1
|
Simmons LW, Lovegrove M. Interacting phenotypic plasticities: do male and female responses to the sociosexual environment interact to determine fitness? Evolution 2024; 78:1969-1979. [PMID: 39290090 DOI: 10.1093/evolut/qpae122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/08/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024]
Abstract
Socially induced plasticity in reproductive effort is a widely documented phenomenon. However, few empirical studies have examined how male and female plastic responses to the social environment might interact in determining fitness outcomes. In field crickets, Teleogryllus oceanicus, males respond to rival songs by increasing expenditure on seminal fluid proteins that enhance competitive fertilization success at the cost of reduced embryo survival. It remains unknown whether plastic responses in females could moderate the effects of male competitiveness on offspring performance. Here, we used a fully factorial design to explore the interacting effects on fitness of male and female plasticity to the sociosexual environment. We found that female crickets exposed to male songs increased the number of eggs produced during early life reproduction, which came at the cost of reduced offspring size. There was evidence, albeit weak, that interacting effects of male and female sociosexual environments contributed to variation in the hatching success of eggs laid by females. Lifetime offspring production was unaffected by the sociosexual environments to which upstream male and female plastic responses were made. Our data offer a rare test of the theoretical expectation that male and female plasticities should interact in their effects on female fitness.
Collapse
Affiliation(s)
- Leigh W Simmons
- Centre for Evolutionary Biology, School of Biological Sciences (M092), The University of Western Australia, Crawley, WA, Australia
| | - Maxine Lovegrove
- Centre for Evolutionary Biology, School of Biological Sciences (M092), The University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
2
|
Zhang X, Blaxter M, Wood JMD, Tracey A, McCarthy S, Thorpe P, Rayner JG, Zhang S, Sikkink KL, Balenger SL, Bailey NW. Temporal genomics in Hawaiian crickets reveals compensatory intragenomic coadaptation during adaptive evolution. Nat Commun 2024; 15:5001. [PMID: 38866741 PMCID: PMC11169259 DOI: 10.1038/s41467-024-49344-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 05/24/2024] [Indexed: 06/14/2024] Open
Abstract
Theory predicts that compensatory genetic changes reduce negative indirect effects of selected variants during adaptive evolution, but evidence is scarce. Here, we test this in a wild population of Hawaiian crickets using temporal genomics and a high-quality chromosome-level cricket genome. In this population, a mutation, flatwing, silences males and rapidly spread due to an acoustically-orienting parasitoid. Our sampling spanned a social transition during which flatwing fixed and the population went silent. We find long-range linkage disequilibrium around the putative flatwing locus was maintained over time, and hitchhiking genes had functions related to negative flatwing-associated effects. We develop a combinatorial enrichment approach using transcriptome data to test for compensatory, intragenomic coevolution. Temporal changes in genomic selection were distributed genome-wide and functionally associated with the population's transition to silence, particularly behavioural responses to silent environments. Our results demonstrate how 'adaptation begets adaptation'; changes to the sociogenetic environment accompanying rapid trait evolution can generate selection provoking further, compensatory adaptation.
Collapse
Affiliation(s)
- Xiao Zhang
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, College of Life Sciences, Tianjin Normal University, Tianjin, China.
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, Fife, UK.
| | - Mark Blaxter
- Tree of Life, Wellcome Sanger Institute, Cambridge, UK
| | | | - Alan Tracey
- Tree of Life, Wellcome Sanger Institute, Cambridge, UK
| | | | - Peter Thorpe
- School of Medicine, University of St Andrews, St Andrews, Fife, UK
- Data Analysis Group, Division of Computational Biology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Jack G Rayner
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, Fife, UK
| | - Shangzhe Zhang
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, Fife, UK
| | | | - Susan L Balenger
- College of Biological Sciences, University of Minnesota, Saint Paul, MN, USA
| | - Nathan W Bailey
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, Fife, UK.
