1
|
Chang CY, Zhao YN, Guo HF, Liu XD. Food nutrition and facultative endosymbiont modulate dietary breadth of a polyphagous aphid. INSECT SCIENCE 2025. [PMID: 40351112 DOI: 10.1111/1744-7917.70069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 03/21/2025] [Accepted: 04/12/2025] [Indexed: 05/14/2025]
Abstract
While host plants and endosymbionts have been implicated in influencing dietary breadth in polyphagous herbivores, the underlying mechanism remains vague. In this study, we focused on the food nutrition and nutrition provision of endosymbionts to elucidate the determination of dietary breadth in a polyphagous aphid Aphis gossypii. Our findings demonstrated that high sugar and riboflavin presence in food decreased aphid fitness, while Arsenophonus infections improved aphid performance. Aphids collected from cotton could not use cucumber whether they were infected with Arsenophonus or not, signifying a distinct specialization toward cotton. Further, both the Arsenophonus-infected and free aphids fed on artificial diet varying in sugar titer failed to utilize cucumber. However, Arsenophonus-free aphids attained the ability to utilize cucumber after feeding on the riboflavin-free diet, but not on the riboflavin-containing diet, indicating riboflavin and Arsenophonus-absent expansion in dietary breadth. Notably, up-regulated expression of riboflavin synthase genes of the obligated symbiont Buchnera aphidicola was detected in the Arsenophonus-infected aphids which may provide more riboflavin. Arsenophonus promoting riboflavin synthesis in the obligated symbiont B. aphidicola and riboflavin ingestion enhancing host specialization of aphids to cotton modulate dietary breadth of A. gossypii.
Collapse
Affiliation(s)
- Chun-Yan Chang
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Ya-Ni Zhao
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Hui-Fang Guo
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xiang-Dong Liu
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
2
|
Peng L, Hoban J, Joffe J, Smith AH, Carpenter M, Marcelis T, Patel V, Lynn-Bell N, Oliver KM, Russell JA. Cryptic community structure and metabolic interactions among the heritable facultative symbionts of the pea aphid. J Evol Biol 2023; 36:1712-1730. [PMID: 37702036 DOI: 10.1111/jeb.14216] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/07/2023] [Accepted: 07/18/2023] [Indexed: 09/14/2023]
Abstract
Most insects harbour influential, yet non-essential heritable microbes in their hemocoel. Communities of these symbionts exhibit low diversity. But their frequent multi-species nature raises intriguing questions on roles for symbiont-symbiont synergies in host adaptation, and on the stability of the symbiont communities, themselves. In this study, we build on knowledge of species-defined symbiont community structure across US populations of the pea aphid, Acyrthosiphon pisum. Through extensive symbiont genotyping, we show that pea aphids' microbiomes can be more precisely defined at the symbiont strain level, with strain variability shaping five out of nine previously reported co-infection trends. Field data provide a mixture of evidence for synergistic fitness effects and symbiont hitchhiking, revealing causes and consequences of these co-infection trends. To test whether within-host metabolic interactions predict common versus rare strain-defined communities, we leveraged the high relatedness of our dominant, community-defined symbiont strains vs. 12 pea aphid-derived Gammaproteobacteria with sequenced genomes. Genomic inference, using metabolic complementarity indices, revealed high potential for cooperation among one pair of symbionts-Serratia symbiotica and Rickettsiella viridis. Applying the expansion network algorithm, through additional use of pea aphid and obligate Buchnera symbiont genomes, Serratia and Rickettsiella emerged as the only symbiont community requiring both parties to expand holobiont metabolism. Through their joint expansion of the biotin biosynthesis pathway, these symbionts may span missing gaps, creating a multi-party mutualism within their nutrient-limited, phloem-feeding hosts. Recent, complementary gene inactivation, within the biotin pathways of Serratia and Rickettsiella, raises further questions on the origins of mutualisms and host-symbiont interdependencies.
