1
|
Chapman A, McAfee A, Wrightson KLC, Magaña AA, Tarpy DR, Fine JD, Rempel Z, Peters K, Currie RW, Hoover SER, Foster LJ. Honey bee egg composition changes seasonally and after acute maternal virus infection. Sci Rep 2025; 15:10418. [PMID: 40140730 PMCID: PMC11947112 DOI: 10.1038/s41598-025-94670-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 03/17/2025] [Indexed: 03/28/2025] Open
Abstract
Honey bee (Apis mellifera) colonies depend on the reproductive output of their queens, which in turn is contingent on the care they receive from worker bees. Viral infections in queens can compromise their reproductive output, while viral infections in workers can inhibit the successful functioning of the colony and its ability to care for the queen. Transgenerational immune priming (TGIP) occurs when queens transfer immune-related compounds or immune elicitors to their offspring, enhancing the ability of subsequent generations to resist infections. These maternal effects on offspring could positively impact colony health and resilience to viral infections, but little is currently known about TGIP for viruses in honey bees. In this study, we investigate how viral infections affect the proteomic composition of eggs laid by queens injected with a mixture of black queen cell virus and deformed wing virus B, both in controlled experimental settings and natural field conditions. Our results showed that virus-challenged queens upregulated immune effectors in their eggs and ovaries. In contrast, naturally infected queens from field surveys did not; there were no significant differences in egg protein, lipid, or metabolite composition related to maternal viral load or ovary size. However, egg collection date strongly influenced the protein, lipid, and metabolite composition of eggs, potentially reflecting seasonal variations in pollen resources. These findings suggest that while viral infections can induce transgenerational effects on egg proteomes under short-term experimental conditions, such effects are less apparent in natural settings and can be overshadowed by seasonal and other ecological factors.
Collapse
Affiliation(s)
- Abigail Chapman
- Michael Smith Laboratories, Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, Canada.
| | - Alison McAfee
- Michael Smith Laboratories, Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, Canada
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, USA
| | - Kenzie L C Wrightson
- Michael Smith Laboratories, Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Armando Alcazar Magaña
- Michael Smith Laboratories, Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - David R Tarpy
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, USA
| | - Julia D Fine
- Invasive Species and Pollinator Health Research Unit, USDA-ARS, Davis, CA, USA
| | - Zoe Rempel
- Department of Entomology, University of Manitoba, Winnipeg, MB, Canada
| | - Kira Peters
- Department of Entomology, University of Manitoba, Winnipeg, MB, Canada
| | - Rob W Currie
- Department of Entomology, University of Manitoba, Winnipeg, MB, Canada
| | - Shelley E R Hoover
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| | - Leonard J Foster
- Michael Smith Laboratories, Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| |
Collapse
|
2
|
Carroll MJ, Brown N, Huang E. E-B-ocimene and brood cannibalism: Interplay between a honey bee larval pheromone and brood regulation in summer dearth colonies. PLoS One 2025; 20:e0317668. [PMID: 39913563 PMCID: PMC11801708 DOI: 10.1371/journal.pone.0317668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/02/2025] [Indexed: 02/11/2025] Open
Abstract
Honey bees balance colony populations against available food resources by adjusting brood rearing during nutritionally-stressed periods. Workers limit colony populations primarily through brood cannibalism of eggs and young larvae but often resume brood rearing when conditions improve. However, extended brood cannibalism reduces brood and removes brood signals that mediate brood rearing, such as E-β-ocimene, a volatile pheromone produced by eggs, young larvae, prepupae and ovipositing queens. We examined the effects of pollen supplementation on ocimene signaling in nutritionally-stressed colonies. Pollen-deprived colonies showed declines in ocimene emissions that coincided with sustained brood cannibalism of pheromone-producing brood. In contrast, pollen-supplemented colonies reared more brood and released more ocimene. Twelve day old workers that completed adult development in pollen-deprived colonies had less well developed hypopharyngeal glands and fat bodies than workers that matured in pollen-supplemented colonies. Given that ocimene emissions increased once brood rearing resumed, we considered the possibility that ocimene may help suppress brood cannibalism and support egg retention in nutritionally stressed nuc colonies. Broodless nucleus frames were treated with synthetic ocimene releases equivalent to 3,744 L2-L3 larvae. All ocimene-supplemented nucs retained large numbers of eggs and young larvae four days after initial treatment. By contrast, half of the unsupplemented nucs cannibalized all of their eggs and L1 larvae. Most of the remaining unsupplemented nuc colonies retained fewer eggs and L1 larvae than ocimene supplemented nuc colonies. E-B-ocimene may prime nutritionally stressed workers to increase brood rearing during dearth periods by projecting the presence of healthy eggs and young larvae.
