchored genome assembly for rainbow trout (Oncorhynchus mykiss) and characterize a 55-Mb double-inversion supergene that mediates sex-specific migratory tendency through sex-dependent dominance reversal, an alternative mechanism for resolving sexual conflict. The double inversion contains key photosensory, circadian rhythm, adiposity and sex-related genes and displays a latitudinal frequency cline, indicating environmentally dependent selection. Our results show sex-dependent dominance reversal across a large autosomal supergene, a mechanism for sexual conflict resolution capable of protecting sexually antagonistic variation while avoiding the homozygous lethality and deleterious mutations associated with typical heteromorphic sex chromosomes.
Collapse
|
13
|
Otto SP. Evolutionary potential for genomic islands of sexual divergence on recombining sex chromosomes. THE NEW PHYTOLOGIST 2019; 224:1241-1251. [PMID: 31361905 DOI: 10.1111/nph.16083] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/22/2019] [Indexed: 06/10/2023]
Abstract
Differentiated sex chromosomes are thought to develop through the accumulation of polymorphisms at loci subject to opposing selection between males and females, and/or between haploids and diploids. As sex chromosomes differentiate, reduced recombination becomes favored between selected loci and the sex-determining region, strengthening genetic associations between alleles favored in a sex and the corresponding sex chromosome. Here a model is analyzed to explore whether polymorphism at one sexually or ploidally antagonistic locus facilitates the spread of rare alleles at other loci experiencing antagonistic selection, promoting further differentiation of the sex chromosomes. It is found that antagonistic polymorphisms can spread and capture other such loci, building 'genomic islands' of differentiation on sex chromosomes, but the conditions are very restrictive, requiring the loci to be strongly selected, tightly linked and distant from the sex-determining region. Epistatic interactions can facilitate the promotion of polymorphism among selected loci, but only if preferentially favoring heterozygotes. Although these results apply to any taxa, plants provide a fertile ground for testing these and related theories given the recurrent evolutionary transitions to dioecy, which provide multiple opportunities to track the early evolution of sex chromosomes.
Collapse
Affiliation(s)
- Sarah P Otto
- Department of Zoology & Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| |
Collapse
|
14
|
Böhne A, Weber AAT, Rajkov J, Rechsteiner M, Riss A, Egger B, Salzburger W. Repeated Evolution Versus Common Ancestry: Sex Chromosome Evolution in the Haplochromine Cichlid Pseudocrenilabrus philander. Genome Biol Evol 2019; 11:439-458. [PMID: 30649313 PMCID: PMC6375353 DOI: 10.1093/gbe/evz003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2019] [Indexed: 12/15/2022] Open
Abstract
Why sex chromosomes turn over and remain undifferentiated in some taxa, whereas they degenerate in others, is still an area of ongoing research. The recurrent occurrence of homologous and homomorphic sex chromosomes in distantly related taxa suggests their independent evolution or continued recombination since their first emergence. Fishes display a great diversity of sex-determining systems. Here, we focus on sex chromosome evolution in haplochromines, the most species-rich lineage of cichlid fishes. We investigate sex-specific signatures in the Pseudocrenilabrus philander species complex, which belongs to a haplochromine genus found in many river systems and ichthyogeographic regions in northern, eastern, central, and southern Africa. Using whole-genome sequencing and population genetic, phylogenetic, and read-coverage analyses, we show that one population of P. philander has an XX-XY sex-determining system on LG7 with a large region of suppressed recombination. However, in a second bottlenecked population, we did not find any sign of a sex chromosome. Interestingly, LG7 also carries an XX-XY system in the phylogenetically more derived Lake Malawi haplochromine cichlids. Although the genomic regions determining sex are the same in Lake Malawi cichlids and P. philander, we did not find evidence for shared ancestry, suggesting that LG7 evolved as sex chromosome at least twice in haplochromine cichlids. Hence, our work provides further evidence for the labile nature of sex determination in fishes and supports the hypothesis that the same genomic regions can repeatedly and rapidly be recruited as sex chromosomes in more distantly related lineages.
Collapse
Affiliation(s)
- Astrid Böhne
- Department of Environmental Sciences, Zoological Institute, University of Basel, Switzerland
| | - Alexandra Anh-Thu Weber
- Department of Environmental Sciences, Zoological Institute, University of Basel, Switzerland
- Museums Victoria, Melbourne, Victoria, Australia
| | - Jelena Rajkov
- Department of Environmental Sciences, Zoological Institute, University of Basel, Switzerland
| | - Michael Rechsteiner
- Department of Environmental Sciences, Zoological Institute, University of Basel, Switzerland
| | - Andrin Riss
- Department of Environmental Sciences, Zoological Institute, University of Basel, Switzerland
| | - Bernd Egger
- Department of Environmental Sciences, Zoological Institute, University of Basel, Switzerland
- Program Man Society Environment, University of Basel, Switzerland
| | - Walter Salzburger
- Department of Environmental Sciences, Zoological Institute, University of Basel, Switzerland
| |
Collapse
|
15
|
Charlesworth D. The Guppy Sex Chromosome System and the Sexually Antagonistic Polymorphism Hypothesis for Y Chromosome Recombination Suppression. Genes (Basel) 2018; 9:genes9050264. [PMID: 29783761 PMCID: PMC5977204 DOI: 10.3390/genes9050264] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/11/2018] [Accepted: 05/16/2018] [Indexed: 02/06/2023] Open
Abstract
Sex chromosomes regularly evolve suppressed recombination, distinguishing them from other chromosomes, and the reason for this has been debated for many years. It is now clear that non-recombining sex-linked regions have arisen in different ways in different organisms. A major hypothesis is that a sex-determining gene arises on a chromosome and that sexually antagonistic (SA) selection (sometimes called intra-locus sexual conflict) acting at a linked gene has led to the evolution of recombination suppression in the region, to reduce the frequency of low fitness recombinant genotypes produced. The sex chromosome system of the guppy (Poecilia reticulata) is often cited as supporting this hypothesis because SA selection has been demonstrated to act on male coloration in natural populations of this fish, and probably contributes to maintaining polymorphisms for the genetic factors involved. I review classical genetic and new molecular genetic results from the guppy, and other fish, including approaches for identifying the genome regions carrying sex-determining loci, and suggest that the guppy may exemplify a recently proposed route to sex chromosome evolution.
Collapse
Affiliation(s)
- Deborah Charlesworth
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK.
| |
Collapse
|