1
|
Rohner PT, Berger D. Macroevolution along developmental lines of least resistance in fly wings. Nat Ecol Evol 2025; 9:639-651. [PMID: 39920350 PMCID: PMC11976274 DOI: 10.1038/s41559-025-02639-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 01/13/2025] [Indexed: 02/09/2025]
Abstract
Evolutionary change requires genetic variation, and a reigning paradigm in biology is that rates of microevolution can be predicted from estimates of available genetic variation within populations. However, the accuracy of such predictions should decay on longer evolutionary timescales, as the influence of genetic constraints diminishes. Here we show that intrinsic developmental variability and standing genetic variation in wing shape in two distantly related flies, Drosophila melanogaster and Sepsis punctum, are aligned and predict deep divergence in the dipteran phylogeny, spanning >900 taxa and 185 million years. This alignment cannot be easily explained by constraint hypotheses unless most of the quantified standing genetic variation is associated with deleterious side effects and is effectively unusable for evolution. However, phenotyping of 71 genetic lines of S. punctum revealed no covariation between wing shape and fitness, lending no support to this hypothesis. We also find little evidence for genetic constraints on the pace of wing shape evolution along the dipteran phylogeny. Instead, correlational selection related to allometric scaling, simultaneously shaping developmental variability and deep divergence in fly wings, emerges as a potential explanation for the observed alignment. This suggests that pervasive natural selection has the potential to shape developmental architectures of some morphological characters such that their intrinsic variability predicts their long-term evolution.
Collapse
Affiliation(s)
- Patrick T Rohner
- Department of Ecology, Behavior, and Evolution, University of California, San Diego, La Jolla, CA, USA.
| | - David Berger
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
2
|
Darveau CA. Insect Flight Energetics and the Evolution of Size, Form, and Function. Integr Comp Biol 2024; 64:586-597. [PMID: 38688867 PMCID: PMC11406158 DOI: 10.1093/icb/icae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/17/2024] [Accepted: 04/20/2024] [Indexed: 05/02/2024] Open
Abstract
Flying insects vary greatly in body size and wing proportions, significantly impacting their flight energetics. Generally, the larger the insect, the slower its flight wingbeat frequency. However, variation in frequency is also explained by differences in wing proportions, where larger-winged insects tend to have lower frequencies. These associations affect the energy required for flight. The correlated evolution of flight form and function can be further defined using a lineage of closely related bee species varying in body mass. The decline in flight wingbeat frequency with increasing size is paralleled by the flight mass-specific metabolic rate. The specific scaling exponents observed can be predicted from the wing area allometry, where a greater increase (hyperallometry) leads to a more pronounced effect on flight energetics, and hypoallometry can lead to no change in frequency and metabolic rate across species. The metabolic properties of the flight muscles also vary with body mass and wing proportions, as observed from the activity of glycolytic enzymes and the phospholipid compositions of muscle tissue, connecting morphological differences with muscle metabolic properties. The evolutionary scaling observed across species is recapitulated within species. The static allometry observed within the bumblebee Bombus impatiens, where the wing area is proportional and isometric, affects wingbeat frequency and metabolic rate, which is predicted to decrease with an increase in size. Intraspecific variation in flight muscle tissue properties is also related to flight metabolic rate. The role of developmental processes and phenotypic plasticity in explaining intraspecific differences is central to our understanding of flight energetics. These studies provide a framework where static allometry observed within species gives rise to evolutionary allometry, connecting the evolution of size, form, and function associated with insect flight.