Collapse
Affiliation(s)
- Mark J. Carroll
- Carl Hayden Bee Research Center USDA-ARS, Tucson, Arizona, United States of America
| | - Nicholas Brown
- Carl Hayden Bee Research Center USDA-ARS, Tucson, Arizona, United States of America
| | - Eden Huang
- Carl Hayden Bee Research Center USDA-ARS, Tucson, Arizona, United States of America
| |
Collapse
|
3
|
Humann-Guilleminot S, Fuentes A, Maria A, Couzi P, Siaussat D. Cadmium and phthalate impacts developmental growth and mortality of Spodoptera littoralis, but not reproductive success. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116605. [PMID: 38936052 DOI: 10.1016/j.ecoenv.2024.116605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/03/2024] [Accepted: 06/14/2024] [Indexed: 06/29/2024]
Abstract
Our environment is increasingly polluted with various molecules, some of which are considered endocrine disruptors. Metals and phthalates, originating from industrial activities, agricultural practices, or consumer products, are prominent examples of such pollutants. We experimentally investigated the impacts of the heavy metal cadmium and the phthalate DEHP on the moth Spodoptera littoralis. More specifically, larvae were reared in laboratory conditions, where they were exposed to diets contaminated with either two doses of cadmium at concentrations of 62.5 µg/g or 125 µg/g, two doses of DEHP at 100 ng/g and 10 µg/g, or a combination of both low and high doses of the two compounds, with a control group for comparison. Our findings indicate that cadmium delays the developmental transition from larva to adult. Notably, the combination of cadmium and DEHP exacerbated this delay, highlighting a synergistic effect. In contrast, DEHP alone did not affect larval development. Additionally, we observed that cadmium exposure, both alone and in combination with DEHP, led to a lower mass at all larval stages. However, cadmium-exposed individuals that reached adulthood eventually reached a similar mass to those in other groups. Interestingly, while our results did not show any effect of the treatments on hatching success, there was a higher adult mortality rate in the cadmium-treated groups. This suggests that while moths may prioritize reproductive success, their survival at the adult stage is compromised by cadmium exposure. In conclusion, our study demonstrates the impact of cadmium on the development, mass, and adult survival of moths, and reveals synergistic effects when combined with DEHP. These results confirm cadmium as an endocrine disruptor, even at low doses. These insights underscore the importance of understanding the toxicological effects of low doses of pollutants like cadmium and DEHP, both individually and in combination.
Collapse
Affiliation(s)
- Ségolène Humann-Guilleminot
- Sorbonne Université, CNRS, INRAe, IRD, UPEC, Institut d'Ecologie et des Sciences de l'Environnement de Paris, iEES-Paris, Paris F-75005, France
| | - Annabelle Fuentes
- Sorbonne Université, CNRS, INRAe, IRD, UPEC, Institut d'Ecologie et des Sciences de l'Environnement de Paris, iEES-Paris, Paris F-75005, France
| | - Annick Maria
- Sorbonne Université, CNRS, INRAe, IRD, UPEC, Institut d'Ecologie et des Sciences de l'Environnement de Paris, iEES-Paris, Paris F-75005, France
| | - Philippe Couzi
- Sorbonne Université, CNRS, INRAe, IRD, UPEC, Institut d'Ecologie et des Sciences de l'Environnement de Paris, iEES-Paris, Paris F-75005, France
| | - David Siaussat
- Sorbonne Université, CNRS, INRAe, IRD, UPEC, Institut d'Ecologie et des Sciences de l'Environnement de Paris, iEES-Paris, Paris F-75005, France.
