1
|
Muzzatti MJ, Ritchie MW, Bess EC, Bertram SM, MacMillan HA. Farmed crickets (Orthoptera: Gryllidae) raised with dermestids (Coleoptera: Dermestidae) suffer from reduced and delayed growth, but not enough to explain reports of dramatic yield loss. JOURNAL OF ECONOMIC ENTOMOLOGY 2025; 118:160-171. [PMID: 39278631 PMCID: PMC11818372 DOI: 10.1093/jee/toae208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/13/2024] [Accepted: 08/30/2024] [Indexed: 09/18/2024]
Abstract
The mass production of insects for food and feed is an expanding North American industry. Facilities that mass rear insects are at risk of pest infestations because the optimal environmental conditions for rearing beneficial species may also support the development of pest species. Here, we present the first recorded results detailing the interactions between dermestids and farmed crickets. Cricket farms have reported extremely low harvest yield during heavy dermestid infestations, but the exact reasons for this low yield are unknown. Many dermestid larvae are covered in dense, detachable, barbed setae called hastisetae, which are used by the larvae as an active trapping system against arthropod predators. We designed a series of experiments to test the hypotheses that a dermestid pest of cricket farms, black larder beetle (Dermestes ater DeGeer (Coleoptera: Dermestidae)), may be directly impacting Gryllodes sigillatus Walker (Orthoptera: Gryllidae) yield through the physical effects of hastisetae ingestion and/or indirectly impacting cricket yield through competition for fishmeal, a primary source of protein in conventional cricket feed. Our predictions that G. sigillatus life history and survival would be negatively affected by dermestids were largely refuted. Females fed infested diets grew less mass, but not smaller body size, compared to females fed uninfested diets. We also found that while G. sigillatus experienced delayed growth early in life after living with dermestids, they were able to tolerate living with, and consuming, dermestid larvae. We discuss how these findings have led to new hypotheses concerning how dermestid infestations drive reductions in cricket farm yield.
Collapse
Affiliation(s)
| | | | | | - Susan M Bertram
- Department of Biology, Carleton University, Ottawa, ON, Canada
| | | |
Collapse
|
2
|
Rutkowski NAJ, Foo YZ, Jones TM, McNamara KB. Age, but not an immune challenge, triggers terminal investment in the Pacific field cricket, Teleogryllus oceanicus. Behav Ecol 2023; 34:468-479. [PMID: 37192922 PMCID: PMC10183208 DOI: 10.1093/beheco/arad021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 01/22/2023] [Accepted: 03/12/2023] [Indexed: 04/03/2023] Open
Abstract
The terminal investment hypothesis proposes that, when individuals are faced with a threat to survival, they will increase investment in current reproduction. The level of the threat necessary to elicit terminal investment (the dynamic terminal investment threshold) may vary based on other factors that also influence future reproduction. Here, we tested whether there is an interactive effect of age and an immune challenge on the dynamic terminal investment threshold in the Pacific field cricket, Teleogryllus oceanicus. We measured the courtship call, mating attractiveness, ejaculate size, and offspring production of T. oceanicus males. We found only limited support for the dynamic terminal investment threshold: there was no consistent evidence of a positive interaction between male age and immune challenge intensity. However, we found evidence for age-related terminal investment: older males produced a larger spermatophore than younger males. Older males also had a slower calling rate compared to younger males, suggesting a potential trade-off between these two pre- and post-copulatory traits. As some, but not all, reproductive traits responded plastically to cues for terminal investment, our research highlights the importance of considering a broad range of pre-and post-copulatory traits when exploring the potential for terminal investment to occur.
Collapse
Affiliation(s)
- Nicola-Anne J Rutkowski
- School of BioSciences, University of Melbourne, Biosciences 4, Royal Parade, Parkville, Victoria 3010, Australia
| | - Yong Zhi Foo
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, 35 Stirling Hwy, Crawley, Western Australia 6009, Australia
| | - Therésa M Jones
- School of BioSciences, University of Melbourne, Biosciences 4, Royal Parade, Parkville, Victoria 3010, Australia
| | - Kathryn B McNamara
- School of BioSciences, University of Melbourne, Biosciences 4, Royal Parade, Parkville, Victoria 3010, Australia
| |
Collapse
|
3
|
Duffield KR, Foquet B, Stasko JA, Hunt J, Sadd BM, Sakaluk SK, Ramirez JL. Induction of Multiple Immune Signaling Pathways in Gryllodes sigillatus Crickets during Overt Viral Infections. Viruses 2022; 14:v14122712. [PMID: 36560716 PMCID: PMC9786821 DOI: 10.3390/v14122712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Despite decades of focus on crickets (family: Gryllidae) as a popular commodity and model organism, we still know very little about their immune responses to microbial pathogens. Previous studies have measured downstream immune effects (e.g., encapsulation response, circulating hemocytes) following an immune challenge in crickets, but almost none have identified and quantified the expression of immune genes during an active pathogenic infection. Furthermore, the prevalence of covert (i.e., asymptomatic) infections within insect populations is becoming increasingly apparent, yet we do not fully understand the mechanisms that maintain low viral loads. In the present study, we measured the expression of several genes across multiple immune pathways in Gryllodes sigillatus crickets with an overt or covert infection of cricket iridovirus (CrIV). Crickets with overt infections had higher relative expression of key pathway component genes across the Toll, Imd, Jak/STAT, and RNAi pathways. These results suggests that crickets can tolerate low viral infections but can mount a robust immune response during an overt CrIV infection. Moreover, this study provides insight into the immune strategy of crickets following viral infection and will aid future studies looking to quantify immune investment and improve resistance to pathogens.
