1
|
Vrech DE, Oviedo-Diego MA, Olivero PA, Peretti AV. End of the Season Blues: Senescence and Reproductive Trade-Offs in Male Scorpions. INSECTS 2024; 15:916. [PMID: 39769518 PMCID: PMC11676461 DOI: 10.3390/insects15120916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025]
Abstract
Seasonal reproductive dynamics and senescence have profound impacts on male fertility, yet these processes remain understudied in scorpions. This study investigates how reproductive parameters-such as testicular mass, sperm quantity, and viability-change over the course of the reproductive season in Urophonius achalensis males. We found that early-season males exhibited higher sperm quality and testicular mass compared to their older counterparts, suggesting that senescence, rather than reproductive effort, drives the decline in sperm viability. Interestingly, isolated males accumulated more sperm without a reduction in viability, highlighting potential mechanisms that preserve sperm quality despite senescence. Body condition also played a key role, with males in better condition showing higher sperm counts but facing a sharper decline in sperm viability as the season progressed, suggesting trade-offs between early reproductive success and later-life reproductive costs. Our findings offer novel insights into the reproductive strategies of scorpions, emphasizing the interplay between senescence, environmental stressors, and reproductive investment. This work provides new insights into the reproductive biology of scorpions, with broader implications for understanding the role of senescence and mating systems in shaping reproductive strategies.
Collapse
Affiliation(s)
| | | | | | - Alfredo V. Peretti
- Laboratorio de Biología Reproductiva y Evolución, Instituto de Diversidad y Ecología Animal (IDEA), CONICET-UNC, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba Av. Vélez Sarsfield 299, Córdoba X5000, Argentina; (D.E.V.); (M.A.O.-D.); (P.A.O.)
| |
Collapse
|
2
|
Cirino LA, Rodríguez AN, DeLong SA, Rodríguez RL. The function of prolonged copulations in Enchenopa treehoppers (Hemiptera: Membracidae). J Evol Biol 2024; 37:905-914. [PMID: 38842091 DOI: 10.1093/jeb/voae075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 05/16/2024] [Accepted: 06/04/2024] [Indexed: 06/07/2024]
Abstract
Copulations are very brief in many species, sometimes taking only seconds, but in other species, they can be quite prolonged. Potential explanations for prolonged copulations include time requirements for the transfer of sperm and/or other ejaculate substances. Ejaculate substances could function to regulate female receptivity to subsequent matings, provide nutritional nuptial gifts, or hasten egg oviposition at a potential survival cost to the female. We investigated prolonged copulation in a member of the Enchenopa binotata complex of treehoppers (Hemiptera: Membracidae), in which females rarely remate and copulation can last several hours. We assigned females to treatments in which we interrupted copulation at different times. We also included a control where copulation was not interrupted. We found that females that experienced shorter copulations were more likely to be subsequently receptive to an attractive male. We also found that few females produced offspring when they engaged in short copulations compared to those with longer copulations. We did not find any differences in female survival. Our results support the sperm transfer and receptivity regulation hypotheses. We discuss potential reasons for why these processes should take so long in a species with low female remating.
Collapse
Affiliation(s)
- Lauren A Cirino
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Ariel N Rodríguez
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Sage A DeLong
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Rafael L Rodríguez
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| |
Collapse
|
3
|
Somjee U, Marting P, Anzaldo S, Simmons LW, Painting CJ. Extreme range in adult body size reveals hidden trade-offs among sexually selected traits. Evolution 2024; 78:1382-1395. [PMID: 38900629 DOI: 10.1093/evolut/qpae084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 05/13/2024] [Accepted: 05/24/2024] [Indexed: 06/22/2024]
Abstract
Sexually selected weapons used to monopolize mating opportunities are predicted to trade-off with traits used in competition for fertilization. Yet, the limited size range typically found among adults of a species often precludes clear comparisons between population-level and individual-level relative trait investment. The jousting weevil, Brentus anchorago (Coleoptera: Brentidae), varies more than 26-fold in body mass, which is among the most extreme adult body size ranges of any solitary terrestrial species. We reveal a trade-off at a population level: hypermetric scaling in male weapons (slope = 1.59) and a closely mirrored reversal in allocation to postcopulatory traits (slope = 0.54). Yet, at the individual level, we find the opposite pattern; males that invest relatively more in weapons for their size class also invest more in postcopulatory traits. Across 36 dung beetle and 41 brentine weevil species, we find the allometric slope explains more trait variation at larger body size ranges; in brentines, population-level scaling patterns become more detectable in species with a larger range in adult body size. Our findings reveal that population-level allometries and individual-level trade-offs can both be important in shaping relative trait allocation; we highlight that the adult body size range is rarely examined but may be integral to gaining a deeper understanding of trade-offs in reproductive allocation.