| |
Collapse
|
4
|
Encerrado-Manriquez AM, Pouv AK, Fine JD, Nicklisch SCT. Enhancing knowledge of chemical exposures and fate in honey bee hives: Insights from colony structure and interactions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170193. [PMID: 38278225 DOI: 10.1016/j.scitotenv.2024.170193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/13/2024] [Accepted: 01/13/2024] [Indexed: 01/28/2024]
Abstract
Honey bees are unintentionally exposed to a wide range of chemicals through various routes in their natural environment, yet research on the cumulative effects of multi-chemical and sublethal exposures on important caste members, including the queen bee and brood, is still in its infancy. The hive's social structure and food-sharing (trophallaxis) practices are important aspects to consider when identifying primary and secondary exposure pathways for residential hive members and possible chemical reservoirs within the colony. Secondary exposures may also occur through chemical transfer (maternal offloading) to the brood and by contact through possible chemical diffusion from wax cells to all hive members. The lack of research on peer-to-peer exposures to contaminants and their metabolites may be in part due to the limitations in sensitive analytical techniques for monitoring chemical fate and dispersion. Combined application of automated honey bee monitoring and modern chemical trace analysis techniques could offer rapid progress in quantifying chemical transfer and accumulation within the hive environment and developing effective mitigation strategies for toxic chemical co-exposures. To enhance the understanding of chemical fate and toxicity within the entire colony, it is crucial to consider both the intricate interactions among hive members and the potential synergistic effects arising from combinations of chemical and their metabolites.
Collapse
Affiliation(s)
| | - Amara K Pouv
- Department of Environmental Toxicology, University of California-Davis, Davis, CA 95616, USA; Department of Fisheries, Animal, and Veterinary Science, University of Rhode Island, Kingston, RI 02881, USA
| | - Julia D Fine
- Invasive Species and Pollinator Health Research Unit, USDA-ARS, 3026 Bee Biology Rd., Davis, CA 95616, USA
| | - Sascha C T Nicklisch
- Department of Environmental Toxicology, University of California-Davis, Davis, CA 95616, USA.
| |
Collapse
|
5
|
Han B, Amiri E, Wei Q, Tarpy DR, Strand MK, Xu S, Rueppell O. Group size influences maternal provisioning and compensatory larval growth in honeybees. iScience 2023; 26:108546. [PMID: 38089582 PMCID: PMC10711493 DOI: 10.1016/j.isci.2023.108546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/05/2023] [Accepted: 11/20/2023] [Indexed: 10/16/2024] Open
Abstract
Environmental variation selects for the adaptive plasticity of maternal provisioning. Even though developing honeybees find themselves in a protected colony environment, their reproductively specialized queens actively adjust their maternal investment, even among worker-destined eggs. However, the potentially adaptive consequences of this flexible provisioning strategy and their mechanistic basis are unknown. Under natural conditions, we find that the body size of larvae hatching from small eggs in large colonies converges with that of initially larger larvae hatching from large eggs typically produced in small colonies. However, large eggs confer a persistent body size advantage when small and large eggs are cross-fostered in small and large colonies, respectively. We substantiate the increased maternal investment by identifying growth-promoting metabolomes and proteomes in large eggs compared to small eggs, which are primarily enriched in amino acid metabolism and cell maturation. Thus, our study provides a comprehensive adaptive explanation for the worker egg size plasticity of honeybees.
Collapse
Affiliation(s)
- Bin Han
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Esmaeil Amiri
- Delta Research and Extension Center, Mississippi State University, Stoneville, MS 38776, USA
| | - Qiaohong Wei
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - David R. Tarpy
- Department of Applied Ecology, North Carolina State University, Raleigh, NC 27695-7617, USA
| | - Micheline K. Strand
- Biological and Biotechnology Sciences, Army Research Office, Army Research Laboratory, Research Triangle Park, Durham, NC 27709, USA
| | - Shufa Xu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Olav Rueppell
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G2R3, Canada
- Department of Biology, University of North Carolina, Greensboro, NC 27402, USA
| |
Collapse
|
6
|
Fine JD, Foster LJ, McAfee A. Indirect exposure to insect growth disruptors affects honey bee (Apis mellifera) reproductive behaviors and ovarian protein expression. PLoS One 2023; 18:e0292176. [PMID: 37782633 PMCID: PMC10545116 DOI: 10.1371/journal.pone.0292176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/14/2023] [Indexed: 10/04/2023] Open
Abstract
Pesticide exposure and queen loss are considered to be major causes of honey bee colony mortality, yet little is known regarding the effects of regularly encountered agrochemicals on honey bee reproduction. Here, we present the results of a two-generational study using specialized cages to expose queens to commonly used insect growth disrupting pesticides (IGDs) via their retinue of worker bees. Under IGD exposure, we tracked queen performance and worker responses to queens, then the performance of the exposed queens' offspring was assessed to identify patterns that may contribute to the long-term health and stability of a social insect colony. The positive control, novaluron, resulted in deformed larvae hatching from eggs laid by exposed queens, and methoxyfenozide, diflubenzuron, and novaluron caused a slight decrease in daily egg laying rates, but this was not reflected in the total egg production over the course of the experiment. Curiously, eggs laid by queens exposed to pyriproxyfen exhibited increased hatching rates, and those larvae developed into worker progeny with increased responsiveness to their queens. Additionally, pyriproxyfen and novaluron exposure affected the queen ovarian protein expression, with the overwhelming majority of differentially expressed proteins coming from the pyriproxyfen exposure. We discuss these results and the potential implications for honey bee reproduction and colony health.