Collapse
Affiliation(s)
- Linyao Peng
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Jessica Hoban
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Jonah Joffe
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Andrew H Smith
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Melissa Carpenter
- Department of Biodiversity, Earth, and Environmental Science, Drexel University, Philadelphia, Pennsylvania, USA
| | - Tracy Marcelis
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Vilas Patel
- Department of Entomology, University of Georgia, Athens, Georgia, USA
| | - Nicole Lynn-Bell
- Department of Entomology, University of Georgia, Athens, Georgia, USA
| | - Kerry M Oliver
- Department of Entomology, University of Georgia, Athens, Georgia, USA
| | - Jacob A Russell
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
3
|
Heidari Latibari M, Moravvej G, Rakhshani E, Karimi J, Arias-Penna DC, Butcher BA. Arsenophonus: A Double-Edged Sword of Aphid Defense against Parasitoids. INSECTS 2023; 14:763. [PMID: 37754731 PMCID: PMC10531911 DOI: 10.3390/insects14090763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/28/2023]
Abstract
It is widely accepted that endosymbiont interactions with their hosts have significant effects on the fitness of both pests and beneficial species. A particular type of endosymbiosis is that of beneficial associations. Facultative endosymbiotic bacteria are associated with elements that provide aphids with protection from parasitoids. Arsenophonus (Enterobacterales: Morganellaceae) is one such endosymbiont bacterium, with infections being most commonly found among the Hemiptera species. Here, black cowpea aphids (BCAs), Aphis craccivora Koch (Hemiptera: Aphididae), naturally infected with Arsenophonus, were evaluated to determine the defensive role of this bacterium in BCAs against two parasitoid wasp species, Binodoxys angelicae and Lysiphlebus fabarum (both in Braconidae: Aphidiinae). Individuals of the black cowpea aphids infected with Arsenophonus were treated with a blend of ampicillin, cefotaxime, and gentamicin (Arsenophonus-reduced infection, AR) and subsequently subjected to parasitism assays. The results showed that the presence of Arsenophonus does not prevent BCAs from being parasitized by either B. angelicae or L. fabarum. Nonetheless, in BCA colonies parasitized by B. angelicae, the endosymbiont delayed both the larval maturation period and the emergence of the adult parasitoid wasps. In brief, Arsenophonus indirectly limits the effectiveness of B. angelicae parasitism by decreasing the number of emerged adult wasps. Therefore, other members of the BCA colony can survive. Arsenophonus acts as a double-edged sword, capturing the complex dynamic between A. craccivora and its parasitoids.
Collapse
Affiliation(s)
- Minoo Heidari Latibari
- Department of Plant Protection, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad P.O. Box 91779-48974, Iran; (M.H.L.); (J.K.)
| | - Gholamhossein Moravvej
- Department of Plant Protection, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad P.O. Box 91779-48974, Iran; (M.H.L.); (J.K.)
| | - Ehsan Rakhshani
- Department of Plant Protection, Faculty of Agriculture, University of Zabol, Zabol P.O. Box 538-98615, Iran;
| | - Javad Karimi
- Department of Plant Protection, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad P.O. Box 91779-48974, Iran; (M.H.L.); (J.K.)
| | | | - Buntika A. Butcher
- Integrative Insect Ecology Research Unit, Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
4
|
Qin M, Jiang L, Kholmatov BR, Qiao G, Chen J. Phylosymbiotic Structures of the Microbiota in Mollitrichosiphum tenuicorpus (Hemiptera: Aphididae: Greenideinae). MICROBIAL ECOLOGY 2022; 84:227-239. [PMID: 34387702 PMCID: PMC9250915 DOI: 10.1007/s00248-021-01830-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Aphids harbor an array of symbionts that provide hosts with ecological benefits. Microbial community assembly generally varies with respect to aphid species, geography, and host plants. However, the influence of host genetics and ecological factors on shaping intraspecific microbial community structures has not been fully understood. In the present study, using Illumina sequencing of the V3 - V4 hypervariable region of the 16S rRNA gene, we characterized the microbial compositions associated with Mollitrichosiphum tenuicorpus from different regions and plants in China. The primary symbiont Buchnera aphidicola and the secondary symbiont Arsenophonus dominated the microbial flora in M. tenuicorpus. Ordination analyses and statistical tests suggested that geography and aphid genetics primarily contributed to the variation in the microbiota of M. tenuicorpus. We further confirmed the combined effect of aphid genetics and geography on shaping the structures of symbiont and secondary symbiont communities. Moreover, the significant correlation between aphid genetic divergence and symbiont community dissimilarity provides evidence for intraspecific phylosymbiosis in natural systems. Our study helped to elucidate the eco-evolutionary relationship between symbiont communities and aphids within one given species.