Collapse
Affiliation(s)
- Ummat Somjee
- Department of Integrative Biology, University of Texas, Austin, TX, United States
- Smithsonian Tropical Research Institute, Balboa, Panama
| | - Peter Marting
- Department of Biological Sciences, Auburn University, Auburn, AL, United States
| | - Salvatore Anzaldo
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Leigh W Simmons
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
| | | |
Collapse
|
4
|
Valencia-Aguilar A, Ringler E, Lüpold S, Guayasamin JM, Prado CPA. Evolutionary trade-offs between testes size and parenting in Neotropical glassfrogs. Proc Biol Sci 2024; 291:20240054. [PMID: 38351799 PMCID: PMC10865008 DOI: 10.1098/rspb.2024.0054] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 01/18/2024] [Indexed: 02/16/2024] Open
Abstract
In males, large testes size signifies high sperm production and is commonly linked to heightened sperm competition levels. It may also evolve as a response to an elevated risk of sperm depletion due to multiple mating or large clutch sizes. Conversely, weapons, mate or clutch guarding may allow individuals to monopolize mating events and preclude sperm competition, thereby reducing the selection of large testes. Herein, we examined how paternal care, sexual size dimorphism (SSD), weaponry and female fecundity are linked to testes size in glassfrogs. We found that paternal care was associated with a reduction in relative testes size, suggesting an evolutionary trade-off between testes size and parenting. Although females were slightly larger than males and species with paternal care tended to have larger clutches, there was no significant relationship between SSD, clutch size and relative testes size. These findings suggest that the evolution of testes size in glassfrogs is influenced by sperm competition risk, rather than sperm depletion risk. We infer that clutch guarding precludes the risk of fertilization by other males and consequently diminishes selective pressure for larger testes. Our study highlights the prominent role of paternal care in the evolution of testes size in species with external fertilization.
Collapse
Affiliation(s)
- Anyelet Valencia-Aguilar
- Pós-Graduação em Ecologia, Evolução e Biodiversidade, Instituto de Biociências, São Paulo State University (Unesp), Rio Claro, São Paulo 13506-900, Brazil
- Division of Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, 3032 Bern, Switzerland
| | - Eva Ringler
- Division of Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, 3032 Bern, Switzerland
| | - Stefan Lüpold
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057 Zurich, Switzerland
| | - Juan M. Guayasamin
- Instituto Biósfera USFQ, Laboratorio de Biología Evolutiva, Universidad San Francisco de Quito USFQ Cumbayá, Quito, Ecuador
| | - Cynthia P. A. Prado
- Pós-Graduação em Ecologia, Evolução e Biodiversidade, Instituto de Biociências, São Paulo State University (Unesp), Rio Claro, São Paulo 13506-900, Brazil
- Departamento de Morfologia e Fisiologia Animal, FCAV, São Paulo State University (Unesp), Jaboticabal, São Paulo 14884-900, Brazil
| |
Collapse
|
5
|
Cirino LA. Seasonal shift in diet affects female reproductive anatomy but not mating behavior. Oecologia 2023:10.1007/s00442-023-05398-7. [PMID: 37354252 DOI: 10.1007/s00442-023-05398-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 05/31/2023] [Indexed: 06/26/2023]
Abstract
Females experience considerable environmental variability when breeding seasons are long. Adverse nutritional conditions can result in a reduction in mating and reproduction. However, a return to good nutrition may help animals resume high reproductive investment. I tested the silver spoon hypothesis in which females raised under poor conditions are reproductively limited compared to those raised under good conditions regardless of their adult environment. I used a specialist herbivore, Narnia femorata (Hemiptera: Coreidae), that lives on seasonally changing cacti. I provided juveniles and adults with a cactus pad with fruit (good diet), without fruit (restricted diet), or an improved adult diet (no fruit as juveniles, fruit at adulthood) to simulate a seasonal change in their diets near the end of the breeding season. I found that both ovary size and egg presence were reduced for females fed the restricted diet compared to those fed the good diet. Females fed the improved diet grew large ovaries like those fed the good diet, but few produced any eggs. Interestingly, female mating behavior did not change but females were less attractive to males when fed restricted diets. My results support the silver spoon hypothesis for compensatory growth and suggest that tradeoffs may occur between early survival and future reproduction when females experience a poor early life diet.