Collapse
Affiliation(s)
- Julia D. Fine
- Invasive Species and Pollinator Health Research Unit, USDA-ARS, Davis, CA, United States of America
| | - Leonard J. Foster
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Alison McAfee
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, United States of America
| |
Collapse
|
7
|
Han B, Wei Q, Amiri E, Hu H, Meng L, Strand MK, Tarpy DR, Xu S, Li J, Rueppell O. The molecular basis of socially induced egg-size plasticity in honey bees. eLife 2022; 11:80499. [PMID: 36346221 PMCID: PMC9747152 DOI: 10.7554/elife.80499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
Reproduction involves the investment of resources into offspring. Although variation in reproductive effort often affects the number of offspring, adjustments of propagule size are also found in numerous species, including the Western honey bee, Apis mellifera. However, the proximate causes of these adjustments are insufficiently understood, especially in oviparous species with complex social organization in which adaptive evolution is shaped by kin selection. Here, we show in a series of experiments that queens predictably and reversibly increase egg size in small colonies and decrease egg size in large colonies, while their ovary size changes in the opposite direction. Additional results suggest that these effects cannot be solely explained by egg-laying rate and are due to the queens' perception of colony size. Egg-size plasticity is associated with quantitative changes of 290 ovarian proteins, most of which relate to energy metabolism, protein transport, and cytoskeleton. Based on functional and network analyses, we further study the small GTPase Rho1 as a candidate regulator of egg size. Spatio-temporal expression analysis via RNAscope and qPCR supports an important role of Rho1 in egg-size determination, and subsequent RNAi-mediated gene knockdown confirmed that Rho1 has a major effect on egg size in honey bees. These results elucidate how the social environment of the honey bee colony may be translated into a specific cellular process to adjust maternal investment into eggs. It remains to be studied how widespread this mechanism is and whether it has consequences for population dynamics and epigenetic influences on offspring phenotype in honey bees and other species.
Collapse
Affiliation(s)
- Bin Han
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing, China.,Department of Biology, University of North Carolina Greensboro, Greensboro, United States
| | - Qiaohong Wei
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Esmaeil Amiri
- Department of Biology, University of North Carolina Greensboro, Greensboro, United States.,Delta Research and Extension Center, Mississippi State University, Stoneville, United States
| | - Han Hu
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lifeng Meng
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Micheline K Strand
- Biological and Biotechnology Sciences Branch, U.S. Army Research Office, DEVCOM-ARL, Baltimore, United States
| | - David R Tarpy
- Department of Applied Ecology, North Carolina State University, Raleigh, Canada
| | - Shufa Xu
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianke Li
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Olav Rueppell
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| |
Collapse
|
8
|
Boff S, Keller A, Raizer J, Lupi D. Decreased efficiency of pollen collection due to Sulfoxaflor exposure leads to a reduction in the size of bumble bee workers in late European summer. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.842563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Bumble bees (Bombus terrestris) are important pollinators of wild and crop plants. Despite their importance in the process of fruit and seed production on crop sites, their activity may be impaired due to exposure to pesticides. This species has a yearly life cycle and colony success may rely on effective foraging of workers on ruderal plants late in summer when most crops are no longer flowering. In the current study, we investigated the effect of chronic exposure to Sulfoxaflor on aspects of the foraging behavior of bumble bees and whether Sulfoxaflor influences the body size of workers of B. terrestris in a crop landscape. We found that 2 weeks of continuous exposure to Sulfoxaflor influenced workers’ foraging dynamics and collection of resources. However, there was no evidence that the 5 ppb dose of the pesticide impacted the ability of bees to handle flowers with different traits. Workers from colonies exposed to Sulfoxaflor were smaller. The effect on worker size may be explained as a consequence of the reduced pollen income per unit of worker foraging. Thus, if the effects of Sulfoxaflor applied directly to crops had the same effect as that observed on commercial bumble bees after our chronic exposure, it might negatively impact colony success due to the impact on pollen collection and the reduction in the size of workers.