Collapse
Affiliation(s)
- Charles-A Darveau
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
3
|
Camargo-Martinez ND, Camacho-Erazo M, Amarillo-Suárez AR, Herrera HW, Sarmiento CE. Morphologic Differentiation of the Exotic Parasitoid Eupelmus pulchriceps (Hymenoptera: Eupelmidae) in the Galapagos Archipelago. NEOTROPICAL ENTOMOLOGY 2024; 53:140-153. [PMID: 38133733 PMCID: PMC10834596 DOI: 10.1007/s13744-023-01097-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 10/26/2023] [Indexed: 12/23/2023]
Abstract
The historical and geographical properties of the archipelagos allow a detailed study of species diversification, and phenotypic traits can indicate the extent of such processes. Eupelmus pulchriceps (Cameron, 1904) is an exotic species to the Galapagos archipelago, and generalist parasitoid that attacks a beetle species that consumes the seeds of the invasive shrub Leucaena leucocephala (Lam.) de Wit. Despite extensive sampling, the wasp is recorded only in Santa Cruz and San Cristobal islands of the Galapagos archipelago. Thus, using 112 female wasps, we compare body size, proportion, and allometric differentiations within and between the two islands. There were no body size differences between islands. A PerMANOVA indicates differences between the islands and a single differentiation between two localities of one island. Allometric differences between islands were not the same for all structures. These results are consistent with the greater distance between islands than between localities and suggest a differentiation process. The variables with allometric differentiation are associated with wings and ovipositor, possibly responding to different ecological pressures. It is interesting that this parasitoid, recently arrived at the archipelago, is already showing differentiation. Also, it is essential to monitor the behavior of these wasps in the archipelago, given their potential to access other species affecting the trophic interactions of the local biota.
Collapse
Affiliation(s)
- Nicolas David Camargo-Martinez
- Lab de Sistemática y Biología Comparada de Insectos, Instituto de Ciencias Naturales, Univ Nacional de Colombia, Bogotá, Colombia
| | - Mariana Camacho-Erazo
- Museo de Entomología, Facultad de Recursos Naturales, Escuela Superior Politécnica del Chimborazo, Riobamba, Ecuador
| | - Angela R Amarillo-Suárez
- Depto de Ecología y Territorio, Facultad de Estudios Ambientales y Rurales, Pontificia Univ Javeriana, Bogotá, Colombia
| | - Henri W Herrera
- Museo de Entomología, Facultad de Recursos Naturales, Escuela Superior Politécnica del Chimborazo, Riobamba, Ecuador
| | - Carlos E Sarmiento
- Lab de Sistemática y Biología Comparada de Insectos, Instituto de Ciencias Naturales, Univ Nacional de Colombia, Bogotá, Colombia.
| |
Collapse
|
4
|
Rohner PT, Hu Y, Moczek AP. Utilizing geometric morphometrics to investigate gene function during organ growth: Insights through the study of beetle horn shape allometry. Evol Dev 2024; 26:e12464. [PMID: 38041612 DOI: 10.1111/ede.12464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 10/05/2023] [Accepted: 11/15/2023] [Indexed: 12/03/2023]
Abstract
Static allometry is a major component of morphological variation. Much of the literature on the development of allometry investigates how functional perturbations of diverse pathways affect the relationship between trait size and body size. Often, this is done with the explicit objective to identify developmental mechanisms that enable the sensing of organ size and the regulation of relative growth. However, changes in relative trait size can also be brought about by a range of other distinctly different developmental processes, such as changes in patterning or tissue folding, yet standard univariate biometric approaches are usually unable to distinguish among alternative explanations. Here, we utilize geometric morphometrics to investigate the degree to which functional genetic manipulations known to affect the size of dung beetle horns also recapitulate the effect of horn shape allometry. We reasoned that the knockdown phenotypes of pathways governing relative growth should closely resemble shape variation induced by natural allometric variation. In contrast, we predicted that if genes primarily affect alternative developmental processes, knockdown effects should align poorly with shape allometry. We find that the knockdown effects of several genes (e.g., doublesex, Foxo) indeed closely aligned with shape allometry, indicating that their corresponding pathways may indeed function primarily in the regulation of relative trait growth. In contrast, other knockdown effects (e.g., Distal-less, dachs) failed to align with allometry, implicating these pathways in potentially scaling-independent processes. Our findings moderate the interpretation of studies focusing on trait length and highlight the usefulness of multivariate approaches to study allometry and phenotypic plasticity.