| |
Collapse
|
3
|
Schneider WT, Rutz C, Bailey NW. Behavioural plasticity compensates for adaptive loss of cricket song. Ecol Lett 2024; 27:e14404. [PMID: 38519842 DOI: 10.1111/ele.14404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 02/08/2024] [Indexed: 03/25/2024]
Abstract
Behavioural flexibility might help animals cope with costs of genetic variants under selection, promoting genetic adaptation. However, it has proven challenging to experimentally link behavioural flexibility to the predicted compensation of population-level fitness. We tested this prediction using the field cricket Teleogryllus oceanicus. In Hawaiian populations, a mutation silences males and protects against eavesdropping parasitoids. To examine how the loss of this critical acoustic communication signal impacts offspring production and mate location, we developed a high-resolution, individual-based tracking system for low-light, naturalistic conditions. Offspring production did not differ significantly in replicate silent versus singing populations, and fitness compensation in silent conditions was associated with significantly increased locomotion in both sexes. Our results provide evidence that flexible behaviour can promote genetic adaptation via compensation in reproductive output and suggest that rapid evolution of animal communication systems may be less constrained than previously appreciated.
Collapse
Affiliation(s)
- Will T Schneider
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, Fife, UK
| | - Christian Rutz
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, Fife, UK
| | - Nathan W Bailey
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, Fife, UK
| |
Collapse
|
4
|
Tanner JC, Johnson ER, Zuk M. Is plasticity in field cricket mating behaviour mediated by experience of song quality? Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
5
|
Rayner JG, Hitchcock TJ, Bailey NW. Variable dosage compensation is associated with female consequences of an X-linked, male-beneficial mutation. Proc Biol Sci 2021; 288:20210355. [PMID: 33757350 PMCID: PMC8059673 DOI: 10.1098/rspb.2021.0355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022] Open
Abstract
Recent theory has suggested that dosage compensation mediates sexual antagonism over X-linked genes. This process relies on the assumption that dosage compensation scales phenotypic effects between the sexes, which is largely untested. We evaluated this by quantifying transcriptome variation associated with a recently arisen, male-beneficial, X-linked mutation across tissues of the field cricket Teleogryllus oceanicus, and testing the relationship between the completeness of dosage compensation and female phenotypic effects at the level of gene expression. Dosage compensation in T. oceanicus was variable across tissues but usually incomplete, such that relative expression of X-linked genes was typically greater in females. Supporting the assumption that dosage compensation scales phenotypic effects between the sexes, we found tissues with incomplete dosage compensation tended to show female-skewed effects of the X-linked allele. In gonads, where expression of X-linked genes was most strongly female-biased, ovaries-limited genes were much more likely to be X-linked than were testes-limited genes, supporting the view that incomplete dosage compensation favours feminization of the X. Our results support the expectation that sex chromosome dosage compensation scales phenotypic effects of X-linked genes between sexes, substantiating a key assumption underlying the theoretical role of dosage compensation in determining the dynamics of sexual antagonism on the X.
Collapse
Affiliation(s)
- Jack G. Rayner
- Centre for Biological Diversity, University of St Andrews, St Andrews KY16 9TH, UK
| | - Thomas J. Hitchcock
- Centre for Biological Diversity, University of St Andrews, St Andrews KY16 9TH, UK
| | - Nathan W. Bailey
- Centre for Biological Diversity, University of St Andrews, St Andrews KY16 9TH, UK
| |
Collapse
|
6
|
Richardson J, Heinen-Kay JL, Zuk M. Sex-specific associations between life-history traits and a novel reproductive polymorphism in the Pacific field cricket. J Evol Biol 2021; 34:549-557. [PMID: 33484624 DOI: 10.1111/jeb.13758] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/23/2020] [Accepted: 12/22/2020] [Indexed: 11/29/2022]
Abstract
Associations between heritable polymorphisms and life-history traits, such as development time or reproductive investment, may play an underappreciated role in maintaining polymorphic systems. This is because selection acting on a particular morph could be bolstered or disrupted by correlated changes in life history or vice versa. In a Hawaiian population of the Pacific field cricket (Teleogryllus oceanicus), a novel mutation (flatwing) on the X-chromosome is responsible for a heritable polymorphism in male wing structure. We used laboratory cricket colonies fixed for male wing morph to investigate whether males and females bearing the flatwing or normal-wing (wild-type) allele differed in their life-history traits. We found that flatwing males developed faster and had heavier testes than normal-wings, whereas flatwing homozygous females developed slower and had lighter reproductive tissues than normal-wing homozygous females. Our results advance our understanding of the evolution of polymorphisms by demonstrating that the genetic change responsible for a reproductive polymorphism can also have consequences for fundamental life-history traits in both males and females.