Collapse
|
9
|
Yu L, Shi X, He X, Zeng Z, Yan W, Wu X. High-Quality Queens Produce High-Quality Offspring Queens. INSECTS 2022; 13:insects13050486. [PMID: 35621820 PMCID: PMC9146148 DOI: 10.3390/insects13050486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 02/04/2023]
Abstract
Honey bees, rather than rear queens with eggs and larvae from worker cells, prefer to rear new queens with eggs form queen cells, if available. This may be a result of long-term evolutionary process for honey bee colonies. However, the exact mechanism of this phenomenon is unclear. In this study, queens were reared with eggs from queen cells (F1-QE), eggs from worker cells (F1-WE), and two-day-old larvae from worker cells (F1-2L). Physiological indexes and the expression of the development-related genes ((Hexamerin (Hex110, Hex70b), Transferrin (Trf), and Vitellogenin (Vg)) of reared F1 generation queens were measured and compared. Furthermore, F2 generation queens were reared with one-day-old larvae from F1 queens, and the weight and ovariole count of reared F2 generation daughter queens were examined. Meanwhile, the expression of the development- and reproduction-related genes (Hex110, Hex70b, Trf, Vg, and Juvenile Hormone (Jh)) and immune detoxication-related genes (Hymenoptaecin, Abeacin, and CytP450) of reared F2 queens were further explored. We found that the F1-QE queens had the highest physiological indexes and higher Hex110 and Trf expression levels, while no significant difference was found in the expression of Hex70b and Vg among the three groups of F1 queens. In addition, the reared queens of F2-QE had the highest quality, with the highest development, reproduction, immune-detoxication genes' expression levels. Our results revealed that the quality of reared offspring queens from high-quality mother queens was also high. These findings inform methods for rearing high-quality queens and highlight that a high-quality queen is essential for offspring colony growth and survival.
Collapse
|
10
|
Boguslavsky DV, Zakharov IS. Role of External Factors in Embryogenesis of Apis mellifera. Russ J Dev Biol 2021. [DOI: 10.1134/s1062360421060023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
AL-Kahtani SN, Bienefeld K. Strength surpasses relatedness-queen larva selection in honeybees. PLoS One 2021; 16:e0255151. [PMID: 34351980 PMCID: PMC8341480 DOI: 10.1371/journal.pone.0255151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 07/11/2021] [Indexed: 11/19/2022] Open
Abstract
Nepotism was initially theoretically predicted and sometimes found to trigger the selection of specific larvae to be reared as queens in the honeybee Apis mellifera. Although the importance of selecting the next queen for a colony indicates that it should not occur at random, nepotism is increasingly considered unlikely in eusocial insect societies. Different prenatal maternal supplies of embryos have been found to impact fitness in many other species and therefore could be a possible trigger underlying the likelihood of being raised as a queen. We offered related or unrelated larvae from six colonies originating from eggs of different weights for emergency queen rearing in queenless units with worker bees from these six colonies. We showed that nurses did not significantly prefer related larvae during queen rearing, which confirms the theory that different relatedness-driven kin preferences within a colony cannot be converted into a colony-level decision. However, we found that larvae originating from heavier eggs were significantly preferred for queen breeding. Studies on other species have shown that superior maternal supply is important for later reproductive success. However, we did observe tendencies in the expected direction (e.g., queens that hatched from heavier eggs had both more ovarioles and a shorter preoviposition period). Nevertheless, our data do not allow for a significant conclusion that the selection of larvae from heavy eggs truly offers fitness advantages.
