1
|
Parejo-Pulido D, Pérez-Rodríguez L, Abril-Colón I, Potti J, Redondo T. Passive and active parental food allocation in a songbird. Behav Ecol 2023; 34:729-740. [PMID: 37744166 PMCID: PMC10516681 DOI: 10.1093/beheco/arad043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/13/2023] [Accepted: 05/09/2023] [Indexed: 09/26/2023] Open
Abstract
Parent-offspring conflict over food allocation can be modeled using two theoretical frameworks: passive (scramble competition) and active choice (signaling) resolution models. However, differentiating between these models empirically can be challenging. One possibility involves investigating details of decision-making by feeding parents. Different nestling traits, related to competitive prowess or signaling cryptic condition, may interact additively or non-additively as predictors of parental feeding responses. To explore this, we experimentally created even-sized, small broods of pied flycatchers and manipulated nestling cryptic quality, independently of size, by vitamin E supplementation. We explored how interactions between nestling cryptic condition, size, signals, and spatial location predicted food allocation and prey-testing by parents. Parents created the potential for spatial scramble competition between nestlings by feeding from and to a narrow range of nest locations. Heavier supplemented nestlings grew faster and were more likely to access profitable nest locations. However, the most profitable locations were not more contested, and nestling turnover did not vary in relation to spatial predictability or food supply. Postural begging was only predicted by nestling hunger and body mass, but parents did not favor heavier nestlings. This suggests that size-mediated and spatial competition in experimental broods was mild. Pied flycatcher fathers allocated food in response to nestling position and begging order, while mothers seemingly followed an active choice mechanism involving assessment of more complex traits, including postural intensity interacting with order, position, and treatment, and perhaps other stimuli when performing prey-testings. Differences in time constraints may underlie sex differences in food allocation rules.
Collapse
Affiliation(s)
- Daniel Parejo-Pulido
- Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - Lorenzo Pérez-Rodríguez
- Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - Inmaculada Abril-Colón
- Museo Nacional de Ciencias Naturales (MNCN), CSIC, Departamento de Ecología Evolutiva, José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Jaime Potti
- Estación Biológica de Doñana (EBD), CSIC, Américo Vespucio 26, 41092 Seville, Spain
| | - Tomás Redondo
- Estación Biológica de Doñana (EBD), CSIC, Américo Vespucio 26, 41092 Seville, Spain
| |
Collapse
|
2
|
Costantini D. A meta-analysis of impacts of immune response and infection on oxidative status in vertebrates. CONSERVATION PHYSIOLOGY 2022; 10:coac018. [PMID: 35492421 PMCID: PMC9040321 DOI: 10.1093/conphys/coac018] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/24/2022] [Accepted: 03/11/2022] [Indexed: 05/06/2023]
Abstract
Inferring from patterns observed in biomedical research, ecoimmunological theory predicts that oxidative stress is a ubiquitous physiological cost that contributes to generating variation in immune function between individuals or species. This prediction is, however, often challenged by empirical studies testing the relationship between immune response or infection and oxidative status markers. This points out the importance of combining ecological immunology and oxidative stress ecology to further our understanding of the proximate causes and fitness consequences of individual variation in health, and adaptability to natural and anthropogenic environmental changes. I reviewed evidence and performed phylogenetic meta-analyses of changes in oxidative status markers owing to either injection of an antigen or infection in captive and free-living vertebrates (141 studies, 1262 effect sizes, 97 species). The dataset was dominated by studies on fish, birds and mammals, which provided 95.8% of effect sizes. Both antigen injection and parasite exposure were associated with changes of oxidative status. There were significant effects of taxonomic class and experimental environment (captivity vs. wild). In contrast with my predictions, age category (young vs. adult), study design (correlational vs. experimental) and proxies of pace of life (clutch size, litter size, and body mass; for birds and mammals only) were negligible in this dataset. Several methodological aspects (type of immunostimulant, laboratory assay, tissue analysed) showed significant effects on both strength and direction of effect. My results suggest that alterations of oxidative status are a widespread consequence of immune function across vertebrates. However, this work also identified heterogeneity in strength and direction of effect sizes, which suggests that immune function does not necessarily result in oxidative stress. Finally, this work identifies methodological caveats that might be relevant for the interpretation and comparability of results and for the application in conservation programs.