Collapse
Affiliation(s)
- Jon Richardson
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - Justa L Heinen-Kay
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN, USA
| | - Marlene Zuk
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN, USA
| |
Collapse
|
7
|
Sikkink KL, Bailey NW, Zuk M, Balenger SL. Immunogenetic and tolerance strategies against a novel parasitoid of wild field crickets. Ecol Evol 2020; 10:13312-13326. [PMID: 33304539 PMCID: PMC7713935 DOI: 10.1002/ece3.6930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 08/10/2020] [Accepted: 08/18/2020] [Indexed: 11/10/2022] Open
Abstract
Among the parasites of insects, endoparasitoids impose a costly challenge to host defenses because they use their host's body for the development and maturation of their eggs or larvae, and ultimately kill the host. Tachinid flies are highly specialized acoustically orienting parasitoids, with first instar mobile larvae that burrow into the host's body to feed. We investigated the possibility that Teleogryllus oceanicus field crickets employ postinfestation strategies to maximize survival when infested with the larvae of the parasitoid fly Ormia ochracea. Using crickets from the Hawaiian Islands of Kauai, where the parasitoid is present, and crickets from the Cook Islands (Mangaia), where the parasitoid is absent, we evaluated fitness consequences of infestation by comparing feeding behavior, reproductive capacity, and survival of males experimentally infested with O. ochracea larvae. We also evaluated mechanisms underlying host responses by comparing gene expression in crickets infested with fly larvae for different lengths of time with that of uninfested control crickets. We observed weak population differences in fitness (spermatophore production) and survival (total survival time postinfestation). These responses generally did not show an interaction between population and the number of larva hosts carried or by host body condition. Gene expression patterns also revealed population differences in response to infestation, but we did not find evidence for consistent differences in genes associated with immunity or stress response. One possibility is that any postinfestation evolved resistance does not involve genes associated with these particular functional categories. More likely, these results suggest that coevolution with the fly does not strongly select for either postinfestation resistance or tolerance of parasitoid larvae in male crickets.
Collapse
Affiliation(s)
| | - Nathan W. Bailey
- Centre for Biological DiversitySchool of BiologyUniversity of St AndrewsSt AndrewsUK
| | - Marlene Zuk
- Department of Ecology, Evolution, and BehaviorUniversity of Minnesota‐Twin CitiesSt. PaulMNUSA
| | | |
Collapse
|
8
|
Heinen‐Kay JL, Nichols RE, Zuk M. Sexual signal loss, pleiotropy, and maintenance of a male reproductive polymorphism in crickets. Evolution 2020; 74:1002-1009. [DOI: 10.1111/evo.13952] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/11/2020] [Accepted: 02/11/2020] [Indexed: 12/25/2022]
Affiliation(s)
- Justa L. Heinen‐Kay
- Department of Ecology, Evolution, and BehaviorUniversity of Minnesota St. Paul Minnesota 55108
| | - Rachel E. Nichols
- Department of Ecology, Evolution, and BehaviorUniversity of Minnesota St. Paul Minnesota 55108
| | - Marlene Zuk
- Department of Ecology, Evolution, and BehaviorUniversity of Minnesota St. Paul Minnesota 55108
| |
Collapse
|