Collapse
Affiliation(s)
- Lauren A Cirino
- Entomology & Nematology Department, University of Florida, Gainesville, FL, 32611, USA.
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Lapham Hall, 3209 N Maryland Ave, Milwaukee, WI, 53211, USA.
| |
Collapse
|
6
|
Parrett JM, Slade EM, Knell RJ. Morph‐specific investment in testes mass in a trimorphic beetle,
Proagoderus watanabei. J Zool (1987) 2021. [DOI: 10.1111/jzo.12941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- J. M. Parrett
- Evolutionary Biology Group Faculty of Biology Adam Mickiewicz University Poznań Poland
- School of Biological and Behavioural Sciences Queen Mary, University of London London UK
| | - E. M. Slade
- Asian School of the Environment Nanyang Technological University Singapore City Singapore
| | - R. J. Knell
- School of Biological and Behavioural Sciences Queen Mary, University of London London UK
| |
Collapse
|
7
|
Greenway EV, Hamel JA, Miller CW. Exploring the effects of extreme polyandry on estimates of sexual selection and reproductive success. Behav Ecol 2021. [DOI: 10.1093/beheco/arab081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Abstract
Multiple mating by females can dramatically alter selection on males by creating indirect interactions between rivals via sperm competition. Exactly how this behavior alters the relationship between male mating and fertilization success depends on multiple factors: re-mating frequency, sperm usage patterns, and mating assortment (the extent to which the most promiscuous individuals mate with each other). Here, we explore the role these elements play in determining sexual selection in a highly polygyandrous species, the squash bug Anasa tristis. Using replicated semi-natural enclosures, in which individuals were able to freely interact for a 2-week period, we tracked matings between individuals and subsequent female offspring production. Multiple mating was extremely common, resulting in very high levels of sperm competition intensity. However, network analysis revealed that the most promiscuous males mated with less polyandrous females, and therefore experienced lower levels of sperm competition. As a result, estimated male reproductive success increased with mating success, but this relationship varied according to the mode of sperm utilization with which it was calculated. Furthermore, females with more mating partners produced more offspring, suggesting they also benefit from mating multiply. Our findings highlight that polyandry has numerous and complex effects on sexual selection which may only be exposed when examined under naturalistic conditions.