Collapse
Affiliation(s)
- Man Qin
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liyun Jiang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Bakhtiyor R Kholmatov
- Institute of Zoology, Academy of Sciences Republic of Uzbekistan, Bagishamol Str., 232b, Tashkent, 100053, Uzbekistan
| | - Gexia Qiao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jing Chen
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
5
|
Qin M, Chen J, Jiang L, Qiao G. Insights Into the Species-Specific Microbiota of Greenideinae (Hemiptera: Aphididae) With Evidence of Phylosymbiosis. Front Microbiol 2022; 13:828170. [PMID: 35273583 PMCID: PMC8901875 DOI: 10.3389/fmicb.2022.828170] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/20/2022] [Indexed: 11/25/2022] Open
Abstract
Aphids and their symbionts represent an outstanding model for studies of insect–symbiont interactions. The aphid microbiota can be shaped by aphid species, geography and host plants. However, the relative importance of phylogenetic and ecological factors in shaping microbial community structures is not well understood. Using Illumina sequencing of the V3–V4 hypervariable region of the 16S rRNA gene, we characterized the microbial compositions of 215 aphid colonies representing 53 species of the aphid subfamily Greenideinae from different regions and plants in China, Nepal, and Vietnam. The primary endosymbiont Buchnera aphidicola and secondary symbiont Serratia symbiotica dominated the microbiota of Greenideinae. We simultaneously explored the relative contribution of host identity (i.e., aphid genus and aphid species), geography and host plant to the structures of bacterial, symbiont and secondary symbiont communities. Ordination analyses and statistical tests highlighted the strongest impact of aphid species on the microbial flora in Greenideinae. Furthermore, we found a phylosymbiosis pattern in natural Greenideinae populations, in which the aphid phylogeny was positively correlated with microbial community dissimilarities. These findings will advance our knowledge of host-associated microbiota assembly across both host phylogenetic and ecological contexts.
Collapse
Affiliation(s)
- Man Qin
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jing Chen
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Liyun Jiang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Gexia Qiao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Pawar MM, Shivanna B, Prasannakumar MK, Parivallal PB, Suresh K, Meenakshi NH. Spatial distribution and community structure of microbiota associated with cowpea aphid ( Aphis craccivora Koch). 3 Biotech 2022; 12:75. [PMID: 35251878 PMCID: PMC8861231 DOI: 10.1007/s13205-022-03142-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 02/07/2022] [Indexed: 01/01/2023] Open
Abstract
Aphid populations were collected on cowpea, dolichos, redgram and black gram from Belagavi and Udupi locations. The samples were shotgun sequenced using the Illumina NovaSeq 6000 system to understand the spatial distribution and community structure of microbiota (especially bacteria) associated with aphids. In the present study, we identified obligatory nutritional symbiont Buchnera aphidicola and facultative symbionts Rickettsia sp. and Bacteroidetes endosymbiont of Geopemphigus sp. in all the aphid samples studied, although in varied abundance. On the other hand, Serratia symbiotica, Arsenophonus sp. and Acinetobacter sp. were only found in aphids on specific host plants, suggesting that host plants might influence the bacterial community structure. Furthermore, our study revealed that microbiota other than bacteria were highly insignificant in the aphid populations. Additionally, functional annotation of aphid metagenomes identified several pathways and enzymes involved in various physiological and ecological functions. Amino acid and vitamin biosynthesis-related pathways were predominant than carbohydrate metabolism, owing to their feeding habit and nutritional requirement. Chaperones related to stress tolerance such as GroEL and DnaK were identified. Enzymes involved in toxic chemical metabolisms such as glutathione transferase, phosphodiesterases and ABC transferases were observed. These enzymes may confer resistance to pesticides in the aphid populations. Overall, our results support the importance of host plants in structuring bacterial communities in aphids and show the functional roles of symbionts in aphid survival and development. Thus, these findings can be the basis for further detailed investigations and devising better strategies to manage the pests in field conditions. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-022-03142-1.