Collapse
Affiliation(s)
- Patrick T Rohner
- Department of Biology, Indiana University, Bloomington, Indiana, USA
- Department of Ecology, Behavior, and Evolution, University of California San Diego, La Jolla, California, USA
| | - Yonggang Hu
- Department of Biology, Indiana University, Bloomington, Indiana, USA
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| | - Armin P Moczek
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
5
|
Ludoški J, Francuski L, Gojković N, Matić B, Milankov V. Sexual size and shape dimorphism, and allometric scaling in the pupal and adult traits of Eristalis tenax. Ecol Evol 2023; 13:e9907. [PMID: 36937060 PMCID: PMC10015363 DOI: 10.1002/ece3.9907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 02/14/2023] [Accepted: 02/27/2023] [Indexed: 03/17/2023] Open
Abstract
The patterns and amount of variation in size, shape, and/or life history traits between females and males are fundamentally important to gain the comprehensive understanding of the evolution of phenotypic diversity. In addition, the covariation of phenotypic traits can significantly contribute to morphological diversification and sexual dimorphism (SD). Using linear and geometric morphometrics, 237 Eristalis tenax specimens sampled from five populations were, therefore, comparatively assessed for the variation in sexual size dimorphism (SSD), sexual shape dimorphism (SShD), and life history traits, as well as for trait covariation (ontogenetic and static allometry). Pupal body, adult wing, and body mass traits were analyzed. Female-biased SSD was observed for pupal length, width, and centroid size, adult wing centroid size, mass, wing loading, and wing area. Conversely, pupal length/width ratio, developmental time, and mass were not found to be sexually dimorphic. Next, wing SShD, but not pupal body SShD was revealed, while allometry was found to be an important "determinant of SD" at the adult stage, with only a minor impact at the pupal stage. By comparing the patterns of covariance (based on allometric slope and intercept) between respective body mass and morphometric traits of pupae and adults, greater variation in allometric slopes was found in adult traits, while static allometries of the two stages significantly differed, as well. Finally, the results indicate that changes in the allometric intercept could be an important source of intraspecific variation and SD in drone fly adults.
Collapse
Affiliation(s)
- Jasmina Ludoški
- Department of Biology and Ecology, Faculty of SciencesUniversity of Novi SadNovi SadSerbia
| | - Ljubinka Francuski
- Department of Biology and Ecology, Faculty of SciencesUniversity of Novi SadNovi SadSerbia
- Protix BVDongenThe Netherlands
| | - Nemanja Gojković
- Department of Biology and Ecology, Faculty of SciencesUniversity of Novi SadNovi SadSerbia
| | - Bojana Matić
- Department of Biology and Ecology, Faculty of SciencesUniversity of Novi SadNovi SadSerbia
| | - Vesna Milankov
- Department of Biology and Ecology, Faculty of SciencesUniversity of Novi SadNovi SadSerbia
| |
Collapse
|
6
|
Szpila K, Johnston NP, Akbarzadeh K, Richet R, Tofilski A. Wing measurements are a possible tool for the identification of European forensically important Sarcophagidae. Forensic Sci Int 2022; 340:111451. [PMID: 36150278 DOI: 10.1016/j.forsciint.2022.111451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/29/2022] [Accepted: 09/06/2022] [Indexed: 11/04/2022]
Abstract
The flesh flies are a group of insects well known for their forensic importance. Reliable identification of these flies relies on the use of either molecular markers or the morphology of the male genital apparatus. Identification of female flesh flies is more time consuming and less reliable than their male counterparts. This is particularly problematic for forensic entomology practitioners, because female flesh flies are more abundant than males in carrion arthropod assemblages. As such, it is critical that alternative methods for flesh fly identification are established that are equally effective for both sexes. One promising technique is the use of wing measurements, which have been shown to be reliable for the identification of some groups of necrophagous Diptera from several geographical regions. We applied this method to the European Sarcophagidae for the first time, using a dataset of 881 specimens representing 29 species and 5 genera. Species identifications were based on 15 landmarks located at wing vein junctions. We also combined our results with data from previous studies of Calliphoridae and Muscidae which utilised the same methodology, enabling the testing of family level identification using wing morphometrics. Species identifications using wing measurements had varied success. While some species were successfully identified without error, others, particularly from the genus Sarcophaga, were often misclassified. Notably, in several species wing measurements successfully identified both males and females. The results presented here suggest that wing measurements are a promising complementary method to other methods for the identification of necrophagous Sarcophagidae especially in material unsorted at the family level. It can also be used to double check identification performed by a taxonomist using traditional methods.