Collapse
Affiliation(s)
- David Costantini
- Unité Physiologie Moléculaire et Adaptation, UMR 7221, Muséum National d’Histoire Naturelle, CNRS, CP32, 57 rue Cuvier 75005 Paris, France
| |
Collapse
|
3
|
Alaasam VJ, Keehn JE, Durso AM, French SS, Feldman CR. Ectoparasite Load Is Reduced in Side-Blotched Lizards ( Uta stansburiana) at Wind Farms: Implications for Oxidative Stress. Physiol Biochem Zool 2021; 94:35-49. [PMID: 33296296 DOI: 10.1086/712100] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AbstractWind-generated power is one of the fastest growing alternative energy strategies worldwide and will likely account for 20% of US energy production by 2030. The installation and maintenance of wind farms are associated with increased human activity and can generate noise pollution, disturb and fragment habitat, and even alter community composition and structure. These environmental and ecological changes can increase physiological stress for vertebrates and affect important life-history attributes, such as immune function. However, little is known about how wind farms influence physiology and disease or parasite resistance in nonvolant wildlife. Here, we test the notion that renewable wind farms increase physiological stress and correlated aspects of disease resistance (parasite load) in a common desert vertebrate, the side-blotched lizard (Uta stansburiana). We captured lizards from three wind farms and three undisturbed reference sites in the San Gorgonio Pass wind resource area in the Mojave Desert, California. We quantified individual external parasite loads and measured plasma antioxidant capacity and concentrations of reactive oxygen metabolites as a combined metric of oxidative stress. Contrary to our expectations, individuals at wind farm sites had significantly fewer external parasites than at undeveloped sites. Additionally, we found a slight positive correlation between parasite load and oxidative stress for individuals at wind farm sites but not at reference sites. Our results demonstrate a complex, potentially context-dependent relationship between stress physiology and disease resistance for lizards in anthropogenically disturbed environments. Understanding how wind farms affect the physiology and ecoimmunology of terrestrial fauna is necessary to mitigate the ecological costs of alternative energy development.
Collapse
|
4
|
Oxidative status of blue tit nestlings varies with habitat and nestling size. Comp Biochem Physiol A Mol Integr Physiol 2021; 258:110986. [PMID: 34023537 DOI: 10.1016/j.cbpa.2021.110986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 05/17/2021] [Accepted: 05/17/2021] [Indexed: 11/23/2022]
Abstract
Oxidative status has been proposed as an important ecological and evolutionary force given that pro-oxidant metabolites damage molecules, cells and tissues, with fitness consequences for organisms. Consequently, organisms usually face a trade-off between regulating their oxidative status and other physiological traits. However, environmental stressors and the availability of dietary-derived antioxidants vary according to local conditions and, thus, organisms inhabiting different habitats face different oxidative pressures. Still, there is little information on how different environmental conditions influence the oxidative status of animals inhabiting terrestrial environments. In this work, we examined the variation in oxidative status in the blue tit (Cyanistes caeruleus), a bird species with hatching asynchrony. Specifically, we examined the oxidative status of the largest and the smallest nestlings in the brood, inhabiting four forests differing in food availability and ectoparasite prevalence. We measured lipid peroxidation (malondialdehyde; MDA) as a marker of oxidative damage, total antioxidant capacity (Trolox-equivalent antioxidant capacity; TEAC) and antioxidant enzymatic activity (catalase, glutathione S-transferase, glutathione peroxidase) in blood samples. The glutathione peroxidase (GPX) activity differed among the forests, being the highest in the pine forest and the lowest in a mixed oak (Quercus) forest in the most humid area. Lipid peroxidation was higher in larger nestlings, suggesting higher oxidative damage with an increasing growth rate. Neither brood size, laying date, nor ectoparasites were related to the oxidative status of nestlings. These results suggest that nest rearing conditions might shape the oxidative status of birds, having consequences for habitat-dependent variation in regulation of oxidative status.