Collapse
Affiliation(s)
- Madhusudan M. Pawar
- grid.413008.e0000 0004 1765 8271Insect Molecular Biology Laboratory, Department of Agricultural Entomology, University of Agricultural Sciences, Bangalore, 560065 India
| | - B. Shivanna
- grid.413008.e0000 0004 1765 8271Insect Molecular Biology Laboratory, Department of Agricultural Entomology, University of Agricultural Sciences, Bangalore, 560065 India
| | - M. K. Prasannakumar
- grid.413008.e0000 0004 1765 8271Plant PathoGenOmic Laboratory, Department of Plant Pathology, University of Agricultural Sciences, Bangalore, 560065 India
| | - P. Buela Parivallal
- grid.413008.e0000 0004 1765 8271Plant PathoGenOmic Laboratory, Department of Plant Pathology, University of Agricultural Sciences, Bangalore, 560065 India
| | - Kiran Suresh
- grid.10388.320000 0001 2240 3300Department of Ecophysiology, University of Bonn, 53115 Bonn, Germany
| | - N. H. Meenakshi
- grid.413008.e0000 0004 1765 8271Insect Molecular Biology Laboratory, Department of Agricultural Entomology, University of Agricultural Sciences, Bangalore, 560065 India
| |
Collapse
|
7
|
Carpenter M, Peng L, Smith AH, Joffe J, O’Connor M, Oliver KM, Russell JA. Frequent Drivers, Occasional Passengers: Signals of Symbiont-Driven Seasonal Adaptation and Hitchhiking in the Pea Aphid, Acyrthosiphon pisum. INSECTS 2021; 12:805. [PMID: 34564245 PMCID: PMC8466206 DOI: 10.3390/insects12090805] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/02/2021] [Accepted: 09/04/2021] [Indexed: 12/25/2022]
Abstract
Insects harbor a variety of maternally inherited bacterial symbionts. As such, variation in symbiont presence/absence, in the combinations of harbored symbionts, and in the genotypes of harbored symbiont species provide heritable genetic variation of potential use in the insects' adaptive repertoires. Understanding the natural importance of symbionts is challenging but studying their dynamics over time can help to elucidate the potential for such symbiont-driven insect adaptation. Toward this end, we studied the seasonal dynamics of six maternally transferred bacterial symbiont species in the multivoltine pea aphid (Acyrthosiphon pisum). Our sampling focused on six alfalfa fields in southeastern Pennsylvania, and spanned 14 timepoints within the 2012 growing season, in addition to two overwintering periods. To test and generate hypotheses on the natural relevance of these non-essential symbionts, we examined whether symbiont dynamics correlated with any of ten measured environmental variables from the 2012 growing season, including some of known importance in the lab. We found that five symbionts changed prevalence across one or both overwintering periods, and that the same five species underwent such frequency shifts across the 2012 growing season. Intriguingly, the frequencies of these dynamic symbionts showed robust correlations with a subset of our measured environmental variables. Several of these trends supported the natural relevance of lab-discovered symbiont roles, including anti-pathogen defense. For a seventh symbiont-Hamiltonella defensa-studied previously across the same study periods, we tested whether a reported correlation between prevalence and temperature stemmed not from thermally varying host-level fitness effects, but from selection on co-infecting symbionts or on aphid-encoded alleles associated with this bacterium. In general, such "hitchhiking" effects were not evident during times with strongly correlated Hamiltonella and temperature shifts. However, we did identify at least one time period in which Hamiltonella spread was likely driven by selection on a co-infecting symbiont-Rickettsiella viridis. Recognizing the broader potential for such hitchhiking, we explored selection on co-infecting symbionts as a possible driver behind the dynamics of the remaining six species. Out of twelve examined instances of symbiont dynamics unfolding across 2-week periods or overwintering spans, we found eight in which the focal symbiont underwent parallel frequency shifts under single infection and one or more co-infection contexts. This supported the idea that phenotypic variation created by the presence/absence of individual symbionts is a direct target for selection, and that symbiont effects can be robust under co-habitation with other symbionts. Contrastingly, in two cases, we found that selection may target phenotypes emerging from symbiont co-infections, with specific species combinations driving overall trends for the focal dynamic symbionts, without correlated change under single infection. Finally, in three cases-including the one described above for Hamiltonella-our data suggested that incidental co-infection with a (dis)favored symbiont could lead to large frequency shifts for "passenger" symbionts, conferring no apparent cost or benefit. Such hitchhiking has rarely been studied in heritable symbiont systems. We propose that it is more common than appreciated, given the widespread nature of maternally inherited bacteria, and the frequency of multi-species symbiotic communities across insects.