Collapse
Affiliation(s)
- Kristin R. Duffield
- National Center for Agricultural Utilization Research, Crop BioProtection Research Unit, USDA-ARS, 1815 N. University St., Peoria, IL 61604, USA
- Correspondence:
| | - Bert Foquet
- School of Biological Sciences, Illinois State University, Normal, IL 61761, USA
| | - Judith A. Stasko
- Microscopy Services Laboratory, National Animal Disease Center, USDA-ARS, Ames, IA 50010, USA
| | - John Hunt
- School of Science, Western Sydney University, Hawkesbury Campus, Richmond, NSW 2753, Australia
| | - Ben M. Sadd
- School of Biological Sciences, Illinois State University, Normal, IL 61761, USA
| | - Scott K. Sakaluk
- School of Biological Sciences, Illinois State University, Normal, IL 61761, USA
| | - José L. Ramirez
- National Center for Agricultural Utilization Research, Crop BioProtection Research Unit, USDA-ARS, 1815 N. University St., Peoria, IL 61604, USA
| |
Collapse
|
4
|
Duffield KR, Hunt J, Sadd BM, Sakaluk SK, Oppert B, Rosario K, Behle RW, Ramirez JL. Active and Covert Infections of Cricket Iridovirus and Acheta domesticus Densovirus in Reared Gryllodes sigillatus Crickets. Front Microbiol 2021; 12:780796. [PMID: 34917059 PMCID: PMC8670987 DOI: 10.3389/fmicb.2021.780796] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/01/2021] [Indexed: 11/21/2022] Open
Abstract
Interest in developing food, feed, and other useful products from farmed insects has gained remarkable momentum in the past decade. Crickets are an especially popular group of farmed insects due to their nutritional quality, ease of rearing, and utility. However, production of crickets as an emerging commodity has been severely impacted by entomopathogenic infections, about which we know little. Here, we identified and characterized an unknown entomopathogen causing mass mortality in a lab-reared population of Gryllodes sigillatus crickets, a species used as an alternative to the popular Acheta domesticus due to its claimed tolerance to prevalent entomopathogenic viruses. Microdissection of sick and healthy crickets coupled with metagenomics-based identification and real-time qPCR viral quantification indicated high levels of cricket iridovirus (CrIV) in a symptomatic population, and evidence of covert CrIV infections in a healthy population. Our study also identified covert infections of Acheta domesticus densovirus (AdDNV) in both populations of G. sigillatus. These results add to the foundational research needed to better understand the pathology of mass-reared insects and ultimately develop the prevention, mitigation, and intervention strategies needed for economical production of insects as a commodity.
Collapse
Affiliation(s)
- Kristin R. Duffield
- Crop BioProtection Research Unit, Agricultural Research Service, United States Department of Agriculture, National Center for Agricultural Utilization Research, Peoria, IL, United States
- *Correspondence: Kristin R. Duffield,
| | - John Hunt
- School of Science, Western Sydney University, Richmond, NSW, Australia
| | - Ben M. Sadd
- School of Biological Sciences, Illinois State University, Normal, IL, United States
| | - Scott K. Sakaluk
- School of Biological Sciences, Illinois State University, Normal, IL, United States
| | - Brenda Oppert
- Stored Product Insect and Engineering Research Unit, Agricultural Research Service, United States Department of Agriculture, Center for Grain and Animal Health Research, Manhattan, KS, United States
| | - Karyna Rosario
- Marine Genomics Laboratory, University of South Florida, St. Petersburg, FL, United States
| | - Robert W. Behle
- Crop BioProtection Research Unit, Agricultural Research Service, United States Department of Agriculture, National Center for Agricultural Utilization Research, Peoria, IL, United States
| | - José L. Ramirez
- Crop BioProtection Research Unit, Agricultural Research Service, United States Department of Agriculture, National Center for Agricultural Utilization Research, Peoria, IL, United States
| |
Collapse
|
5
|
Male and female genotype and a genotype-by-genotype interaction mediate the effects of mating on cellular but not humoral immunity in female decorated crickets. Heredity (Edinb) 2020; 126:477-490. [PMID: 33219366 DOI: 10.1038/s41437-020-00384-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022] Open
Abstract