Collapse
|
5
|
Roth JD, Dobson FS, Criscuolo F, Uhlrich P, Zahariev A, Bergouignan A, Viblanc VA. Subtle short-term physiological costs of an experimental augmentation of fleas in wild Columbian ground squirrels. ACTA ACUST UNITED AC 2019; 222:jeb.203588. [PMID: 31138632 DOI: 10.1242/jeb.203588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/16/2019] [Indexed: 11/20/2022]
Abstract
Parasites affect many aspects of host physiology and behavior, and thus are generally thought to negatively impact host fitness. However, changes in form of short-term parasite effects on host physiological markers have generally been overlooked in favor of fitness measures. Here, we studied flea (Oropsylla idahoensis and Oropsylla opisocroistis tuberculata) parasitism on a natural population of Columbian ground squirrels (Urocitellus columbianus) in Sheep River Provincial Park, AB, Canada. Fleas were experimentally added to adult female U. columbianus at physiologically demanding times, including birth, lactation and weaning of their young. The body mass of adult females, as well as their oxidative stress and immunity were recorded multiple times over the active season under flea-augmented and control conditions. We also measured the prevalence of an internal parasite (Trypanosoma otospermophili). Doubly labeled water (DLW) was intra-peritoneally injected at peak lactation to examine energy expenditure. Effects of parasites on oxidative stress were only observed after offspring were weaned. There was no direct effect of experimentally heightened flea prevalence on energy use. A short-term 24 h mass loss (-17 g) was detected briefly after parasite addition, likely due to U. columbianus preferentially allocating time for grooming. Our parasite augmentation did not strongly affect hosts and suggested that short-term physiological effects were unlikely to culminate in long-term fitness consequences. Columbian ground squirrels appear to rapidly manage parasite costs, probably through grooming.
Collapse
Affiliation(s)
- Jeffrey D Roth
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - F Stephen Dobson
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - François Criscuolo
- Université de Strasbourg, CNRS, IPHC, UMR 7178, 67037 Strasbourg CEDEX 2, France
| | - Pierre Uhlrich
- Université de Strasbourg, CNRS, IPHC, UMR 7178, 67037 Strasbourg CEDEX 2, France
| | - Alexandre Zahariev
- Université de Strasbourg, CNRS, IPHC, UMR 7178, 67037 Strasbourg CEDEX 2, France
| | - Audrey Bergouignan
- Université de Strasbourg, CNRS, IPHC, UMR 7178, 67037 Strasbourg CEDEX 2, France
| | - Vincent A Viblanc
- Université de Strasbourg, CNRS, IPHC, UMR 7178, 67037 Strasbourg CEDEX 2, France
| |
Collapse
|
6
|
One problem, too many solutions: How costly is honest signalling of need? PLoS One 2019; 14:e0208443. [PMID: 30633748 PMCID: PMC6329501 DOI: 10.1371/journal.pone.0208443] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 11/16/2018] [Indexed: 11/29/2022] Open
Abstract
The “cost of begging” is a prominent prediction of costly signalling theory, suggesting that offspring begging has to be costly in order to be honest. Seminal signalling models predict that there is a unique equilibrium cost function for the offspring that results in honest signalling and this cost function must be proportional to parent’s fitness loss. This prediction is only valid if signal cost and offspring condition is assumed to be independent. Here we generalize these models by allowing signal cost to depend on offspring condition. We demonstrate in the generalized model that any signal cost proportional to the fitness gain of the offspring also results in honest signalling. Moreover, we show that any linear combination of the two cost functions (one proportional to parent’s fitness loss, as in previous models, the other to offspring’s fitness gain) also leads to honest signalling in equilibrium, yielding infinitely many solutions. Furthermore, we demonstrate that there exist linear combinations such that the equilibrium cost of signals is negative and the signal is honest. Our results show that costly signalling theory cannot predict a unique equilibrium cost in signalling games of parent-offspring conflicts if signal cost depends on offspring condition. It follows, contrary to previous claims, that the existence of parent-offspring conflict does not imply costly equilibrium signals. As an important consequence, it is meaningless to measure the “cost of begging” as long as the dependence of signal cost on offspring condition is unknown. Any measured equilibrium cost in case of condition-dependent signal cost has to be compared both to the parent’s fitness loss and to the offspring’s fitness gain in order to provide meaningful interpretation.
Collapse
|