Collapse
Affiliation(s)
- Melissa Carpenter
- Department of Biodiversity, Earth, and Environmental Science, Drexel University, 3250 Chestnut St., Philadelphia, PA 19104, USA; (M.C.); (A.H.S.); (M.O.)
| | - Linyao Peng
- Department of Biology, Drexel University, 3245 Chestnut St., Philadelphia, PA 19104, USA; (L.P.); (J.J.)
| | - Andrew H. Smith
- Department of Biodiversity, Earth, and Environmental Science, Drexel University, 3250 Chestnut St., Philadelphia, PA 19104, USA; (M.C.); (A.H.S.); (M.O.)
- Department of Biology, Drexel University, 3245 Chestnut St., Philadelphia, PA 19104, USA; (L.P.); (J.J.)
| | - Jonah Joffe
- Department of Biology, Drexel University, 3245 Chestnut St., Philadelphia, PA 19104, USA; (L.P.); (J.J.)
| | - Michael O’Connor
- Department of Biodiversity, Earth, and Environmental Science, Drexel University, 3250 Chestnut St., Philadelphia, PA 19104, USA; (M.C.); (A.H.S.); (M.O.)
| | - Kerry M. Oliver
- Department of Entomology, University of Georgia, 120 Cedar St., Athens, GA 30602, USA;
| | - Jacob A. Russell
- Department of Biodiversity, Earth, and Environmental Science, Drexel University, 3250 Chestnut St., Philadelphia, PA 19104, USA; (M.C.); (A.H.S.); (M.O.)
- Department of Biology, Drexel University, 3245 Chestnut St., Philadelphia, PA 19104, USA; (L.P.); (J.J.)
| |
Collapse
|
8
|
Fakhour S, Renoz F, Ambroise J, Pons I, Noël C, Gala JL, Hance T. Insight into the bacterial communities of the subterranean aphid Anoecia corni. PLoS One 2021; 16:e0256019. [PMID: 34379678 PMCID: PMC8357138 DOI: 10.1371/journal.pone.0256019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 07/28/2021] [Indexed: 11/23/2022] Open
Abstract
Many insect species are associated with bacterial partners that can significantly influence their evolutionary ecology. Compared to other insect groups, aphids harbor a bacterial microbiota that has the reputation of being poorly diversified, generally limited to the presence of the obligate nutritional symbiont Buchnera aphidicola and some facultative symbionts. In this study, we analyzed the bacterial diversity associated with the dogwood-grass aphid Anoecia corni, an aphid species that spends much of its life cycle in a subterranean environment. Little is known about the bacterial diversity associated with aphids displaying such a lifestyle, and one hypothesis is that close contact with the vast microbial community of the rhizosphere could promote the acquisition of a richer bacterial diversity compared to other aphid species. Using 16S rRNA amplicon Illumina sequencing on specimens collected on wheat roots in Morocco, we identified 10 bacterial operational taxonomic units (OTUs) corresponding to five bacterial genera. In addition to the obligate symbiont Buchnera, we identified the facultative symbionts Serratia symbiotica and Wolbachia in certain aphid colonies. The detection of Wolbachia is unexpected as it is considered rare in aphids. Moreover, its biological significance remains unknown in these insects. Besides, we also detected Arsenophonus and Dactylopiibacterium carminicum. These results suggest that, despite its subterranean lifestyle, A. corni shelter a bacterial diversity mainly limited to bacterial endosymbionts.
Collapse
Affiliation(s)
- Samir Fakhour
- Department of Plant Protection, National Institute for Agricultural Research (INRA), Béni-Mellal, Morocco
- Earth and Life Institute, UC Louvain, Louvain-la-Neuve, Belgium
| | - François Renoz
- Earth and Life Institute, UC Louvain, Louvain-la-Neuve, Belgium
| | - Jérôme Ambroise
- Center for Applied Molecular Technologies (CTMA), Institut de Recherche Expérimentale et Clinique (IREC), UC Louvain, Woluwe-Saint-Lambert, Belgium
| | - Inès Pons
- Earth and Life Institute, UC Louvain, Louvain-la-Neuve, Belgium
| | - Christine Noël
- Earth and Life Institute, UC Louvain, Louvain-la-Neuve, Belgium
| | - Jean-Luc Gala
- Center for Applied Molecular Technologies (CTMA), Institut de Recherche Expérimentale et Clinique (IREC), UC Louvain, Woluwe-Saint-Lambert, Belgium
| | - Thierry Hance
- Earth and Life Institute, UC Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|