Collapse
Affiliation(s)
- Saad Naser AL-Kahtani
- Institute for Bee Research Hohen Neuendorf & Humboldt University Berlin, Hohen Neuendorf, Germany
- Department of Arid Land Agriculture, College of Agricultural and Food Sciences, King Faisal University, Al-Ahsa, Kingdom of Saudi Arabia
| | - Kaspar Bienefeld
- Institute for Bee Research Hohen Neuendorf & Humboldt University Berlin, Hohen Neuendorf, Germany
| |
Collapse
|
12
|
Mariette J, Carcaud J, Sandoz JC. The neuroethology of olfactory sex communication in the honeybee Apis mellifera L. Cell Tissue Res 2021; 383:177-194. [PMID: 33447877 DOI: 10.1007/s00441-020-03401-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022]
Abstract
The honeybee Apis mellifera L. is a crucial pollinator as well as a prominent scientific model organism, in particular for the neurobiological study of olfactory perception, learning, and memory. A wealth of information is indeed available about how the worker bee brain detects, processes, and learns about odorants. Comparatively, olfaction in males (the drones) and queens has received less attention, although they engage in a fascinating mating behavior that strongly relies on olfaction. Here, we present our current understanding of the molecules, cells, and circuits underlying bees' sexual communication. Mating in honeybees takes place at so-called drone congregation areas and places high in the air where thousands of drones gather and mate in dozens with virgin queens. One major queen-produced olfactory signal-9-ODA, the major component of the queen pheromone-has been known for decades to attract the drones. Since then, some of the neural pathways responsible for the processing of this pheromone have been unraveled. However, olfactory receptor expression as well as brain neuroanatomical data point to the existence of three additional major pathways in the drone brain, hinting at the existence of 4 major odorant cues involved in honeybee mating. We discuss current evidence about additional not only queen- but also drone-produced pheromonal signals possibly involved in bees' sexual behavior. We also examine data revealing recent evolutionary changes in drone's olfactory system in the Apis genus. Lastly, we present promising research avenues for progressing in our understanding of the neural basis of bees mating behavior.
Collapse
Affiliation(s)
- Julia Mariette
- Evolution, Genomes, Behaviour and Ecology, Université Paris-Saclay, CNRS, IRD, 91198, Gif-sur-Yvette, France
| | - Julie Carcaud
- Evolution, Genomes, Behaviour and Ecology, Université Paris-Saclay, CNRS, IRD, 91198, Gif-sur-Yvette, France
| | - Jean-Christophe Sandoz
- Evolution, Genomes, Behaviour and Ecology, Université Paris-Saclay, CNRS, IRD, 91198, Gif-sur-Yvette, France.
| |
Collapse
|
13
|
Amiri E, Herman JJ, Strand MK, Tarpy DR, Rueppell O. Egg transcriptome profile responds to maternal virus infection in honey bees, Apis mellifera. INFECTION GENETICS AND EVOLUTION 2020; 85:104558. [PMID: 32947033 DOI: 10.1016/j.meegid.2020.104558] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/10/2020] [Accepted: 09/14/2020] [Indexed: 02/06/2023]
Abstract
Trans-generational disease effects include vertical pathogen transmission but also immune priming to enhance offspring immunity. Accordingly, the survival consequences of maternal virus infection can vary and its molecular consequences during early development are poorly understood. The honey bee queen is long-lived and represents the central hub for vertical virus transmission as the sole reproductive individual in her colony. Even though virus symptoms in queens are mild, viral infection may have severe consequences for the offspring. Thus, transcriptome patterns during early developmental are predicted to respond to maternal virus infection. To test this hypothesis, gene expression patterns were compared among pooled honey bee eggs laid by queens that were either infected with Deformed wing virus (DWV1), Sacbrood virus (SBV2), both viruses (DWV and SBV), or no virus. Whole transcriptome analyses revealed significant expression differences of a few genes, some of which have hitherto no known function. Despite the paucity of single gene effects, functional enrichment analyses revealed numerous biological processes in the embryos to be affected by virus infection. Effects on several regulatory pathways were consistent with maternal responses to virus infection and correlated with responses to DWV and SBV in honey bee larvae and pupae. Overall, effects on egg transcriptome patterns were specific to each virus and the results of dual-infection samples suggested synergistic effects of DWV and SBV. We interpret our results as consequences of maternal infections. Thus, this first study to document and characterize virus-associated changes in the transcriptome of honey bee eggs represents an important contribution to understanding trans-generational virus effects, although more in-depth studies are needed to understand the detailed mechanisms of how viruses affect honey bee embryos.