Collapse
Affiliation(s)
- Krzysztof Szpila
- Department of Ecology and Biogeography, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland
| | - Nikolas P Johnston
- School of Life Sciences, University of Technology, 15 Broadway Ultimo, Sydney 2007, Australia
| | - Kamran Akbarzadeh
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Rene Richet
- 16 Grande Rue, 03220, Jaligny-sur-Besbre, France
| | - Adam Tofilski
- Department of Zoology and Animal Welfare, University of Agriculture in Krakow, 31-425 Krakow, Poland
| |
Collapse
|
7
|
Watanabe J. Detecting (non)parallel evolution in multidimensional spaces: angles, correlations and eigenanalysis. Biol Lett 2022; 18:20210638. [PMID: 35168376 PMCID: PMC8847891 DOI: 10.1098/rsbl.2021.0638] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/13/2022] [Indexed: 12/17/2022] Open
Abstract
Parallelism between evolutionary trajectories in a trait space is often seen as evidence for repeatability of phenotypic evolution, and angles between trajectories play a pivotal role in the analysis of parallelism. However, properties of angles in multidimensional spaces have not been widely appreciated by biologists. To remedy this situation, this study provides a brief overview on geometric and statistical aspects of angles in multidimensional spaces. Under the null hypothesis that trajectory vectors have no preferred directions (i.e. uniform distribution on hypersphere), the angle between two independent vectors is concentrated around the right angle, with a more pronounced peak in a higher-dimensional space. This probability distribution is closely related to t- and beta distributions, which can be used for testing the null hypothesis concerning a pair of trajectories. A recently proposed method with eigenanalysis of a vector correlation matrix can be connected to the test of no correlation or concentration of multiple vectors, for which simple test procedures are available in the statistical literature. Concentration of vectors can also be examined by tools of directional statistics such as the Rayleigh test. These frameworks provide biologists with baselines to make statistically justified inferences for (non)parallel evolution.
Collapse
Affiliation(s)
- Junya Watanabe
- Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK
| |
Collapse
|
8
|
Reis M, Siomava N, Wimmer EA, Posnien N. Conserved and Divergent Aspects of Plasticity and Sexual Dimorphism in Wing Size and Shape in Three Diptera. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.660546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The ability of powered flight in insects facilitated their great evolutionary success allowing them to occupy various ecological niches. Beyond this primary task, wings are often involved in various premating behaviors, such as the generation of courtship songs and the initiation of mating in flight. These specific functions imply special adaptations of wing morphology, as well as sex-specific wing morphologies. Although wing morphology has been extensively studied in Drosophila melanogaster (Meigen, 1830), a comprehensive understanding of developmental plasticity and the impact of sex on wing size and shape plasticity is missing for other Diptera. Therefore, we raised flies of the three Diptera species Drosophila melanogaster, Ceratitis capitata (Wiedemann, 1824) and Musca domestica (Linnaeus, 1758) at different environmental conditions and applied geometric morphometrics to analyze wing shape. Our data showed extensive interspecific differences in wing shape, as well as a clear sexual wing shape dimorphism in all three species. We revealed an impact of different rearing temperatures on wing shape in all three species, which was mostly explained by plasticity in wing size in D. melanogaster. Rearing densities had significant effects on allometric wing shape in D. melanogaster, while no obvious effects were observed for the other two species. Additionally, we did not find evidence for sex-specific response to different rearing conditions in D. melanogaster and C. capitata, while a male-specific impact of different rearing conditions was observed on non-allometric wing shape in M. domestica. Overall, our data strongly suggests that many aspects of wing morphology underly species-specific adaptations and we discuss potential developmental and functional implications of our results.
