1
|
Alonso-Alvarez C, Fernández-Eslava B, Alonso D, Galicia D, Arizaga J. Bigger or long-winged male common crossbills exhibit redder carotenoid-based plumage coloration. Curr Zool 2022; 69:165-172. [PMID: 37091992 PMCID: PMC10120982 DOI: 10.1093/cz/zoac038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 05/05/2022] [Indexed: 11/15/2022] Open
Abstract
Abstract
Carotenoid-based ornaments are often considered reliable (honest) individual condition signals because their expression implies physiological costs unaffordable for low-quality animals (handicap signals). Recently, it has been suggested that efficient cell respiration is mandatory for producing red ketocarotenoids from dietary yellow carotenoids. This implies that red colorations should be entirely unfalsifiable and independent of expression costs (index signals). In a precedent study, male common crossbills Loxia curvirostra showing a red plumage reported higher apparent survival than those showing yellowish-orange colors. The plumage redness in this species is due to ketocarotenoid accumulation in feathers. Here, we correlated the male plumage redness (a four-level visual score: yellow, patchy, orange and red) and the body morphology in more than 1000 adult crossbills captured in three Iberian localities to infer the mechanisms responsible for color evolution. A principal component analysis summarized morphometry of ten variables (beak, wing, tarsus length, etc.). The overall body size (PC1) and the length of flight feathers regarding body size (PC3) showed significant positive relationships with plumage redness. Plumage redness was barely correlated to bill shape measures suggesting no constraint in acquiring carotenoids from pine cones. However, large body sizes or proportionally long flying feathers could help carotenoid acquisition via social competition or increased foraging ranges. Proportionally longer flight feathers might also be associated with a specific cell respiration profile that would simultaneously favor flying capacities and enzymatic transformations needed for ketocarotenoid synthesis. Such a phenotypic profile would agree with the hypothesis of ketocarotenoid-based colors acting as individual quality index signals.
Collapse
Affiliation(s)
- Carlos Alonso-Alvarez
- Ecología Evolutiva, Museo Nacional de Ciencias Naturales (CSIC), Edificio Pinar, Spain
| | - Blanca Fernández-Eslava
- Ecología Evolutiva,Universidad de Navarra. Facultad de Ciencias, C/ Irunlarrea, Pamplona, Navarra, Spain
| | - Daniel Alonso
- Ornitología,Sociedad de Ciencias de Aranzadi, Zorroagagaina, Donostia, San Sebastián, Spain
| | - David Galicia
- Biología Ambiental, Universidad de Navarra, Facultad de Ciencias, C/ Irunlarrea, Pamplona, Navarra, Spain
| | - Juan Arizaga
- Ornitología, Sociedad de Ciencias de Aranzadi, Zorroagagaina, Donostia, San Sebastián, Spain
| |
Collapse
|
2
|
de Raad J, Päckert M, Irestedt M, Janke A, Kryukov AP, Martens J, Red'kin YA, Sun Y, Töpfer T, Schleuning M, Neuschulz EL, Nilsson MA. Speciation and population divergence in a mutualistic seed dispersing bird. Commun Biol 2022; 5:429. [PMID: 35534538 PMCID: PMC9085801 DOI: 10.1038/s42003-022-03364-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/14/2022] [Indexed: 11/29/2022] Open
Abstract
Bird-mediated seed dispersal is crucial for the regeneration and viability of ecosystems, often resulting in complex mutualistic species networks. Yet, how this mutualism drives the evolution of seed dispersing birds is still poorly understood. In the present study we combine whole genome re-sequencing analyses and morphometric data to assess the evolutionary processes that shaped the diversification of the Eurasian nutcracker (Nucifraga), a seed disperser known for its mutualism with pines (Pinus). Our results show that the divergence and phylogeographic patterns of nutcrackers resemble those of other non-mutualistic passerine birds and suggest that their early diversification was shaped by similar biogeographic and climatic processes. The limited variation in foraging traits indicates that local adaptation to pines likely played a minor role. Our study shows that close mutualistic relationships between bird and plant species might not necessarily act as a primary driver of evolution and diversification in resource-specialized birds. Genomic and phylogeographic analyses indicate that resource-specialization did not play a major role in the diversification and speciation of seed dispersing nutcrackers
Collapse
Affiliation(s)
- Jordi de Raad
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F, Senckenberganlage 25, 60325, Frankfurt am Main, Germany.,LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325, Frankfurt, Germany.,Institute for Ecology, Evolution and Diversity, Goethe University, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, Germany
| | - Martin Päckert
- Senckenberg Naturhistorische Sammlungen Dresden, Museum für Tierkunde, Königsbrücker Landstraße 159, 01109, Dresden, Germany
| | - Martin Irestedt
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Frescativägen 40, 114 18, Stockholm, Sweden
| | - Axel Janke
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F, Senckenberganlage 25, 60325, Frankfurt am Main, Germany.,LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325, Frankfurt, Germany.,Institute for Ecology, Evolution and Diversity, Goethe University, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, Germany
| | - Alexey P Kryukov
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Russian Academy of Sciences, Stoletiya Avenue 159, 690022, Vladivostok, Russia
| | - Jochen Martens
- Institut für Organismische und Molekulare Evolutionsbiologie (iomE), Johannes Gutenberg-Universität Mainz, 55099, Mainz, Germany
| | - Yaroslav A Red'kin
- Department of Ornithology, Zoological Museum of Moscow State University, Bol'shaya Nikitskaya Street 2, 125009, Moscow, Russia
| | - Yuehua Sun
- Institute of Zoology, Chinese Academy of Sciences, CN-100101, Beijing, PR China
| | - Till Töpfer
- Leibniz Institute for the Analysis of Biodiversity Change, Zoological Research Museum Alexander Koenig, Adenauerallee 127, 53113, Bonn, Germany
| | - Matthias Schleuning
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F, Senckenberganlage 25, 60325, Frankfurt am Main, Germany
| | - Eike Lena Neuschulz
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F, Senckenberganlage 25, 60325, Frankfurt am Main, Germany
| | - Maria A Nilsson
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F, Senckenberganlage 25, 60325, Frankfurt am Main, Germany. .,LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325, Frankfurt, Germany.