Sexually antagonistic coevolution is predicted to lead to the divergence of male and female genotypes related to the effects of substances transferred by males at mating on female physiology. The outcome of mating should thus depend on the specific combination of mating genotypes. Although mating has been shown to influence female immunity in diverse insect taxa, a male-female genotype-by-genotype effect on female immunity post mating remains largely unexplored. Here, we investigate the effects of mating on female decorated cricket baseline immunity and the potential for a male-genotype-by-female-genotype interaction affecting this response. Females from three distinct genotypic backgrounds were left unmated or singly mated in a fully reciprocal design to males from the same three genotypic backgrounds. Hemocytes and hemocyte microaggregations were quantified for female cellular immunity, and phenoloxidase, involved in melanization, and antibacterial activity for humoral immunity. In this system, female cellular immunity was more reactive to mating, and mating effects were genotype-dependent. Specifically, for hemocytes, a genotype-by-mating status interaction mediated the effect of mating per se, and a significant male-female genotype-by-genotype interaction determined hemocyte depletion post mating. Microaggregations were influenced by the female's genotype or that of her mate. Female humoral immune measures were unaffected, indicating that the propensity for post-mating effects on females is dependent on the component of baseline immunity. The genotype-by-genotype effect on hemocytes supports a role of sexual conflict in post-mating immune suppression, suggesting divergence of male genotypes with respect to modification of female post-mating immunity, and divergence of female genotypes in resistance to these effects.
Collapse
|
6
|
Duffield KR, Hampton KJ, Houslay TM, Rapkin J, Hunt J, Sadd BM, Sakaluk SK. Macronutrient intake and simulated infection threat independently affect life history traits of male decorated crickets. Ecol Evol 2020; 10:11766-11778. [PMID: 33144999 PMCID: PMC7593159 DOI: 10.1002/ece3.6813] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/07/2020] [Accepted: 08/28/2020] [Indexed: 01/11/2023] Open
Abstract
Nutritional geometry has advanced our understanding of how macronutrients (e.g., proteins and carbohydrates) influence the expression of life history traits and their corresponding trade-offs. For example, recent work has revealed that reproduction and immune function in male decorated crickets are optimized at very different protein:carbohydrate (P:C) dietary ratios. However, it is unclear how an individual's macronutrient intake interacts with its perceived infection status to determine investment in reproduction or other key life history traits. Here, we employed a fully factorial design in which calling effort and immune function were quantified for male crickets fed either diets previously demonstrated to maximize calling effort (P:C = 1:8) or immune function (P:C = 5:1), and then administered a treatment from a spectrum of increasing infection cue intensity using heat-killed bacteria. Both diet and a simulated infection threat independently influenced the survival, immunity, and reproductive effort of males. If they called, males increased calling effort at the low infection cue dose, consistent with the terminal investment hypothesis, but interpretation of responses at the higher threat levels was hampered by the differential mortality of males across infection cue and diet treatments. A high protein, low carbohydrate diet severely reduced the health, survival, and overall fitness of male crickets. There was, however, no evidence of an interaction between diet and infection cue dose on calling effort, suggesting that the threshold for terminal investment was not contingent on diet as investigated here.
Collapse
Affiliation(s)
- Kristin R. Duffield
- Behavior, Ecology, Evolution and Systematics SectionSchool of Biological SciencesIllinois State UniversityNormalILUSA
- Present address:
Crop Bioprotection Research UnitUnited States Department of AgricultureNational Center for Agricultural Utilization Research, Agricultural Research ServicePeoriaILUSA
| | - Kylie J. Hampton
- Behavior, Ecology, Evolution and Systematics SectionSchool of Biological SciencesIllinois State UniversityNormalILUSA
- Present address:
Crop Bioprotection Research UnitUnited States Department of AgricultureNational Center for Agricultural Utilization Research, Agricultural Research ServicePeoriaILUSA
| | | | - James Rapkin
- Centre for Ecology and ConservationUniversity of ExeterPenrynUK
| | - John Hunt
- Centre for Ecology and ConservationUniversity of ExeterPenrynUK
- School of Science and Hawkesbury Institute for the EnvironmentWestern Sydney UniversityPenrithNSWAustralia
| | - Ben M. Sadd
- Behavior, Ecology, Evolution and Systematics SectionSchool of Biological SciencesIllinois State UniversityNormalILUSA
| | - Scott K. Sakaluk
- Behavior, Ecology, Evolution and Systematics SectionSchool of Biological SciencesIllinois State UniversityNormalILUSA
| |
Collapse
|
7
|
Sakaluk SK, Oldzej J, Poppe CJ, Harper JL, Rines IG, Hampton KJ, Duffield KR, Hunt J, Sadd BM. Effects of inbreeding on life-history traits and sexual competency in decorated crickets. Anim Behav 2019. [DOI: 10.1016/j.anbehav.2019.05.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|