Collapse
Affiliation(s)
- Esmaeil Amiri
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27402, USA; Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA.
| | - Jacob J Herman
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27402, USA
| | - Micheline K Strand
- Life Sciences Division, U.S. Army Research Office, CCDC-ARL, Research Triangle Park, Durham, NC 27709, USA
| | - David R Tarpy
- Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
| | - Olav Rueppell
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27402, USA; Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| |
Collapse
|
14
|
Treanore ED, Kiner JM, Kerner ME, Amsalem E. Shift in worker physiology and gene expression pattern from reproductive to diapause-like with colony age in the bumble bee Bombus impatiens. J Exp Biol 2020; 223:jeb218768. [PMID: 32205359 DOI: 10.1242/jeb.218768] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/17/2020] [Indexed: 08/26/2023]
Abstract
Insects maximize their fitness by exhibiting predictable and adaptive seasonal patterns in response to changing environmental conditions. These seasonal patterns are often expressed even when insects are kept in captivity, suggesting they are functionally and evolutionarily important. In this study, we examined whether workers of the eusocial bumble bee Bombus impatiens maintained a seasonal signature when kept in captivity. We used an integrative approach and compared worker egg laying, ovarian activation, body size and mass, lipid content in the fat body, cold tolerance and expression of genes related to cold tolerance, metabolism and stress throughout colony development. We found that bumble bee worker physiology and gene expression patterns shift from reproductive-like to diapause-like as the colony ages. Workers eclosing early in the colony cycle had increased egg laying and ovarian activation, and reduced cold tolerance, body size, mass and lipid content in the fat body, in line with a reproductive-like profile, while late-eclosing workers exhibited the opposite characteristics. Furthermore, expression patterns of genes associated with reproduction and diapause differed between early- and late-eclosing workers, partially following the physiological patterns. We suggest that a seasonal signature, innate to individual workers, the queen or the colony, is used by workers as a social cue determining the phenology of the colony and discuss possible implications for understanding reproductive division of labor in bumble bee colonies and the evolutionary divergence of female castes in the genus Bombus.
Collapse
Affiliation(s)
- Erin D Treanore
- Department of Entomology, Center for Chemical Ecology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Jacklyn M Kiner
- Department of Entomology, Center for Chemical Ecology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Mackenzie E Kerner
- Department of Entomology, Center for Chemical Ecology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Etya Amsalem
- Department of Entomology, Center for Chemical Ecology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
15
|
Amiri E, Strand MK, Tarpy DR, Rueppell O. Honey Bee Queens and Virus Infections. Viruses 2020; 12:E322. [PMID: 32192060 PMCID: PMC7150968 DOI: 10.3390/v12030322] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/13/2020] [Accepted: 03/15/2020] [Indexed: 01/11/2023] Open
Abstract
The honey bee queen is the central hub of a colony to produce eggs and release pheromones to maintain social cohesion. Among many environmental stresses, viruses are a major concern to compromise the queen's health and reproductive vigor. Viruses have evolved numerous strategies to infect queens either via vertical transmission from the queens' parents or horizontally through the worker and drones with which she is in contact during development, while mating, and in the reproductive period in the colony. Over 30 viruses have been discovered from honey bees but only few studies exist on the pathogenicity and direct impact of viruses on the queen's phenotype. An apparent lack of virus symptoms and practical problems are partly to blame for the lack of studies, and we hope to stimulate new research and methodological approaches. To illustrate the problems, we describe a study on sublethal effects of Israeli Acute Paralysis Virus (IAPV) that led to inconclusive results. We conclude by discussing the most crucial methodological considerations and novel approaches for studying the interactions between honey bee viruses and their interactions with queen health.
Collapse
Affiliation(s)
- Esmaeil Amiri
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27402-6170, USA;
- Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, NC 27695-7613, USA;
| | - Micheline K. Strand
- Life Sciences Division, U.S. Army Research Office, CCDC-ARL, Research Triangle Park, NC 27709-2211, USA;
| | - David R. Tarpy
- Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, NC 27695-7613, USA;
| | - Olav Rueppell
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27402-6170, USA;
| |
Collapse
|