| |
Collapse
|
4
|
Porter CK, Confer JL, Aldinger KR, Canterbury RA, Larkin JL, McNeil DJ. Strong yet incomplete reproductive isolation in Vermivora is not contradicted by other lines of evidence: A reply to Toews et al. Ecol Evol 2021; 11:10724-10730. [PMID: 34367609 PMCID: PMC8328446 DOI: 10.1002/ece3.7763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/14/2021] [Accepted: 05/21/2021] [Indexed: 11/16/2022] Open
Abstract
Toews et al. assert that strong reproductive isolation in Vermivora is inconsistent with other lines of evidence. Here, we discuss how strong yet incomplete reproductive isolation is consistent with other results from this system.
Collapse
Affiliation(s)
- Cody K. Porter
- Wildlife Biology ProgramLees‐McRae CollegeBanner ElkNCUSA
| | | | - Kyle R. Aldinger
- West Virginia Cooperative Fish and Wildlife Research UnitDivision of Forestry and Natural ResourcesWest Virginia UniversityMorgantownWVUSA
| | | | | | - Darin J. McNeil
- Department of EntomologyThe Pennsylvania State UniversityUniversity ParkPAUSA
| |
Collapse
|
5
|
Albrecht F, Hering J, Fuchs E, Illera JC, Ihlow F, Shannon TJ, Collinson JM, Wink M, Martens J, Päckert M. Phylogeny of the Eurasian Wren Nannus troglodytes (Aves: Passeriformes: Troglodytidae) reveals deep and complex diversification patterns of Ibero-Maghrebian and Cyrenaican populations. PLoS One 2020; 15:e0230151. [PMID: 32191719 PMCID: PMC7082076 DOI: 10.1371/journal.pone.0230151] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 02/22/2020] [Indexed: 11/19/2022] Open
Abstract
The Mediterranean Basin represents a Global Biodiversity Hotspot where many organisms show high inter- and intraspecific differentiation. Extant phylogeographic patterns of terrestrial circum-Mediterranean faunas were mainly shaped through Pleistocene range shifts and range fragmentations due to retreat into different glacial refugia. Thus, several extant Mediterranean bird species have diversified by surviving glaciations in different hospitable refugia and subsequently expanded their distribution ranges during the Holocene. Such a scenario was also suggested for the Eurasian Wren (Nannus troglodytes) despite the lack of genetic data for most Mediterranean subspecies. Our phylogenetic multi-locus analysis comprised 18 out of 28 currently accepted subspecies of N. troglodytes, including all but one subspecies which are present in the Mediterranean Basin. The resulting phylogenetic reconstruction dated the onset of the entire Holarctic radiation of three Nannus species to the early Pleistocene. In the Eurasian Wren, two North African subspecies represented separate basal lineages from the Maghreb (N. t. kabylorum) and from the Libyan Cyrenaica (N. t. juniperi), being only distantly related to other Mediterranean populations. Although N. troglodytes appeared to be paraphyletic with respect to the Nearctic Winter Wren (N. hiemalis), respective nodes did not receive strong statistical support. In contrast, paraphyly of the Ibero-Maghrebian taxon N. t. kabylorum was strongly supported. Southern Iberian populations of N. t. kabylorum did not clade with Maghrebian populations of the same subspecies but formed a sister clade to a highly diverse European clade (including nominate N. t. troglodytes and eight further taxa). In accordance with a pattern also found in other birds, Eurasian populations were split into a western clade (Europe, Caucasus) and an eastern clade (Central Asia, Sino-Himalayas, East Asia). This complex phylogeographic pattern revealed cryptic diversification in N. troglodytes, especially in the Iberio-Maghrebian region.
Collapse
Affiliation(s)
- Frederik Albrecht
- Museum of Zoology, Senckenberg Natural History Collections Dresden, Senckenberg|Leibniz Institution for Biodiversity and Earth System Research, Dresden, Saxony, Germany
- * E-mail:
| | - Jens Hering
- Verein Sächsischer Ornithologen e.V., Limbach-Oberfrohna, Saxony, Germany
| | - Elmar Fuchs
- Verein Sächsischer Ornithologen e.V., Weimar, Thuringia, Germany
| | - Juan Carlos Illera
- Research Unit of Biodiversity (UO-CSIC-PA), Oviedo University, Asturias, Spain
| | - Flora Ihlow
- Museum of Zoology, Senckenberg Natural History Collections Dresden, Senckenberg|Leibniz Institution for Biodiversity and Earth System Research, Dresden, Saxony, Germany
| | - Thomas J. Shannon
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | - J. Martin Collinson
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Baden-Württemberg, Germany
| | - Jochen Martens
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Rhineland-Palatinate, Germany
| | - Martin Päckert
- Museum of Zoology, Senckenberg Natural History Collections Dresden, Senckenberg|Leibniz Institution for Biodiversity and Earth System Research, Dresden, Saxony, Germany
| |
Collapse
|