Collapse
Affiliation(s)
- E V(Ginny) Greenway
- Entomology and Nematology Department, University of Florida, Gainesville, FL, USA
| | - Jennifer A Hamel
- Entomology and Nematology Department, University of Florida, Gainesville, FL, USA
- Department of Biology, Elon University, Elon, NC, USA
| | - Christine W Miller
- Entomology and Nematology Department, University of Florida, Gainesville, FL, USA
| |
Collapse
|
8
|
Miller CW, Joseph PN, Emberts Z. Trade-offs between weapons and testes do not manifest at high social densities. J Evol Biol 2021; 34:726-735. [PMID: 33870571 DOI: 10.1111/jeb.13790] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/23/2021] [Accepted: 03/30/2021] [Indexed: 01/28/2023]
Abstract
Social conditions can alter the allocation of resources to reproductive traits. For example, an increase in social density during development is frequently associated with an increase in the testes mass of males. Sperm competition theory assumes that increased investment in testes should come at the expense of investing into precopulatory traits, such as sexually selected weaponry. However, much remains unknown about the role of the social context on the concurrent, relative investment in both testes and weapons. We found that the leaf-footed cactus bug, Narnia femorata (Hemiptera: Coreidae), grew nearly 20% larger testes when raised in high social densities. In addition to manipulating social density, we used autotomy (limb loss) to limit investment in their hindlimb weapon during development. At low densities, we found that those that lost a weapon during development grew larger testes by adulthood, supporting previous work demonstrating a weapons-testes trade-off. However, at high social densities, males that dropped a hindlimb did not grow larger testes, though testes were already large at this density. These results underscore the importance of the social context to resource allocation patterns within the individual.
Collapse
Affiliation(s)
- Christine W Miller
- Entomology & Nematology Department, University of Florida, Gainesville, FL, USA
| | - Paul N Joseph
- Entomology & Nematology Department, University of Florida, Gainesville, FL, USA
| | - Zachary Emberts
- Department of Biology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
9
|
Cirino LA, Lenga SH, Miller CW. Do males that experience weapon damage have greater reproductive potential than intact males in polygynous scenarios? Behav Ecol Sociobiol 2021. [DOI: 10.1007/s00265-021-03019-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
10
|
Liu J, He XZ, Zheng XL, Zhang Y, Wang Q. Larval social cues influence testicular investment in an insect. Curr Zool 2021; 68:1-8. [PMID: 35169624 PMCID: PMC8836345 DOI: 10.1093/cz/zoab028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/14/2021] [Indexed: 12/11/2022] Open
Abstract
Socio-sexual environment can have critical impacts on reproduction and survival of animals. Consequently, they need to prepare themselves by allocating more resources to competitive traits that give them advantages in the particular social setting they have been perceiving. Evidence shows that a male usually raises his investment in sperm after he detects the current or future increase of sperm competition because relative sperm numbers can determine his paternity share. This leads to the wide use of testis size as an index of the sperm competition level, yet testis size does not always reflect sperm production. To date, it is not clear whether male animals fine-tune their resource allocation to sperm production and other traits as a response to social cues during their growth and development. Using a polygamous insect Ephestia kuehniella, we tested whether and how larval social environment affected sperm production, testis size, and body weight. We exposed the male larvae to different juvenile socio-sexual cues and measured these traits. We demonstrate that regardless of sex ratio, group-reared males produced more eupyrenes (fertile and nucleate sperm) but smaller testes than singly reared ones, and that body weight and apyrene (infertile and anucleate sperm) numbers remained the same across treatments. We conclude that the presence of larval social, but not sexual cues is responsible for the increase of eupyrene production and decrease of testis size. We suggest that male larvae increase investment in fertile sperm cells and reduce investment in other testicular tissues in the presence of conspecific juvenile cues.
Collapse
Affiliation(s)
- Junyan Liu
- School of Agriculture and Environment, Massey University, Palmerston North 4100, New Zealand
| | - Xiong Z He
- School of Agriculture and Environment, Massey University, Palmerston North 4100, New Zealand
| | - Xia-Lin Zheng
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, National Demonstration Centre for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Yujing Zhang
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, National Demonstration Centre for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Qiao Wang
- School of Agriculture and Environment, Massey University, Palmerston North 4100, New Zealand
| |
Collapse
|
11
|
Wilner D, Greenway E, Cirino LA, Miller CW. Long-term reproductive success is predicted by sexual behavior and impaired by temporary nutritional stress during sexual maturation. Behav Processes 2020; 175:104122. [DOI: 10.1016/j.beproc.2020.104122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/24/2020] [Accepted: 03/28/2020] [Indexed: 12/18/2022]
|