Collapse
|
9
|
Rohner PT, Macagno ALM, Moczek AP. Evolution and plasticity of morph-specific integration in the bull-headed dung beetle Onthophagus taurus. Ecol Evol 2020; 10:10558-10570. [PMID: 33072280 PMCID: PMC7548182 DOI: 10.1002/ece3.6711] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/18/2020] [Accepted: 08/04/2020] [Indexed: 01/01/2023] Open
Abstract
Developmental and evolutionary processes underlying phenotypic variation frequently target several traits simultaneously, thereby causing covariation, or integration, among phenotypes. While phenotypic integration can be neutral, correlational selection can drive adaptive covariation. Especially, the evolution and development of exaggerated secondary sexual traits may require the adjustment of other traits that support, compensate for, or otherwise function in a concerted manner. Although phenotypic integration is ubiquitous, the interplay between genetic, developmental, and ecological conditions in shaping integration and its evolution remains poorly understood. Here, we study the evolution and plasticity of trait integration in the bull-headed dung beetle Onthophagus taurus which is characterized by the polyphenic expression of horned ('major') and hornless ('minor') male morphs. By comparing populations subject to divergent intensities of mate competition, we tested whether mating system shifts affect integration of traits predicted to function in a morph-specific manner. We focussed on fore and hind tibia morphology as these appendages are used to stabilize major males during fights, and on wings, as they are thought to contribute to morph-based differences in dispersal behavior. We found phenotypic integration between fore and hind tibia length and horn length that was stronger in major males, suggesting phenotypic plasticity in integration and potentially secondary sexual trait compensation. Similarly, we observed that fore tibia shape was also integrated with relative horn length. However, although we found population differentiation in wing and tibia shape and allometry, populations did not differ in integration. Lastly, we detected little evidence for morph differences in integration in either tibia or wing shape, although wing allometries differed between morphs. This contrasts with previous studies documenting intraspecific differentiation in morphology, behavior, and allometry as a response to varying levels of mate competition across O. taurus populations. We discuss how sexual selection may shape morph-specific integration, compensation, and allometry across populations.
Collapse
|
10
|
Rohner PT. Evolution of multivariate wing allometry in schizophoran flies (Diptera: Schizophora). J Evol Biol 2020; 33:831-841. [PMID: 32145126 PMCID: PMC7318208 DOI: 10.1111/jeb.13613] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 02/27/2020] [Accepted: 03/02/2020] [Indexed: 01/12/2023]
Abstract
The proximate and ultimate mechanisms underlying scaling relationships as well as their evolutionary consequences remain an enigmatic issue in evolutionary biology. Here, I investigate the evolution of wing allometries in the Schizophora, a group of higher Diptera that radiated about 65 million years ago, by studying static allometries in five species using multivariate approaches. Despite the vast ecological diversity observed in contemporary members of the Schizophora and independent evolutionary histories throughout most of the Cenozoic, size-related changes represent a major contributor to overall variation in wing shape, both within and among species. Static allometries differ between species and sexes, yet multivariate allometries are correlated across species, suggesting a shared developmental programme underlying size-dependent phenotypic plasticity. Static allometries within species also correlate with evolutionary divergence across 33 different families (belonging to 11 of 13 superfamilies) of the Schizophora. This again points towards a general developmental, genetic or evolutionary mechanism that canalizes or maintains the covariation between shape and size in spite of rapid ecological and morphological diversification during the Cenozoic. I discuss the putative roles of developmental constraints and natural selection in the evolution of wing allometry in the Schizophora.
Collapse
|